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A Strict Control Lyapunov Function for a Diffusion
Equation with Time-Varying Distributed Coefficients

Federico Bribiesca Argomedo, Christophe Prieur, Emmawighnt and Sylvain Brémond

Abstract—In this paper, a strict Lyapunov function is devel- (representing the evolution of the toroidal magnetic flux in
oped in order to show the exponential stability and input-testate g tokamak) over the angle at fixed radius (nested toroidal
stability (ISS) properties of a diffusion equation for nonhomoge- surfaces). A comprehensive survey of ISS concepts, in the
neous media. Such media can involve rapidly time-varying & . . . . . o
tributed diffusivity coefficients. Based on this Lyapunov finction, flnltg-dlmensmnal pase, can be fOU”U_' in [30]. ISS gsséyltlal
a control law is derived to preserve the ISS properties of the implies guaranteeing a bounded gain between disturbances
system and improve its performance. A robustness analysisith ~ or errors and the state of the system. ISS-like properties in
respect to disturbances and estimation errors in the distthuted the infinite dimensional framework using a frequency-damai
parameters is performed on the system, precisely showing & 5,5105ch can be found for example in [15]. Nevertheless, we
impact of the controller on the rate of convergence and ISS ’
gains. This is important in light of a possible implementaton of have favored the use of a Lyapunov-ba§ed approach to allow
the control since, in most cases, diffusion coefficient emiates fOr an easier treatment of very general disturbances aodserr
involve a high degree of uncertainty. An application to the afety in the system.
factor profile control for the Tore Supra tokamak illustrate s and Although the use of Lyapunov functions in an infinite
motivates the theoretical results. A constrained control aw (in- dimensional setting is not new, see for example [3], it i sti

corporating nonlinear shape constraints in the actuation pofiles) ti h tobic. S int fi Its f .
is designed to behave as closely as possible to the unconsteal an active research topic. Some interesting results forpéica

version, albeit with the equivalent of a variable gain. Findly, the PDES can be mentioned: [8], where a Lyapunov function
proposed control laws are tested under simulation, first in he is used to prove the existence of a global solution to the
nominal case and then using a model of Tore Supra dynamics, heat equation; [16], where a Lyapunov function is consadct
\rlézefctt?:)(ljisstt%var?geiquate performance and robustness with ¢, the heat equation with unknown destabilizing paranseter
P ' (and subsequent control extensions [28] and [29]). Lyapuno
based approaches are not limited to parabolic PDEs: Lyapuno
|. INTRODUCTION functions are used in [10] for the stabilization of a rotgtin
. _ beam; in [9] for the stability analysis of quasilinear hylpaic
Theoretical Contribution systems and in [11] for the construction of stabilizing bdun
Parabolic partial differential equations (PDEs), and im-pagry controls for a system of conservation laws. In partictta
ticular diffusion or diffusion-convection equations, ansed [19] and [25] the interest of using a strict-Lyapunov fupati
to model a wide array of physical phenomena ranging frofg obtain 1SS-like properties is discussed in the paraktaoiid
heat conduction to the distribution of Species in biO'OgiC%yperbo"C cases, respective]y_ The use of Weigméd}orms
systems. While the diﬁUSiVity coefficients can be assumqgr similar quadratic expressions with a We|ght) as Lyapuno
to be constant throughout the spatial domain for most a@mctions is not new and a few examples can be found in [23]
plications, Spatially-distributed coefficients are nakdehen (for time de|ay Systems) and [12] (Where a Vanishing We|ght
treating nonhomogeneous or anisotropic (direction-dépet) s also used for the control of the magnetic flux equation in a
media. Unfortunately, extending existing results from thgkamak but not its gradient).
homogeneous to the nonhomogeneous case is not straightfosome previous works on reaction-diffusion equations in
ward_, particularly when the transport coefficients are #imeylindrical 2-D domains are, for instance, [32] and [34] in
varying. which boundary control laws are developed for the stabiliza
In this article, the concept dhput-to-state stabilit(ISS) tion of thermal convection loops. However, in both of these
will be the chosen framework to study the stability andrticles the domain considered does not include the point
robustness of a diffusion equation in a circular domain undg — (, which implies that none of the coefficients in the
a revolution symmetry condition with symmetric initial ain  equation are singular.
tions. The interest of studying such an equation is illustta  |n this article, we develop a strict Lyapunov function foeth
and motivated by the proposed application, where a similgffusion equation for a certain set of diffusivity coefBcit
equation arises from the averaging of a 2-D physical eqmatigrofiles. Our main contribution is that the coefficients are
F. Bribiesca Argomedo, C. Prieur and E. Witrant are with @rsité de allowed to t.)e space and time depeqdent without |m-p-osmg
Grenoble / UJF / CNRS, GIPSA-lab UMR 5216, BP 46, F-38402 St @NY constraints on the rate of variation of the coefficients
D'Heres, France. Email:{f ederi co. bri bi esca-argonedo, with respect to time. This is an improvement over other works
CP;'ﬂiLthie-npr:‘ :eur, emanuel . wi trant }@i psa-1ab.  that consider diffusivity coefficients as being space-deleat
J S. Brémond is?/\;ith CEA, IRFM F-13108, Saint Paul-lez-Dungrance. OF time-varying but not both simultaneously. Examples of
Email: syl vai n. brenond@ea. fr such approaches are provided by [26], where constant dif-



fusion coefficients and distributed convection coefficieate linear models based on a Galerkin projection are used to
considered; [27], where the case of non-constant diffusi@ontrol multiple profiles in JET; [20], where a reduced-arde
coefficients is treated (for continuous, time-invarianeffie linear model is used to control some points in the safetyofact
cients); or [33], where distributed and time-varying cacti@n  profile; and in [22] among other papers, where an infinite-
coefficients are taken into account (with a constant diffasi dimensional model is used to construct an optimal feedback
coefficient). Also, stability and robustness of the systaem ucontroller for the current profile, albeit considering a €ixe
der a simple unconstrained feedback law (that includes tfeem profile for the current deposit from the actuators and a
open-loop system as a limiting case) were derived from tlgeod knowledge of the diffusivity profile.
Lyapunov function, with results addressing most sources ofin particular, some works related to Tore Supra are: [21],
errors and uncertainties that may be present in a real systevith an overview of control achievements; [6], where a poly-
In particular, the following sources of error were conséter topic LPV approach is used to build a common Lyapunov
. state disturbancesaccounting for example for unmod-function guaranteeing stability of the discretized systeitin
eled dynamics; time-varying coefficients; [12], where sum-of-square paly
e actuation errors accounting main|y for errors in the mials are used to construct a Lyapunov function Considering
actuator models (similar to the concept of controllegonstant diffusivity coefficients and [13], where a slidimpde
fragility); controller is designed on the infinite-dimensional system,
. estimation errors in the state and diffusivity coefficientgonsidering constant diffusivity coefficients.
accounting for instance for discretized measurements orFor the application, the method proposed in this article
uncertain models, as well as measurement noise. ~ has the advantage of not only considering the diffusivity
coefficients as uncertain, but also of not bounding theie rat
of time-variation, thus reflecting the actual plasma phg/gic
which the temperature evolves in a much faster timescale tha
The motivating application for the theoretical results-prehat of the flux diffusion. A deep robustness analysis has bee
sented in this article is the development of a strict Lyapun@arried out with respect to different sources of error treateh
function and control laws for the poloidal magnetic flux plofi a prime importance in the physical system. Finally, nordine
in the Tore Supra tokamak. This application is particularlyonstraints in the actuators (representing the compleglsay
interesting for the method developed in this article sifoe tbetween the plasma and the input wave generated by the
diffusivity coefficient profiles depend mainly on the temger radiofrequency antenna) that do not assume a constant Lower
ture profile inside the plasma, which is rapidly time-vag/inHybrid current source deposit profile (contrarily to prexso
(more than ten times faster than the magnetic flux dynamicgjorks) are introduced.
and also on other physical quantities (like particle dgnaitd ~ This paper is organized as follows. In Section Il, the
effective electric charge) that induce large model unagitss reference diffusion equation is presented and the existenc
and unmeasured disturbances. Furthermore, neglectetsinpihd uniqueness of sufficiently regular solutions with time-
and unmodeled dynamics provide other sources of distwarying coefficients is stated. Next, in Section Ill the main
bances. The robustness results obtained from our thealretiesult is presented, namely the strict Lyapunov functiod an
contribution allow us to construct a constrained contre¥ lasufficient conditions for exponential stability of the syst in
that will preserve ISS properties while taking into accounin > sense. In Section IV results are obtained regarding the
strong nonlinear shape constraints in the distributedrobntrobustness of the system with respect to several sources of
action. errors and disturbances. In Section V the results are applie
A tokamak is a toroidal chamber lined with magnetic coilg the control of the poloidal magnetic flux profile in the
that generate a very strong magnetic field with both a totoidrore Supra tokamak and actuator constraints are added in
and a poloidal component. In this chamber, a plasma (gengiich a way as to preserve ISS properties and to maximize
ally constituted of Hydrogen isotopes) is confined by strortie convergence rate of the system within some admissible
magnetic fields so that the fusion reaction can take plagignits.
The relation between the two components of the associated
magnetic flux determines what is known as gefety factor
profile or g-profile This important physical quantity has been
found to be related to several phenomena in the plasma, inrhe diffusion equation considered in this article, in itdgvo
particularmagnetohydrodynamigvHD) instabilities. Having representation with a revolution symmetry (angle indepen-
an adequate safety factor profile is particularly importent dence) constraint is
achieve advanced tokamak operation, providing high con-

Application to the Control of a Tokamak Safety Factor

Il. PROBLEM STATEMENT AND EXISTENCE RESULTS

finement and MHD stability. A detailed account of tokamak n(r,t)
physics can be found in [36]. An overview of challenges of  (i(r,t) = T’ [rGr(r, )], +n(r, t)u(r,t),
tokamak plasma control is given in [24] and [35]. V(r,t) € (0,1) x [0,T) 1)

The problem of poloidal magnetic flux profile control is
closely related, via the Maxwell equations, to the control 0 1y this article, for any functior¢ depending on- and/or¢, & and &

current profiles in the plasma. Some previous results in thig used to denote? ¢ and %g, respectively;¢ represents¢ and ¢’
areas can be found in [17], where experimentally identifiedpresentss. ¢.



with Neumann boundary conditions:

¢-(0,t) = 0, Vte[0,T)

¢-(1,t) = 0, Vte|0,T) (2)
and initial condition:

C(T‘, O) = <0(T‘), Vr € (07 1) (3)

wheren stands for the diffusivity coefficient,(-, ¢) is the state
of the system at time, u(-,t) is a distributed input which

can be either a control, a disturbance, or the sum of both,
0 < T < 4o is the time horizon. Hereafter, the dependence

of ¢, w andn on (r,¢) will be implicit and omitted in most
equations.
The following properties are assumed to hold in (1):
Pqi: n(r,t) > k>0 forall (r,t) € [0,1] x [0,T).
P.: The two-dimensional Cartesian representationg ahd
u are irf C1reeee/2(Q x [0,T]), 0 < a. < 1, where
Q = {(z1,72) € R? | 2 + 23 < 1} as shown in Fig. 1.

X2
A

1
0Q

Figure 1. Coordinategz1,z2), (r,6) and domainQ2 used to define the
diffusion equation.

The set of equilibria of (1)-(2) is given by

{<n)

=K|K € R} (the origin plus a constant). Since w
are only interested in the convergence of the solutionsrgdwa
&, we will consider hereafter the evolution of the variable

wherezy = V(- 7.

The objectives of this paper are:

« To guarantee the exponential stability, in the topology of
the L? norn?, of solutions of equation (4) to zero, both
in open-loop (withu = 0) and by closing the loop with
a controlled inputu(-, t);

« to be able to adjust (in particular, to accelerate) the rate
of convergence of the system using the controlled input;

« to determine the impact of a controller in the ISS gain
in presence of a large class of errors. In particular
actuation errors, estimation/measurement errors anel stat
disturbances are considered.

To tackle this problem, a strict Lyapunov function will be

defined in Section Ill. Let us state first an existence result

assuming propertie®; and P»:

Theorem 2.1: For everyz, : [0,1] — R in C%t2<([0,1]),

0 < a < 1, such thatz(0) = z9(1) = 0, the evolution equa-

tions(4)-(6) have a unique solution € C' e 1+ae/2([0 1] x

[0, T]) N C?#reeltec/2([0,1] x [0,T)).

The proof of this result is given in Appendix A.

IIl. CONTROL LYAPUNOV FUNCTION AND NOMINAL

STABILITY

In this section, the input: is considered to be perfectly
controlled (without constraints) and a strict control Lyapv
function is developed, allowing us to construct a feedback
law that ensures exponential convergence to the origimat a
desired rate, of the solutions of (4)-(6) in @13 sense.

A. Candidate Control Lyapunov Function

Given f : [0,1] — (0, 0), a positive function with bounded
second derivative, let us consider a candidate control luyap
function for the system (4) with boundary condition (5) and
initial condition (6) defined, for alk in L2([0, 1]), by:

/ 1 (7)

Remark 3.1: Since f(r) is posmve and continuous on
[0, 1], the weighted norr11|| Ol = /V(2(+)) is equivalent
to the usualL? norm. In particular, it verifies:

fmzn

e

el < 120l < 2221200 @)

z = V(-7 (whered is the unit vector in the radial directionwherefmaz = max,co1) f(r) @Nd frmin = min,cpo ] £(r).

andV the gradient operator), as defined by:

= |2, Dl ¥t € 1) x [0.7) (@)
with Dirichlet boundary conditions:

2(0,t) = 0, Vt € [0,T)

2(1,t) =0, Vt € [0,T) (5)
and initial condition:
z(r,0) = zo(r), Vr € (0,1) (6)

2Here C@c:Pe(Q x [0,T]) denotes the space of functions which are

ac-Hélder continuous inQ, B.-Holder continuous_in [0,T].P, can be
strengthened by assuming thatand u are in C21(Q x [0,T]) which is
the case for the physical application in Sectign

Theorem 3.2: If there exist a positive functiofi: [0,1] —
(0, 00) with bounded second derivative, and a positive con-
stanta such that the following inequality is verified:

nf’ )+ (2] f+ 2] ) < —af(r),
Y(r,t) € [0,1] x [0,T) 9

then the time derivativd” of the functionV defined by(7)
verifies:

V < —aV(z( / f(r)[nu], z(r,t)dr, ¥t € [0,T)

(10)

3The LP norm of ¢ on a domain®, will be denoted as||¢||r»
(Ji, €2dQ) P for 1 < p < oo



along the solutions of4), (5), (6).

and the boundary conditions (5) imply that:

Proof: Since Theorem 2.1 guarantees the existence of 1 ] ] 1
solutions to (4) such that’(z(-,t)) is differentiable with 7, = 5/ (f’(r)n— + fr)ne= = frin— + f"(r)n
0 T T T

respect to time, the derivative df along those trajectories

IS:
1
V = T)ZZeAT
JRGET
= T1+To+Ts (11)
with:
1
T = / f(r) [77rU+77ur] zdr
0
1
T, = /Of(r) (nr [zr+%2}2+n[%zr—%z] Z)dr
1
Ty = /0 f(r)nzzppdr

Term T, can be rewritten as:
1 1
1
T = / flr) {—nz] zdr —|—/ fr)n.zz.dr
0 r r 0
Integrating by parts we get:

1 1 1
7= Lt = [ s [ rengser

1
—i—/o fryn.zz.dr

and, using the boundary conditions (5), implies:
1 1
T :—/ f’(r)nlzzdr—/ f(r)nlzzrdr
0 r 0 r

+/01 f(r)nezzedr

Integrating by partds, the following equation is obtained:

1 1
Ty = f(r)nzzl) / /()0 + F(r)m) zzedr
—/1f(7“)7723d7“
0

which, considering again the boundary conditions (5),
comes:

1 1
To=— [ P+ £z~ [ fomzdar @13)
0 0
From (12) and (13), (11) can thus be written as:
V=T +T;— /1 f’(r)nlzzdr - /1 f(rnz2dr  (14)
0 r 0 "

with:

(12)

! 1
Ty = / [—f(?‘)n; - f’(r)n] 2zpdr
0
Integrating by partdy, the following equation is obtained:

r = 4 (~somk - rem) |

0

1
5 [ (- £k - et o

—f"(r)n — f’(?‘)m) 22dr

+f'(7°)nr)22d7‘ (15)

Using (15), (14) is equivalent to:

Vo= /01 £(r) [nru+ nu,] zdr — /01 f(rynzldr

1
w5 [ (=700t + 0t - o

+f"(r)n + f’(r)m) Zdr (16)
From (9) and the definition of the Lyapunov candidate
function, (16) provides the inequality:

V<oVl + [ p) i e = [ ometan
Vt € [0,7) (17)

which implies the inequality (10), thus concluding the droo
of Theorem 3.2. [ |

Remark 3.3: The last term in equation(17) can be
bounded in order to obtain exponential stability of the sgst
with a rate « + ¢, wheree is a positive constant given by
the application of Poincaré’s inequality, the lower bourfdip
and some bounds oft However, for the physical application
described in Section V, the rate of convergence obtained
adding this term is almost the same as the value diat can
be obtained by adequately solving the differential inetjual
in Theorem 3.2.

Remark 3.4: For a large class of diffusivity profiles, the
differential inequality in Theorem 3.2 has easily complgab
solutions: whenever, 1 — nt; < —k for somek > 0
and all (r,t) € [0,1] x [0,T) (for example, if the spatial
derivative of the diffusivity coefficient remains non-pes),
a constant f satisfies(9). For our motivating application

bg_owever, this condition is not satisfied. Section V presants

suitable numerically computed weight satisfyi(id) for the
application. A heuristic method to compute such weights for
the particular case of exponential diffusivity coefficiprdfiles

is provided in [7].

B. Some Implications

Corollary 3.5: [Global Exponential Stability] If the condi-
tions of Theorem 3.2 are verified, and-ifr,t) = 0 for all
(r,t) in [0,1] x [0,T), then the origin of the systeld) with
boundary conditiong5) and initial condition(6) is globally
exponentially stable. The rate of convergence-is/2 in the
topology of the norni.?, i.e.: ||z(-,t)| p> < ce™ 2|20 z2 for
a positive constant = {%Zi where f,,q. and f,;, are
defined as in Remark 3.1, and for alEe [0, 7).

Proof: From Theorem 3.2, and settingr, t) = 0 for all
(r,t) in [0,1] x [0,T), the following inequality is obtained:

V < —aV(z(-t)), Yt e [0,T)



Therefore, considering the functign— V(z(-,t)) and inte- with ¢ = (/Z=e= f .. = max,coq f(r) and finin =

. . fmin
grating the previous inequality over time implies that: min,.¢ (o 1) f (7).
V(2( 1)) < e~V (2(r)), ¥t € [0,T) Proof: From Proposition 4.1 and Corollary 3.6 we have,

along the solution of (19), (5), (6):
and consequently:

1
_a Vg—Vz-,t +/ rw(r,t)z(r,t)|dr, YVt € [0,T
||Z('7t)Hf S e 2tHZO||fa VtE [O,T) ﬁ ( ( )) o |f( ) ( ) ( )| [ )
Since the norn| - ||; is equivalent to the usudl® nornt* The fur!ctionf being_ positive and usin_g the (_Zauchy-Schwarz
as shown in Remark 3.1, Corollary 3.5 follows. m inequality the following upper bound is obtained:

Corollary 3.6: [Convergence rate control] If the conditions v, _gy/(,(. 4 T N N
of Theorem 3.2 are verified, and considering= u...; where - ﬂv(z( ’t)) !ﬁzi Al |\t/7w<ét)”LO T
uctr 1S chosen, for all(r, t) € (0,1) x [0,T), as: = BV )+ 2[00l Oy, V€ [0,T)

R Defining X (=(-1)) = /V(2(~1) = [l2(-~#)[; > 0 this
Uctri (1, 1) = 0 ), z(p,t)dp (18) inequality implies:
with 4 > 0 a tuning parameter, then the syste@) with 2X (2(-,£)X < —BX>(2(-, 1)) +2X (2(- 1)) [Jw(-, 1) 1,
boundary conditiong5) and initial condition(6) is globally vt € [0,7)
exponentially stable. Its convergence rate-ig/2 = —(a +

- d
~)/2, in the topology of the norn.2. where X = £.X (z(-,1)). _ _

The proof of this corollary is similar to that of Corollary _ If X(2) =0, thenV(z) = 0 andV’ = 0. Otherwise we may
3.5, using Theorem 3.2 and the fact thti.,,], = —7yz for divide both sides of the previous inequality By (z(-,t)) to
all (r,t) €[0,1] x [0,T). get:

B

X < -ZX(z2(-,t Sy, VEEO,T
IV. INPUT-TO-STATE STABILITY AND ROBUSTNESS - 2 (zC0) +llwC Ol V€ [0,T)

Let us first consider the effect of disturbing equation (4) by From the last equation, by easy calculations, we get:

including a termw as follows: 5, b s )
" l2C Dy < e 2 a0l + / e E T (7| sdr (22)
2= [2lr2)] + ], +w, (1) € (0,1) x [0,7) (29) 0

" which in turn implies the desired result. ]
wherew is a function of(r,¢) and the following property is  Corollary 4.3: [Actuation errors] In addition to the condi-
assumed to hold: tions in Theorem 3.2, we consider= u.;,; — £*(r,t), with
P3: The two-dimensional Cartesian representationwobe- wu.,; as defined in Corollary 3.6 and“(r,t) a distributed

longs toC¥</2(Q2 x [0, T7), actuation error verifying the regularity conditions stdtén
0<a.<1. P». Then, withw = 0, the following inequality holds

Proposition 4.1: [Disturbed version of Theorem 3.2] Let 12, 0)|
the conditions of Theorem 3.2 hold. Then, along the solution ’

t
to (19), (5), (6), the following inequality holds: +cM/ e*%(tfr)“au(.ﬁ)HHl dr,
0

V < —aV(z(-1)) + /01 f(r) [nu], zdr + /01 frwzdr, vt €[0,T) (23)

VYt € [O7T) (20) with M = max{nmawanr,mam}a NMmaz = SUP(r,t)e[0,1]x[0,T) |
) , 1 | and nrmaz = SUP (. 4y efo,1)x (0,1 | M |-

This fact follows from Theorem 3.2, by using (7) and The proof of Corollary 4.3 is directly obtained by replacing
noting thatVjag) = Vi@ + fol f(r)wzdr where Viqg) and w by [ne“], in Theorem 4.2.
V|(4) stand for the derivative oV along the solution of (19) Corollary 4.4: [Estimation errors in thez profile] Assume
and (4), respectively, with boundary conditions (5) andiahi that the conditions of Theorem 3.2 are verified and consider
conditions (6). the control defined in Corollary 3.6 but substitutindpy an es-

Theorem 4.2: [ISS] Let the conditions of Proposition 4.1timate,2(r,t) = z(r,¢) —&*(r,t) for all (r,t) € [0,1] x [0,T),
be verified and consider = u.,; as defined in Corollary 3.6. with €*(r, t) being a distributed estimation error verifying the
The following inequality holds for the evolution of the syst regularity conditions stated ifP;. The following inequality is
(19) with boundary conditior{5) and initial condition(6), for then verified:
all t €[0,7):

2 < cem 20|

_8
I2(,B)llze < ce”2"[|zoll L2

t
_By ,ﬁ(tfn,-) t s
2, 0)llz2 < ce™ 2ol e + / 2 (-, 1) dr se [ BNl e,
(21) 0
vt € [0,T) (24)
4For generality purposes, results in this article are statddrms of usual ) )

norms. It should be noted, however, that the results statéjd j| ; norm are 5The H' norm of £ on [0, 1], will be denoted ag|é||z1 = ||€]l 2 +
less conservative. Ha—fﬂLz



Corollary 4.4 follows readily by replacingy by ~&* in

Theorem 4.2.

Proposition 4.5: [Estimation errors in then profile] As-

Applying the Cauchy-Schwarz inequality on the integral
term and on thd.! norm ofz it implies that, for allt € [0, T):

. n
sume that the conditions of Theorem 3.2 are verified andV < — <ﬁ+v [ inf <€—)]> V(z(-,t))
(rt)€[0,1]x[0,T) \ 7]

consider the control defined in Corollary 3.6 but substitgti
n by an estimatefj(r,t) = n(r,t) — e"(r,t) for all (r,t) €
[0,1]x[0,T), with"(r, t) being a distributed estimation error
verifying the regularity conditions stated i8,. The following

inequality is then verified:
I2(, ) pe < ce™ Tt 2]l 2, Wt € [0,T)

where [’ =

n n
2VCSUPte[0,T) ||[%]THL2 + 2\/57 Hz(at)H?‘ {ET]
Proof: Since the conditions of Theorem 3.2 are assumed V [ min N1y

to be verified to apply Corollary 3.6, inequality (10) hold

The controlu in Corollary 3.6 with7) becomes:

u= —1/ z(p,t)dp
0

n
This implies:
_ [
nu = —77/ z(p, t)dp
nJo
e [r
= -7 /Z(m)dp
n 0

i 87] i
= —7/ Z(p,t)dp—vf/ z(p, t)dp
0 n Jo

Differentiating with respect to the spatial variable:

[nulr = —yz — v%z - {i} ) /0 z(p, t)dp (26)

n

B+ vinfepepxpm (%) -

+29[2( 1)l z2 I2C, 0y

K

Using the equivalence betweén| ; and the usual? norm,
the previous inequality can be rewritten as:

. . en
V== (ﬁ A [(r,we[éflﬁx[om (?)D VD)

Swhich in turn implies:

. . 577
V== <ﬁ A [(r,we[é%x[om <7)]> V(= 1)

o
srelsol |2
L 77 rllr2
with ¢ as defined in Theorem 4.2. Consequently:
1% f ")
< —(p+ i —
- (ﬂ K |:(r,t)€[(1){11]><[0,T) ( n >
n
e sw |12 | Yt we o)
te[o,T) N 1ellpe2

< =B'V(z(-t), Vt€[0,T)

and using the same arguments as in the proof of Corollary 3.5
it implies the desired result. [ ]

Substituting (26) in (10) the following inequalities are Remark 4.6: Although finding a stabilizing control law for

obtained for allt € [0, T):

. 1
VvV < —aV(z)—’y/O f(r)22dr —~ | f(r)=—2%dr

0 n

—v/olf(r) {%} </0T2(p,t)dp) zdr

< —(a+)V(z)
en 1
— [ inf <7) /f(r)szr
(r,t)€[0,1]x[0,T) Ui 0
1 577 T
—7/ f(r) [—} ( Z(p,t)dp) zdr
0 ni, 0
_ f N v
< - i -
- (ﬁ+7_<r,t>e[3r,lux[om> Ul ) (=)
1 '677' T
+7/ ) | = </ Z(p,t)dp)z dr
0 L7, 0
_ f N\ v
< - i -
- (ﬁ+7_<r.,t>e[5f11}x[o,:f>(ﬁ)_) =)
1 '677 1
o [ ]2 < | 2(p,1) | dp ) 2| dr
0 L7 1, 0
£ Y\ v
< - i —
- <ﬁ A [(m)e[él-,lux[o-f) < Ul )D (=)

1
el [
0

ofs]

system(4)-(6) considering unconstrained in-domain actuation
is quite simple, the main interest of Sections Ill and IV
lies in the fact that the stability of the open-loop system
is guaranteed while giving a precise characterization of th
impact of the control action in the closed-loop behaviouthef
system, both in terms of rate of convergence and ISS gains.
Furthermore, the fact that the ISS inequalities hold for the
open-loop system is crucial for the application presented i
Section V, since it also implies that stabilizing contral/facan

be founddespite strong shape constraints on the admissible
control actionimposed by the physical actuators (represented
in Section V-D by a nonlinear function of the two available
engineering parameters in the LH antennas that can only take
values in bounded sets).

V. APPLICATION TO THECONTROL OF THEPOLOIDAL
MAGNETIC FLUX PROFILE IN A TOKAMAK PLASMA

A. Physical Model

Inside the toroidal chamber of a tokamak, the poloidal
magnetic flux in the plasma, denoteédR, ), is defined as the
flux per radian of the magnetic fiel(R, Z) through a disc
centered on the toroidal axis at heighthaving a radiug? and
surfaceS, as depicted in Fig. 2. As the safety factor scales basi-
cally as the ratio of the normalized radius to poloidal maigne
gradient, controlling the latter allows controlling thefetg



Va”:jbles gg;ﬁgg'z‘agneﬂc flux profile ;J,:]n'tf jni represents the current density profile generated by non-
é Toroidal magnetic flux profile Tm2 inductive current sourcegy is the permeability of free space,
q Safety factor profiley = d¢/dy F is the diamagnetic functionC; and Cs are geometric
;0 #gf;g:? rﬁ;;hnit?gaf?gg“gtCtﬁgtg;mer ” coefficients,V, is the spatial derivative of the plasma volume
,f“ Equivalent radius of the magnetic surfacds m and By, is the toroidallmagnetic fielq at the gep_metric cer_lter
a Location of the last closed magnetic surface m of the plasma. Some important variable definitions are given
r Normalized spatial variable = p/a in Table |
t Time s " . . .
v Plasma Volume m3 Neglecting _the dlamggn_enc effect c_ausgd by poloidal cur-
F Diamagnetic Function Tm rents and using a cylindrical approximation of the plasma
C2, C3 S:;T;“r'gs‘i’sgﬁlfift';'ems 0 geometry p << Ry, whereR, is the major plasma radius)
ull m . . . . K
0 Normalized  difiusivity  coefficient the coefficients in (27) simplify as follows:
m/ (noa?) 5 P 5
1o Permeability of free spacetr x 10~7 Hm™1! F =~ RoBgy,, C2=0C3=/4n R V, =4n“pRo
Jni Non-inductive eff_ective_current d_ensity Am—2 0
J ygr:’;“if"ze%?%onf'”d“c“ve effective currerjt Defining a normalized spatial variable= p/a, wherea
js Eﬁecﬁil,gocirre?ft”(jensity Am—2 (assumed constant) is the equivalent (minor) radius ofdke |
G Inductive current density Am—2 closed magnetic surface, the simplified model is obtained as
Jeced ECCD current density Am—2 in [37], [2]:
Jih LHCD current density Am—2 (1)
Jos Bootstrap current density Am~—2 (7, t 1 .
Ip Total plasma current A Pi(r,t) = o2 Yrr + ;wr =+ (r,t)Rojini(r,t) (28)
Py, Lower Hybrid antenna power w Ho
Ny Hybrid wave parallel refractive index with the boundary conditions:
Table |
VARIABLE DEFINITION wr (07 t) =0
and
ROHOIp(t)
U (1,t) = BT (29)

factor profile, which is an important physical heuristic ttha ) . I
relates to the plasma Magnetohydrodynamic (MHD) stabilifﬂyher_e_jp is the total plasma current, and with the initial
and possible enhanced energy confinement. For a discus&gRdition:

on advanced tokamak scenarios, refer for instance to [B4], [ U(r,t0) = to(r)

[38]. For the purposes of this articlg,; is considered as having
one main component, which is the LHCL.dwer Hybrid
Current Drive current depositj;;,. The extension to other
non-inductive actuators is possible with minor modificatio
Considering the evolution of the system around an equilibri
(E,j) and assuming an ideal tracking of the total plasma
current, the evolution ofy is given by (1)-(3). Defining
2= VY- F, 0 =n/(na?) andu = j, wherey = 14— and

j = j—7, propertiesP;, P, and P; hold, and thus the results
of sections Ill and IV apply. Furthermore, the implemertati
of a state-feedback is possible due to the online avaitglufi
the magnetic flux profiles using the Equinox code, see [5].

(30)

Figure 2. Coordinateg R, Z) and surfaceS used to define the poloidal
magnetic fluxy (R, Z). . - . .
9 V(R 2) B. lllustration of Stability: Numerical computation of the

Lyapunov function

In order to apply our analytical results, a simplified model N order to test the proposed control law in Corollary 3.6
for the magnetic flux profile’ in its one-dimensional represenf0r the nominal system, we consider an identified estimate

tation is considered. Its dynamics are given by the follgyinf the normalized plasma resistivity(r, t) = A(t)e*")", with
equation [4]: A(t) = 0.0107—0.0014 cos 407t andA(#) = 6.1+0.8 sin 207t

for all t € [0,7). In particular0.0093 < A(t) < 0.0121

by = 1 C2 L e (C203) by + 77IIVPB¢oj (27) and4.3 < A(t) < 6.9 for all ¢ € [0,7). The limits for the
1oCs 7 puoC3 , FC; ™ variations were chosen from data extracted from Tore Supra

shot 35109, described in [37]. A functiofi satisfying the

wherep = #ﬁm (¢ being the toroidal magnetic flux andconditions of Theorem 3.2 for these values iptas been

B,, the toroidal magnetic field at the center of the vacuumumerically computed using Mathematica. It is depicted in
vessel) is an equivalent radius indexing the magnetic sesfa Fig. 3. It should be noted that, in practice, the knowledge of
n) is the parallel resistivity of the plasma, the source terthese coefficients does not need to be exact. It is enoughdto fin
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. . o . (a) Contour plot of the solution to the PDE.
Figure 3. Functionf verifying the conditions of Theorem 3.2 for an expo-

nential n with time-varying parametersf,,,;», = 0.001, fmaz = 0.2823.

0.5

a common weighting functiorf valid on a rich enough set of
profiles (and thus on convex combinations of those profiles).
Moreover, sincex in (9) is positive, it provides a robustness
margin with respect to small numerical errors.

Using thisf, the time-evolution of equation (4) with bound-
ary conditions (5), initial condition (6) and of the assateth ok
Lyapunov functionl” without control action4.;,; = 0), for an

0.4

0.3

0.2

0.1

Distributed state z [Tm]

arbitrary numerical value of the initial condition, is show 0 02 04 06 08 1
. . . Rad lized

Fig. 4. The guaranteed convergence ratis indeed respected s (normalizec)

but is conservative. This is not unexpected, since inetyu@) (b) Time-slices of the solution to the PDE.

holds for all values of- and the central and edge diffusivities
vary considerably (almost by a factor 1000).
Finally, the response of the system using the control defined

in Corollary 3.6, withy = 1.6 is shown in Fig. 5. Comparing Sor
Fig. 4 (c) and Fig. 5 (d) we can verify that the exponential £os
decrease oft” with the control defined in Corollary 3.6 is o5
indeed increased by at least ™!, in agreement with the £ 04
theoretical results. €os

C. lllustration of ISS property: Tokamak Simulation with
Unconstrained Controller 0 0% Y orime P 2 2

In order to test the controller defined in Corollary 3.6 in a (c) Normalized evolution of the Lyapunov function.
more realistic setting, not only considering the evolutdthe
diffusion equation but also the dynamics of the diffusiwity
efficients and other system parameters, the simulator piecte
in [37] was used to test the behaviour of the system unqvta|
the effect of disturbances and neglected inputs. In paaticu
the effect of the variation of the so-called bootstr_ap auire, yield acceptable results (both in terms of the amplitude
(a plasma self-generated current source proportional ¢o 1 the control and the effect of the noisy measurements in
inverse of the magnetic flux gradient that introduces a nog, system). The results are shown in Fig. 6, with control
linearity in the system dynamics) around the equilibriund an X

. ; ction starting at = 16 s. While a steady-state error remains
the Electron Cyclotron Current Drive (ECCD) input, turne hen the ECCD is turned on, it is significantly reduced by
on for 8 s< ¢ < 20 s, act as unknown exogeneous curren ’

. . . ) e feedback action. The convergence speed is also ndiffceab
sources in the evolution equation. For a rigorous treatme

: . . improved.
they can be considered as disturbances both in the state an%

input (as in Theorem 4.2 and Corollary 4.3). The variation of N ] )
the resistivity coefficients is caused mainly by variations D Exploiting the Lyapunov Approach: Tokamak Simulation
the temperature profile, which is affected by the LH antenngith Constrained Controller

The original equilibrium was chosen from experimental data In view of a possible implementation of the control law
drawn from Tore Supra shot 35109. The effect of the ECCID a real tokamak experiment, strict constraints have to be
antennas was overemphasized in order to better illusttsiteimposed on the control action. For this application, theaicir
action on the state and the Lyapunov function (the power aonsidered is the current current density generated by the

Figure 4. Response of the nominal system without contrabmct

e simulation was chosen as three times the actual capcity
these actuators). A controller parameter= 0.75 was found
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fadlis(normalizec) " Figure 6. Response of the disturbed system, disturbanckedppt t = 8
(c) Evolution of the controk. s and removed at = 20 s with unconstrained control action beginning at

t=16s (y = 0.75).

0.9
0.8
307
-é 0.6
£os lower hybrid waves. This current deposit profilg, (r,t)
2> | depends on two main physical parameters: the power detivere
>ZZ by the antenna®, (t) and the parallel refractive indeX| (t).
0:1 | In Tore Supra two LH antennas exist and their parameters may
vary in the following mannerP;, ; < 1.5 MW, P2 < 3
¢ et 2 MW, N ; € [1.43,2.37] and N}, € [1.67,2.33]. However,

in this paper only one set of parametéi;, N|) is used
to derive a controller that illustrates the usefulness @& th
Figure 5. Response of the nominal system with unconstrabeetrol action control Lyapunov function, as defined in Proposition 4.a@yir
(v=16). a practical standpoint.

(d) Normalized evolution of the Lyapunov function.

Based on Proposition 4.1, we propose to choose, at each



time step, a coupléF;,, Ny) as follows:

1
P;,Nj) =ar min r) |nu(Byp, N, zdr
(P ||) g(PLh,,N)GZ/{/O f( )[77 (Pin ||)L

(31)

subject to the constraints:

0> /0 1) (P N zdr=—v(z) (32)

wherelf = [Hh,minuﬂh,maw] X [NH,minuNH,maz] and u :

U — C=([0,1]) is a nonlinear function representing the
relation between the engineering parameters and the iearsat
in the j;;, profile as presented in [37].

Remark 5.1: The inequality in the left-hand side ¢B2)
guarantees that the worst case of the optimization scheme is
fol fr) {W“(PﬂvNﬁ)] zdr = 0. In other words, the closed-
loop system verifies the 1SS inequalities of Theorem 4.2 and
Corollary 4.3 for a value of3 > «. The inequality in the right-
hand side of(32) is not necessary for the stability of system
(4)-(6), but aims to limit the contribution of the controller on
the rate of convergence of the closed-loop system. If, for al
time, there existF,, N”) € U such that the control proposed
in Corollary 3.6 is exactlyu(P,, V), then it is a solution to
the constrained optimization problem.

Since solving this optimization problem analytically isitgu
difficult, a numerical method using a gradient-descent -algo
rithm on the discretized parameter space was implemented in
practice. As the state dynamics describe the system dawiati
from an equilibrium, choosing: = 0 (i.e. (P, V) =
(P, N|)) always gives a feasible starting point. In general,
we might not find a solution of the proposed problem (31),
and we could have problems facing local-minima, but under
simulation with data taken from Tore Supra shots 35109 and
31463 (the first generated by modulating the LH power, the
second including also ECCD action) the results are satigfyi

The values ofu and u, for the different vertices of the
parameter grid were calculated off-line to allow real-time
control. In this case, the mean time taken by the algorithm
to determine the control values wa82 us using a Matla®®
function running on a processor a4 GHz.

For the first simulation, using an equilibrium point taken
from Tore Supra shot 35109, we introduce a disturbance
as in the previous section, corresponding to three times the
maximum ECCD power foB s< ¢ < 20 s and then activate
the control att = 16 s to attenuate its effect. Results are
shown in Fig. 7. It can be seen that, despite the constraigs,
attenuation of the disturbance is very effective, with th&ue
of the Lyapunov function rapidly reduced once the feedback
control is activated. The control value was updated evety
s, which is much greater than the required computing time.

The second proposed scenario is a change of operating
point, where both equilibria were drawn from Tore Supra
shot 35109. Control action starts at= 4 s and the change
of reference is applied at = 17 s. The results can be
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(d) Normalized evolution of the Lyapunov function.

seen in Fig. 8. It is interesting to see the behaviour of thgure 7. Response of the disturbed system, disturbanckedpt¢ = 8 s

Lyapunov function under the constrained control: even g¢ffou
an exponentially decreasing upper bound exists, the actu
shape is more irregular than in the unconstrained caselésimi

and removed at = 20 s with constrained control action beginningtat 16
S (']/ = 0.6).
a
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to a time-varying gain guaranteeing at all times a negativeFinally, a more complicated tracking scenario is proposed,

derivative for the Lyapunov function).

Distributed state z
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(b) Antenna parameters used to calculate the control
input.
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(c) Evolution of the actuajj;;, applied to the system.
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(d) Normalized evolution of the Lyapunov function.

Figure 8. Response of the system, change of reference aplie= 17 s

with constrained control action beginningtat 4 s (y = 0.6).

where a time-varying reference is generated from Tore Supra
shot 31463 (which involves both LH and ECCD action).
Furthermore, only one equilibrium point is calculated,reer
sponding to the mean value of the parameters applied during
the shot instead of one for each point of the trajectory. Fig.
9 represents (a) the mean tracking error, (b) the values for
the engineering parameters of the LH antenna, (c) the LH
current deposit profile, and (d) the safety factor profileisTh
result illustrates the robustness of the controller witbpect

to deviations from the calculated equilibrium (used in the
computation of the feedback).

VI. CONCLUSION

In this paper, a strict Lyapunov function was found for a
diffusion equation with time-varying distributed coeféais.
This function guarantees some ISS properties for the system
and allows for the construction of simple control laws that
maintain these properties and improve the performanceeof th
system. A particularly important contribution was a romests
study of the system with respect to disturbances and errors
in the model and measurements, since for most physical
applications the exact values and behaviour of the difftysiv
coefficients is not well known. Another contribution is the
consideration of the distributed and time-varying natufe o
these coefficients in the nominal scenario without consimgi
their rate of variation. Finally, the proposed Lyapunovdtion
design was applied to the control of the gradient of the pialbi
magnetic flux profile in the Tore Supra tokamak, with the
objective of safety factor regulation.

Future work will be devoted to the implementation and
testing of the proposed constrained control law with a more
complex simulation code, METIS and/or CRONOS, see [1],
[2] respectively. These codes include energy and momentum
conservation laws as well as refined plasma/wave interactio
descriptions for the antennas. Some effort will also be thl/o
to the estimation of the diffusivity coefficients in view ofia
experimental implementation on Tore Supra.

APPENDIX

Proof of Theorem 2.1:This proof is organized as follows:

(a) First, an auxiliary problem in two-dimensional Caréesi
coordinates under symmetry conditions is formulated.

(b) Next, the existence and uniqueness of solutions to the
auxiliary problem is shown using Theorem 5.1.21 and
Corollary 5.1.22 in [18] (pages 206-208). Which in turn
imply the existence and uniqueness of solutions to the
problem (4)-(6).

(a): Consider the following two-dimensional Cartesian-aux
iliary system:

Ce(wr, w2, t) = n(x1, w2, t) AL (21, 22, 1) + F(21, 22, 1),
V(I17x2,t) €0 x [O,T) (33)

with symmetric boundary condition:

<,,(.I‘1,$C2,t) = 0, V($1,$2,t>€89X[0,T> (34)
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where(, is the derivative ot in the outward normal direction
to 092, and with symmetric initial conditioy, € C37(Q),
0<a. <1t

C(Zl,ZCQ,O) = Co(xl,xg), V(xl,xg) cQ (35)

where A is the Laplacian, F(x1,x2,t) =
n(xz1, z2, t)u(x1, z2,t). This system is equivalent, when
imposing a central symmetry condition and sufficient
regularity of the initial condition, to (1)-(3).

(b): To apply Theorem 5.1.21 and Corollary 5.1.22 in [18]
(pages 206-208) it must be shown first that the diffusive aper
tors verify a uniform ellipticity condition irf). This is trivially
verified as a direct consequencedf and therefore Theorem
5.1.21 gives the existence and uniqueness of solutions and
Corollary 5.1.22 establishes the desired regularity (sihett
the gradient is inC'?+ae:1+a</2(Qy x [0, T)). This degree of
regularity is sufficient to ensure that all the integralsdufe
the definition of the Lyapunov function and its time derivati
are well defined. This concludes the proof of Theorem 2.1.
|

Existence, uniqueness and regularity results are alsd vali
when the control input is of the form proposed in Corollary
3.6 (which amounts to a feedback in the variaigle and
can extend to certain forms of non-homogeneous boundary
conditions thanks to the structure of the operators consile
in [18].
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