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A Strict Control Lyapunov Function for a Diffusion
Equation with Time-Varying Distributed Coefficients

Federico Bribiesca Argomedo, Christophe Prieur, EmmanuelWitrant and Sylvain Brémond

Abstract—In this paper, a strict Lyapunov function is devel-
oped in order to show the exponential stability and input-to-state
stability (ISS) properties of a diffusion equation for nonhomoge-
neous media. Such media can involve rapidly time-varying dis-
tributed diffusivity coefficients. Based on this Lyapunov function,
a control law is derived to preserve the ISS properties of the
system and improve its performance. A robustness analysis with
respect to disturbances and estimation errors in the distributed
parameters is performed on the system, precisely showing the
impact of the controller on the rate of convergence and ISS
gains. This is important in light of a possible implementation of
the control since, in most cases, diffusion coefficient estimates
involve a high degree of uncertainty. An application to the safety
factor profile control for the Tore Supra tokamak illustrate s and
motivates the theoretical results. A constrained control law (in-
corporating nonlinear shape constraints in the actuation profiles)
is designed to behave as closely as possible to the unconstrained
version, albeit with the equivalent of a variable gain. Finally, the
proposed control laws are tested under simulation, first in the
nominal case and then using a model of Tore Supra dynamics,
where they show adequate performance and robustness with
respect to disturbances.

I. I NTRODUCTION

Theoretical Contribution

Parabolic partial differential equations (PDEs), and in par-
ticular diffusion or diffusion-convection equations, areused
to model a wide array of physical phenomena ranging from
heat conduction to the distribution of species in biological
systems. While the diffusivity coefficients can be assumed
to be constant throughout the spatial domain for most ap-
plications, spatially-distributed coefficients are needed when
treating nonhomogeneous or anisotropic (direction-dependent)
media. Unfortunately, extending existing results from the
homogeneous to the nonhomogeneous case is not straightfor-
ward, particularly when the transport coefficients are time-
varying.

In this article, the concept ofinput-to-state stability(ISS)
will be the chosen framework to study the stability and
robustness of a diffusion equation in a circular domain under
a revolution symmetry condition with symmetric initial condi-
tions. The interest of studying such an equation is illustrated
and motivated by the proposed application, where a similar
equation arises from the averaging of a 2-D physical equation
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(representing the evolution of the toroidal magnetic flux in
a tokamak) over the angle at fixed radius (nested toroidal
surfaces). A comprehensive survey of ISS concepts, in the
finite-dimensional case, can be found in [30]. ISS essentially
implies guaranteeing a bounded gain between disturbances
or errors and the state of the system. ISS-like properties in
the infinite dimensional framework using a frequency-domain
approach can be found for example in [15]. Nevertheless, we
have favored the use of a Lyapunov-based approach to allow
for an easier treatment of very general disturbances and errors
in the system.

Although the use of Lyapunov functions in an infinite
dimensional setting is not new, see for example [3], it is still
an active research topic. Some interesting results for parabolic
PDEs can be mentioned: [8], where a Lyapunov function
is used to prove the existence of a global solution to the
heat equation; [16], where a Lyapunov function is constructed
for the heat equation with unknown destabilizing parameters
(and subsequent control extensions [28] and [29]). Lyapunov
based approaches are not limited to parabolic PDEs: Lyapunov
functions are used in [10] for the stabilization of a rotating
beam; in [9] for the stability analysis of quasilinear hyperbolic
systems and in [11] for the construction of stabilizing bound-
ary controls for a system of conservation laws. In particular, in
[19] and [25] the interest of using a strict-Lyapunov function
to obtain ISS-like properties is discussed in the parabolicand
hyperbolic cases, respectively. The use of weightedL2 norms
(or similar quadratic expressions with a weight) as Lyapunov
functions is not new and a few examples can be found in [23]
(for time delay systems) and [12] (where a vanishing weight
is also used for the control of the magnetic flux equation in a
tokamak but not its gradient).

Some previous works on reaction-diffusion equations in
cylindrical 2-D domains are, for instance, [32] and [34] in
which boundary control laws are developed for the stabiliza-
tion of thermal convection loops. However, in both of these
articles the domain considered does not include the point
r = 0, which implies that none of the coefficients in the
equation are singular.

In this article, we develop a strict Lyapunov function for the
diffusion equation for a certain set of diffusivity coefficient
profiles. Our main contribution is that the coefficients are
allowed to be space and time dependent without imposing
any constraints on the rate of variation of the coefficients
with respect to time. This is an improvement over other works
that consider diffusivity coefficients as being space-dependent
or time-varying but not both simultaneously. Examples of
such approaches are provided by [26], where constant dif-
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fusion coefficients and distributed convection coefficients are
considered; [27], where the case of non-constant diffusion
coefficients is treated (for continuous, time-invariant coeffi-
cients); or [33], where distributed and time-varying convection
coefficients are taken into account (with a constant diffusion
coefficient). Also, stability and robustness of the system un-
der a simple unconstrained feedback law (that includes the
open-loop system as a limiting case) were derived from the
Lyapunov function, with results addressing most sources of
errors and uncertainties that may be present in a real system.
In particular, the following sources of error were considered:

• state disturbances: accounting for example for unmod-
eled dynamics;

• actuation errors: accounting mainly for errors in the
actuator models (similar to the concept of controller
fragility);

• estimation errors in the state and diffusivity coefficients:
accounting for instance for discretized measurements or
uncertain models, as well as measurement noise.

Application to the Control of a Tokamak Safety Factor

The motivating application for the theoretical results pre-
sented in this article is the development of a strict Lyapunov
function and control laws for the poloidal magnetic flux profile
in the Tore Supra tokamak. This application is particularly
interesting for the method developed in this article since the
diffusivity coefficient profiles depend mainly on the tempera-
ture profile inside the plasma, which is rapidly time-varying
(more than ten times faster than the magnetic flux dynamics),
and also on other physical quantities (like particle density and
effective electric charge) that induce large model uncertainties
and unmeasured disturbances. Furthermore, neglected inputs
and unmodeled dynamics provide other sources of distur-
bances. The robustness results obtained from our theoretical
contribution allow us to construct a constrained control law
that will preserve ISS properties while taking into account
strong nonlinear shape constraints in the distributed control
action.

A tokamak is a toroidal chamber lined with magnetic coils
that generate a very strong magnetic field with both a toroidal
and a poloidal component. In this chamber, a plasma (gener-
ally constituted of Hydrogen isotopes) is confined by strong
magnetic fields so that the fusion reaction can take place.
The relation between the two components of the associated
magnetic flux determines what is known as thesafety factor
profile or q-profile. This important physical quantity has been
found to be related to several phenomena in the plasma, in
particularmagnetohydrodynamic(MHD) instabilities. Having
an adequate safety factor profile is particularly importantto
achieve advanced tokamak operation, providing high con-
finement and MHD stability. A detailed account of tokamak
physics can be found in [36]. An overview of challenges of
tokamak plasma control is given in [24] and [35].

The problem of poloidal magnetic flux profile control is
closely related, via the Maxwell equations, to the control of
current profiles in the plasma. Some previous results in this
areas can be found in [17], where experimentally identified

linear models based on a Galerkin projection are used to
control multiple profiles in JET; [20], where a reduced-order
linear model is used to control some points in the safety factor
profile; and in [22] among other papers, where an infinite-
dimensional model is used to construct an optimal feedback
controller for the current profile, albeit considering a fixed
form profile for the current deposit from the actuators and a
good knowledge of the diffusivity profile.

In particular, some works related to Tore Supra are: [21],
with an overview of control achievements; [6], where a poly-
topic LPV approach is used to build a common Lyapunov
function guaranteeing stability of the discretized systemwith
time-varying coefficients; [12], where sum-of-square polyno-
mials are used to construct a Lyapunov function considering
constant diffusivity coefficients and [13], where a sliding-mode
controller is designed on the infinite-dimensional system,
considering constant diffusivity coefficients.

For the application, the method proposed in this article
has the advantage of not only considering the diffusivity
coefficients as uncertain, but also of not bounding their rate
of time-variation, thus reflecting the actual plasma physics in
which the temperature evolves in a much faster timescale than
that of the flux diffusion. A deep robustness analysis has been
carried out with respect to different sources of error that have
a prime importance in the physical system. Finally, nonlinear
constraints in the actuators (representing the complex coupling
between the plasma and the input wave generated by the
radiofrequency antenna) that do not assume a constant Lower
Hybrid current source deposit profile (contrarily to previous
works) are introduced.

This paper is organized as follows. In Section II, the
reference diffusion equation is presented and the existence
and uniqueness of sufficiently regular solutions with time-
varying coefficients is stated. Next, in Section III the main
result is presented, namely the strict Lyapunov function and
sufficient conditions for exponential stability of the system in
anL2 sense. In Section IV results are obtained regarding the
robustness of the system with respect to several sources of
errors and disturbances. In Section V the results are applied
to the control of the poloidal magnetic flux profile in the
Tore Supra tokamak and actuator constraints are added in
such a way as to preserve ISS properties and to maximize
the convergence rate of the system within some admissible
limits.

II. PROBLEM STATEMENT AND EXISTENCE RESULTS

The diffusion equation considered in this article, in its polar
representation with a revolution symmetry (angle indepen-
dence) constraint is1:

ζt(r, t) =
η(r, t)

r
[rζr(r, t)]r + η(r, t)u(r, t),

∀(r, t) ∈ (0, 1)× [0, T ) (1)

1In this article, for any functionξ depending onr and/or t, ξr and ξrr
are used to denote∂

∂r
ξ and ∂2

∂r2
ξ, respectively;ξ̇ represents d

dt
ξ and ξ′

representsd
dr
ξ.
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with Neumann boundary conditions:

ζr(0, t) = 0, ∀t ∈ [0, T )

ζr(1, t) = 0, ∀t ∈ [0, T ) (2)

and initial condition:

ζ(r, 0) = ζ0(r), ∀r ∈ (0, 1) (3)

whereη stands for the diffusivity coefficient,ζ(·, t) is the state
of the system at timet, u(·, t) is a distributed input which
can be either a control, a disturbance, or the sum of both,
0 < T ≤ +∞ is the time horizon. Hereafter, the dependence
of ζ, u and η on (r, t) will be implicit and omitted in most
equations.

The following properties are assumed to hold in (1):

P1: η(r, t) ≥ k > 0 for all (r, t) ∈ [0, 1]× [0, T ).
P2: The two-dimensional Cartesian representations ofη and

u are in2 C1+αc,αc/2(Ω × [0, T ]), 0 < αc < 1, where
Ω
.
=

{

(x1, x2) ∈ R
2 | x21 + x22 < 1

}

as shown in Fig. 1.

∂Ω

x1

x2

Ω

r

1

1

θ

Figure 1. Coordinates(x1, x2), (r, θ) and domainΩ used to define the
diffusion equation.

The set of equilibria of (1)-(2) is given byE =
{

ζ(r) = K|K ∈ R
}

(the origin plus a constant). Since we
are only interested in the convergence of the solutions toward
E , we will consider hereafter the evolution of the variable
z
.
= ∇ζ ·−→ρ (where−→ρ is the unit vector in the radial direction

and∇ the gradient operator), as defined by:

zt =
[η

r
[rz]r

]

r
+ [ηu]r , ∀(r, t) ∈ (0, 1)× [0, T ) (4)

with Dirichlet boundary conditions:

z(0, t) = 0, ∀t ∈ [0, T )

z(1, t) = 0, ∀t ∈ [0, T ) (5)

and initial condition:

z(r, 0) = z0(r), ∀r ∈ (0, 1) (6)

2Here Cαc,βc(Ω × [0, T ]) denotes the space of functions which are
αc-Hölder continuous inΩ, βc-Hölder continuous in [0,T].P2 can be
strengthened by assuming thatη and u are inC2,1(Ω × [0, T ]) which is
the case for the physical application in SectionV .

wherez0
.
= ∇ζ0 · −→ρ .

The objectives of this paper are:
• To guarantee the exponential stability, in the topology of

theL2 norm3, of solutions of equation (4) to zero, both
in open-loop (withu = 0) and by closing the loop with
a controlled inputu(·, t);

• to be able to adjust (in particular, to accelerate) the rate
of convergence of the system using the controlled input;

• to determine the impact of a controller in the ISS gain
in presence of a large class of errors. In particular
actuation errors, estimation/measurement errors and state
disturbances are considered.

To tackle this problem, a strict Lyapunov function will be
defined in Section III. Let us state first an existence result
assuming propertiesP1 andP2:

Theorem 2.1: For everyz0 : [0, 1] → R in C2+αc([0, 1]),
0 < αc < 1, such thatz0(0) = z0(1) = 0, the evolution equa-
tions(4)-(6) have a unique solutionz ∈ C1+αc,1+αc/2([0, 1]×
[0, T ]) ∩ C2+αc,1+αc/2([0, 1]× [0, T ]).

The proof of this result is given in Appendix A.

III. C ONTROL LYAPUNOV FUNCTION AND NOMINAL

STABILITY

In this section, the inputu is considered to be perfectly
controlled (without constraints) and a strict control Lyapunov
function is developed, allowing us to construct a feedback
law that ensures exponential convergence to the origin, at any
desired rate, of the solutions of (4)-(6) in anL2 sense.

A. Candidate Control Lyapunov Function

Givenf : [0, 1] → (0,∞), a positive function with bounded
second derivative, let us consider a candidate control Lyapunov
function for the system (4) with boundary condition (5) and
initial condition (6) defined, for allz in L2([0, 1]), by:

V (z(·)) = 1

2

∫ 1

0

f(r)z2(r)dr (7)

Remark 3.1: Since f(r) is positive and continuous on
[0, 1], the weighted norm‖z(·)‖f .

=
√

V (z(·)) is equivalent
to the usualL2 norm. In particular, it verifies:

√

fmin

2
‖z(·)‖L2 ≤ ‖z(·)‖f ≤

√

fmax

2
‖z(·)‖L2 (8)

wherefmax
.
= maxr∈[0,1] f(r) and fmin

.
= minr∈[0,1] f(r).

Theorem 3.2: If there exist a positive functionf : [0, 1] →
(0,∞) with bounded second derivative, and a positive con-
stantα such that the following inequality is verified:

ηf ′′(r) + r
[η

r

]

r
f ′(r) +

[η

r

]

r
f(r) ≤ −αf(r),

∀(r, t) ∈ [0, 1]× [0, T ) (9)

then the time derivativėV of the functionV defined by(7)
verifies:

V̇ ≤ −αV (z(·, t)) +
∫ 1

0

f(r) [ηu]r z(r, t)dr, ∀t ∈ [0, T )

(10)

3The Lp norm of ξ on a domainΩ, will be denoted as‖ξ‖Lp
.
=

(∫

Ω
ξpdΩ

)1/p for 1 < p <∞
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along the solutions of(4), (5), (6).
Proof: Since Theorem 2.1 guarantees the existence of

solutions to (4) such thatV (z(·, t)) is differentiable with
respect to time, the derivative ofV along those trajectories
is:

V̇ =

∫ 1

0

f(r)zztdr

= T1 + T2 + T3 (11)

with:

T1 =

∫ 1

0

f(r) [ηru+ ηur] zdr

T2 =

∫ 1

0

f(r)

(

ηr

[

zr +
1

r
z

]

z + η

[

1

r
zr −

1

r2
z

]

z

)

dr

T3 =

∫ 1

0

f(r)ηzzrrdr

TermT2 can be rewritten as:

T2 =

∫ 1

0

f(r)

[

1

r
ηz

]

r

zdr +

∫ 1

0

f(r)ηrzzrdr

Integrating by parts we get:

T2 =
1

r
f(r)ηz2

∣

∣

∣

∣

1

0

−
∫ 1

0

f ′(r)η
1

r
z2dr −

∫ 1

0

f(r)η
1

r
zzrdr

+

∫ 1

0

f(r)ηrzzrdr

and, using the boundary conditions (5), implies:

T2 = −
∫ 1

0

f ′(r)η
1

r
z2dr −

∫ 1

0

f(r)η
1

r
zzrdr

+

∫ 1

0

f(r)ηrzzrdr (12)

Integrating by partsT3, the following equation is obtained:

T3 = f(r)ηzzr|10 −
∫ 1

0

(f ′(r)η + f(r)ηr) zzrdr

−
∫ 1

0

f(r)ηz2rdr

which, considering again the boundary conditions (5), be-
comes:

T3 = −
∫ 1

0

(f ′(r)η + f(r)ηr) zzrdr −
∫ 1

0

f(r)ηz2rdr (13)

From (12) and (13), (11) can thus be written as:

V̇ = T1 + T4 −
∫ 1

0

f ′(r)η
1

r
z2dr −

∫ 1

0

f(r)ηz2rdr (14)

with:

T4 =

∫ 1

0

[

−f(r)η 1
r
− f ′(r)η

]

zzrdr

Integrating by partsT4, the following equation is obtained:

T4 =
1

2

(

−f(r)η 1
r
− f ′(r)η

)

z2
∣

∣

∣

∣

1

0

−1

2

∫ 1

0

(

− f ′(r)η
1

r
− f(r)ηr

1

r
+ f(r)η

1

r2

−f ′′(r)η − f ′(r)ηr

)

z2dr

and the boundary conditions (5) imply that:

T4 =
1

2

∫ 1

0

(

f ′(r)η
1

r
+ f(r)ηr

1

r
− f(r)η

1

r2
+ f ′′(r)η

+f ′(r)ηr

)

z2dr (15)

Using (15), (14) is equivalent to:

V̇ =

∫ 1

0

f(r) [ηru+ ηur] zdr −
∫ 1

0

f(r)ηz2rdr

+
1

2

∫ 1

0

(

− f ′(r)η
1

r
+ f(r)ηr

1

r
− f(r)η

1

r2

+f ′′(r)η + f ′(r)ηr

)

z2dr (16)

From (9) and the definition of the Lyapunov candidate
function, (16) provides the inequality:

V̇ ≤ −αV (z(·, t)) +
∫ 1

0

f(r) [ηu]r zdr −
∫ 1

0

f(r)ηz2rdr,

∀t ∈ [0, T ) (17)

which implies the inequality (10), thus concluding the proof
of Theorem 3.2.

Remark 3.3: The last term in equation(17) can be
bounded in order to obtain exponential stability of the system
with a rate α + ǫ, where ǫ is a positive constant given by
the application of Poincaré’s inequality, the lower bound of η,
and some bounds onf . However, for the physical application
described in Section V, the rate of convergence obtained
adding this term is almost the same as the value ofα that can
be obtained by adequately solving the differential inequality
in Theorem 3.2.

Remark 3.4: For a large class of diffusivity profiles, the
differential inequality in Theorem 3.2 has easily computable
solutions: wheneverηr 1

r − η 1
r2 ≤ −k for some k > 0

and all (r, t) ∈ [0, 1] × [0, T ) (for example, if the spatial
derivative of the diffusivity coefficient remains non-positive),
a constantf satisfies (9). For our motivating application
however, this condition is not satisfied. Section V presentsa
suitable numerically computed weight satisfying(10) for the
application. A heuristic method to compute such weights for
the particular case of exponential diffusivity coefficientprofiles
is provided in [7].

B. Some Implications

Corollary 3.5: [Global Exponential Stability] If the condi-
tions of Theorem 3.2 are verified, and ifu(r, t) = 0 for all
(r, t) in [0, 1]× [0, T ), then the origin of the system(4) with
boundary conditions(5) and initial condition(6) is globally
exponentially stable. The rate of convergence is−α/2 in the
topology of the normL2, i.e.: ‖z(·, t)‖L2 ≤ ce−

α
2
t‖z0‖L2 for

a positive constantc
.
=

√

fmax

fmin
, wherefmax and fmin are

defined as in Remark 3.1, and for allt ∈ [0, T ).
Proof: From Theorem 3.2, and settingu(r, t) = 0 for all

(r, t) in [0, 1]× [0, T ), the following inequality is obtained:

V̇ ≤ −αV (z(·, t)), ∀t ∈ [0, T )
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Therefore, considering the functiont 7→ V (z(·, t)) and inte-
grating the previous inequality over time implies that:

V (z(·, t)) ≤ e−αtV (z0(r)), ∀t ∈ [0, T )

and consequently:

‖z(·, t)‖f ≤ e−
α
2
t‖z0‖f , ∀t ∈ [0, T )

Since the norm‖ · ‖f is equivalent to the usualL2 norm4

as shown in Remark 3.1, Corollary 3.5 follows.
Corollary 3.6: [Convergence rate control] If the conditions

of Theorem 3.2 are verified, and consideringu
.
= uctrl where

uctrl is chosen, for all(r, t) ∈ (0, 1)× [0, T ), as:

uctrl(r, t) = −γ
η

∫ r

0

z(ρ, t)dρ (18)

with γ ≥ 0 a tuning parameter, then the system(4) with
boundary conditions(5) and initial condition(6) is globally
exponentially stable. Its convergence rate is−β/2 .

= −(α +
γ)/2, in the topology of the normL2.

The proof of this corollary is similar to that of Corollary
3.5, using Theorem 3.2 and the fact that[η uctrl]r = −γz for
all (r, t) ∈ [0, 1]× [0, T ).

IV. I NPUT-TO-STATE STABILITY AND ROBUSTNESS

Let us first consider the effect of disturbing equation (4) by
including a termw as follows:

zt =
[η

r
[rz]r

]

r
+ [ηu]r + w, ∀(r, t) ∈ (0, 1)× [0, T ) (19)

wherew is a function of(r, t) and the following property is
assumed to hold:

P3: The two-dimensional Cartesian representation ofw be-
longs toCαc,αc/2(Ω× [0, T ]),
0 < αc < 1.

Proposition 4.1: [Disturbed version of Theorem 3.2] Let
the conditions of Theorem 3.2 hold. Then, along the solution
to (19), (5), (6), the following inequality holds:

V̇ ≤ −αV (z(·, t)) +
∫ 1

0

f(r) [ηu]r zdr +

∫ 1

0

f(r)wzdr,

∀t ∈ [0, T ) (20)

This fact follows from Theorem 3.2, by using (7) and
noting that V̇|(19) = V̇|(4) +

∫ 1

0
f(r)wzdr where V̇|(19) and

V̇|(4) stand for the derivative ofV along the solution of (19)
and (4), respectively, with boundary conditions (5) and initial
conditions (6).

Theorem 4.2: [ISS] Let the conditions of Proposition 4.1
be verified and consideru

.
= uctrl as defined in Corollary 3.6.

The following inequality holds for the evolution of the system
(19) with boundary condition(5) and initial condition(6), for
all t ∈ [0, T ):

‖z(·, t)‖L2 ≤ ce−
β
2
t‖z0‖L2 + c

∫ t

0

e−
β
2
(t−τ)‖w(·, τ)‖L2dτ

(21)

4For generality purposes, results in this article are statedin terms of usual
norms. It should be noted, however, that the results stated in ‖ · ‖f norm are
less conservative.

with c =
√

fmax

fmin
, fmax

.
= maxr∈[0,1] f(r) and fmin

.
=

minr∈[0,1] f(r).
Proof: From Proposition 4.1 and Corollary 3.6 we have,

along the solution of (19), (5), (6):

V̇ ≤ −βV (z(·, t)) +
∫ 1

0

|f(r)w(r, t)z(r, t)| dr, ∀t ∈ [0, T )

The functionf being positive and using the Cauchy-Schwarz
inequality the following upper bound is obtained:

V̇ ≤ −βV (z(·, t)) + ‖
√

fz(·, t)‖L2‖
√

fw(·, t)‖L2

= −βV (z(·, t)) + 2‖z(·, t)‖f‖w(·, t)‖f , ∀t ∈ [0, T )

Defining X(z(·, t)) .
=

√

V (z(·, t)) = ‖z(·, t)‖f ≥ 0 this
inequality implies:

2X(z(·, t))Ẋ ≤ −βX2(z(·, t)) + 2X(z(·, t))‖w(·, t)‖f ,
∀t ∈ [0, T )

whereẊ = d
dtX(z(·, t)).

If X(z) = 0, thenV (z) = 0 andV̇ = 0. Otherwise we may
divide both sides of the previous inequality by2X(z(·, t)) to
get:

Ẋ ≤ −β
2
X(z(·, t)) + ‖w(·, t)‖f , ∀t ∈ [0, T )

From the last equation, by easy calculations, we get:

‖z(·, t)‖f ≤ e−
β
2
t‖z0‖f +

∫ t

0

e−
β
2
(t−τ)‖w(·, τ)‖fdτ (22)

which in turn implies the desired result.
Corollary 4.3: [Actuation errors] In addition to the condi-

tions in Theorem 3.2, we consideru
.
= uctrl − εu(r, t), with

uctrl as defined in Corollary 3.6 andεu(r, t) a distributed
actuation error verifying the regularity conditions stated in
P2. Then, withw

.
= 0, the following inequality holds5:

‖z(·, t)‖L2 ≤ ce−
β
2
t‖z0‖L2

+cM

∫ t

0

e−
β
2
(t−τ)‖εu(·, τ)‖H1dτ,

∀t ∈ [0, T ) (23)

with M
.
= max{ηmax, ηr,max}, ηmax

.
= sup(r,t)∈[0,1]×[0,T ) |

η | and ηr,max
.
= sup(r,t)∈[0,1]×[0,T ) | ηr |.

The proof of Corollary 4.3 is directly obtained by replacing
w by [ηεu]r in Theorem 4.2.

Corollary 4.4: [Estimation errors in thez profile] Assume
that the conditions of Theorem 3.2 are verified and consider
the control defined in Corollary 3.6 but substitutingz by an es-
timate,ẑ(r, t)

.
= z(r, t)−εz(r, t) for all (r, t) ∈ [0, 1]× [0, T ),

with εz(r, t) being a distributed estimation error verifying the
regularity conditions stated inP3. The following inequality is
then verified:

‖z(·, t)‖L2 ≤ ce−
β
2
t‖z0‖L2

+γc

∫ t

0

e−
β
2
(t−τ)‖εz(·, τ)‖L2dτ,

∀t ∈ [0, T ) (24)

5The H1 norm of ξ on [0, 1], will be denoted as‖ξ‖H1

.
= ‖ξ‖L2 +

‖∂ξ
∂r

‖L2
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Corollary 4.4 follows readily by replacingw by γεz in
Theorem 4.2.

Proposition 4.5: [Estimation errors in theη profile] As-
sume that the conditions of Theorem 3.2 are verified and
consider the control defined in Corollary 3.6 but substituting
η by an estimate,̂η(r, t)

.
= η(r, t) − εη(r, t) for all (r, t) ∈

[0, 1]×[0, T ), with εη(r, t) being a distributed estimation error
verifying the regularity conditions stated inP2. The following
inequality is then verified:

‖z(·, t)‖L2 ≤ ce−
β′

2
t‖z0‖L2 , ∀t ∈ [0, T ) (25)

where β′ .
= β + γ inf(r,t)∈[0,1]×[0,T )

(

εη

η̂

)

−
2γc supt∈[0,T ) ‖[ ε

η

η̂ ]r‖L2.
Proof: Since the conditions of Theorem 3.2 are assumed

to be verified to apply Corollary 3.6, inequality (10) holds.
The controlu in Corollary 3.6 withη̂ becomes:

u = −γ
η̂

∫ r

0

z(ρ, t)dρ

This implies:

ηu = −γ η
η̂

∫ r

0

z(ρ, t)dρ

= −γ η̂ + εη

η̂

∫ r

0

z(ρ, t)dρ

= −γ
∫ r

0

z(ρ, t)dρ− γ
εη

η̂

∫ r

0

z(ρ, t)dρ

Differentiating with respect to the spatial variable:

[ηu]r = −γz − γ
εη

η̂
z − γ

[

εη

η̂

]

r

∫ r

0

z(ρ, t)dρ (26)

Substituting (26) in (10) the following inequalities are
obtained for allt ∈ [0, T ):

V̇ ≤ −αV (z)− γ

∫ 1

0

f(r)z2dr − γ

∫ 1

0

f(r)
εη

η̂
z2dr

−γ
∫ 1

0

f(r)

[

εη

η̂

]

r

(
∫ r

0

z(ρ, t)dρ

)

zdr

≤ −(α+ γ)V (z)

−γ
[

inf
(r,t)∈[0,1]×[0,T )

(

εη

η̂

)]
∫ 1

0

f(r)z2dr

−γ
∫ 1

0

f(r)

[

εη

η̂

]

r

(
∫ r

0

z(ρ, t)dρ

)

zdr

≤ −
(

β + γ

[

inf
(r,t)∈[0,1]×[0,T )

(

εη

η̂

)])

V (z)

+γ

∫ 1

0

∣

∣

∣

∣

f(r)

[

εη

η̂

]

r

(
∫ r

0

z(ρ, t)dρ

)

z

∣

∣

∣

∣

dr

≤ −
(

β + γ

[

inf
(r,t)∈[0,1]×[0,T )

(

εη

η̂

)])

V (z)

+γ

∫ 1

0

∣

∣

∣

∣

f(r)

[

εη

η̂

]

r

(
∫ 1

0

| z(ρ, t) | dρ
)

z

∣

∣

∣

∣

dr

≤ −
(

β + γ

[

inf
(r,t)∈[0,1]×[0,T )

(

εη

η̂

)])

V (z)

+γ‖z‖L1

∫ 1

0

∣

∣

∣

∣

f(r)

[

εη

η̂

]

r

z

∣

∣

∣

∣

dr

Applying the Cauchy-Schwarz inequality on the integral
term and on theL1 norm ofz it implies that, for allt ∈ [0, T ):

V̇ ≤ −
(

β + γ

[

inf
(r,t)∈[0,1]×[0,T )

(

εη

η̂

)])

V (z(·, t))

+2γ‖z(·, t)‖L2

∥

∥

∥

∥

[

εη

η̂

]

r

∥

∥

∥

∥

f

‖z(·, t)‖f

Using the equivalence between‖·‖f and the usualL2 norm,
the previous inequality can be rewritten as:

V̇ ≤ −
(

β + γ

[

inf
(r,t)∈[0,1]×[0,T )

(

εη

η̂

)])

V (z(·, t))

+
2
√
2γ√

fmin
‖z(·, t)‖2f

∥

∥

∥

∥

[

εη

η̂

]

r

∥

∥

∥

∥

f

which in turn implies:

V̇ ≤ −
(

β + γ

[

inf
(r,t)∈[0,1]×[0,T )

(

εη

η̂

)])

V (z(·, t))

+2γc‖z(·, t)‖2f
∥

∥

∥

∥

[

εη

η̂

]

r

∥

∥

∥

∥

L2

with c as defined in Theorem 4.2. Consequently:

V̇ ≤ −
(

β + γ

[

inf
(r,t)∈[0,1]×[0,T )

(

εη

η̂

)]

−2γc sup
t∈[0,T )

∥

∥

∥

∥

[

εη

η̂

]

r

∥

∥

∥

∥

L2

)

V (z(·, t)), ∀t ∈ [0, T )

≤ −β′V (z(·, t)), ∀t ∈ [0, T )

and using the same arguments as in the proof of Corollary 3.5
it implies the desired result.

Remark 4.6: Although finding a stabilizing control law for
system(4)-(6) considering unconstrained in-domain actuation
is quite simple, the main interest of Sections III and IV
lies in the fact that the stability of the open-loop system
is guaranteed while giving a precise characterization of the
impact of the control action in the closed-loop behaviour ofthe
system, both in terms of rate of convergence and ISS gains.
Furthermore, the fact that the ISS inequalities hold for the
open-loop system is crucial for the application presented in
Section V, since it also implies that stabilizing control laws can
be founddespite strong shape constraints on the admissible
control actionimposed by the physical actuators (represented
in Section V-D by a nonlinear function of the two available
engineering parameters in the LH antennas that can only take
values in bounded sets).

V. A PPLICATION TO THECONTROL OF THEPOLOIDAL

MAGNETIC FLUX PROFILE IN A TOKAMAK PLASMA

A. Physical Model

Inside the toroidal chamber of a tokamak, the poloidal
magnetic flux in the plasma, denotedψ(R,Z), is defined as the
flux per radian of the magnetic fieldB(R,Z) through a disc
centered on the toroidal axis at heightZ, having a radiusR and
surfaceS, as depicted in Fig. 2. As the safety factor scales basi-
cally as the ratio of the normalized radius to poloidal magnetic
gradient, controlling the latter allows controlling the safety
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Variables Description Units
ψ Poloidal magnetic flux profile Tm2

φ Toroidal magnetic flux profile Tm2

q Safety factor profileq
.
= dφ/dψ

R0 Location of the magnetic center m
Bφ0

Toroidal magnetic field at the center T
ρ Equivalent radius of the magnetic surfaces m
a Location of the last closed magnetic surface m
r Normalized spatial variabler

.
= ρ/a

t Time s
V Plasma Volume m3

F Diamagnetic Function Tm
C2, C3 Geometric coefficients
η‖ Parallel resistivity Ωm
η Normalized diffusivity coefficient

η‖/(µ0a
2)

µ0 Permeability of free space:4π × 10−7 Hm−1

jni Non-inductive effective current density Am−2

j Normalized non-inductive effective current
densityµ0a2R0jni

jφ Effective current density Am−2

jω Inductive current density Am−2

jeccd ECCD current density Am−2

jlh LHCD current density Am−2

jbs Bootstrap current density Am−2

Ip Total plasma current A
Plh Lower Hybrid antenna power W
N‖ Hybrid wave parallel refractive index

Table I
VARIABLE DEFINITION

factor profile, which is an important physical heuristic that
relates to the plasma Magnetohydrodynamic (MHD) stability
and possible enhanced energy confinement. For a discussion
on advanced tokamak scenarios, refer for instance to [31], [14],
[38].

Figure 2. Coordinates(R,Z) and surfaceS used to define the poloidal
magnetic fluxψ(R, Z).

In order to apply our analytical results, a simplified model
for the magnetic flux profileψ in its one-dimensional represen-
tation is considered. Its dynamics are given by the following
equation [4]:

ψt =
η‖C2

µ0C3
ψρρ +

η‖ρ

µ0C2
3

(

C2C3

ρ

)

ρ

ψρ +
η‖VρBφ0

FC3
jni (27)

whereρ
.
=

√

φ
πBφ0

(φ being the toroidal magnetic flux and
Bφ0

the toroidal magnetic field at the center of the vacuum
vessel) is an equivalent radius indexing the magnetic surfaces,
η‖ is the parallel resistivity of the plasma, the source term

jni represents the current density profile generated by non-
inductive current sources,µ0 is the permeability of free space,
F is the diamagnetic function,C2 and C3 are geometric
coefficients,Vρ is the spatial derivative of the plasma volume
andBφ0

is the toroidal magnetic field at the geometric center
of the plasma. Some important variable definitions are given
in Table I.

Neglecting the diamagnetic effect caused by poloidal cur-
rents and using a cylindrical approximation of the plasma
geometry (ρ << R0, whereR0 is the major plasma radius)
the coefficients in (27) simplify as follows:

F ≈ R0Bφ0
, C2 = C3 = 4π2 ρ

R0
, Vρ = 4π2ρR0

Defining a normalized spatial variabler = ρ/a, wherea
(assumed constant) is the equivalent (minor) radius of the last
closed magnetic surface, the simplified model is obtained as
in [37], [2]:

ψt(r, t) =
η‖(r, t)

µ0a2

(

ψrr +
1

r
ψr

)

+ η‖(r, t)R0jni(r, t) (28)

with the boundary conditions:

ψr(0, t) = 0

and

ψr(1, t) = −R0µ0Ip(t)

2π
(29)

where Ip is the total plasma current, and with the initial
condition:

ψ(r, t0) = ψ0(r) (30)

For the purposes of this article,jni is considered as having
one main component, which is the LHCD (Lower Hybrid
Current Drive) current depositjlh. The extension to other
non-inductive actuators is possible with minor modifications.
Considering the evolution of the system around an equilibrium
(

ψ, j
)

and assuming an ideal tracking of the total plasma
current, the evolution ofψ is given by (1)-(3). Defining
z
.
= ∇ψ̃ ·−→ρ , η

.
= η‖/(µ0a

2) andu
.
= j̃, whereψ̃

.
= ψ−ψ and

j̃
.
= j− j, propertiesP1, P2 andP3 hold, and thus the results

of sections III and IV apply. Furthermore, the implementation
of a state-feedback is possible due to the online availability of
the magnetic flux profiles using the Equinox code, see [5].

B. Illustration of Stability: Numerical computation of the
Lyapunov function

In order to test the proposed control law in Corollary 3.6
for the nominal system, we consider an identified estimate
of the normalized plasma resistivityη(r, t) = A(t)eλ(t)r , with
A(t)

.
= 0.0107−0.0014 cos40πt andλ(t)

.
= 6.1+0.8 sin20πt

for all t ∈ [0, T ). In particular 0.0093 ≤ A(t) ≤ 0.0121
and 4.3 ≤ λ(t) ≤ 6.9 for all t ∈ [0, T ). The limits for the
variations were chosen from data extracted from Tore Supra
shot 35109, described in [37]. A functionf satisfying the
conditions of Theorem 3.2 for these values ofη has been
numerically computed using Mathematica. It is depicted in
Fig. 3. It should be noted that, in practice, the knowledge of
these coefficients does not need to be exact. It is enough to find
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Figure 3. Functionf verifying the conditions of Theorem 3.2 for an expo-
nentialη with time-varying parameters.fmin = 0.001, fmax = 0.2823.

a common weighting functionf valid on a rich enough set of
profiles (and thus on convex combinations of those profiles).
Moreover, sinceα in (9) is positive, it provides a robustness
margin with respect to small numerical errors.

Using thisf , the time-evolution of equation (4) with bound-
ary conditions (5), initial condition (6) and of the associated
Lyapunov functionV without control action (uctrl = 0), for an
arbitrary numerical value of the initial condition, is shown in
Fig. 4. The guaranteed convergence rateα is indeed respected
but is conservative. This is not unexpected, since inequality (9)
holds for all values ofr and the central and edge diffusivities
vary considerably (almost by a factor 1000).

Finally, the response of the system using the control defined
in Corollary 3.6, withγ = 1.6 is shown in Fig. 5. Comparing
Fig. 4 (c) and Fig. 5 (d) we can verify that the exponential
decrease ofV with the control defined in Corollary 3.6 is
indeed increased by at leaste−γt, in agreement with the
theoretical results.

C. Illustration of ISS property: Tokamak Simulation with
Unconstrained Controller

In order to test the controller defined in Corollary 3.6 in a
more realistic setting, not only considering the evolutionof the
diffusion equation but also the dynamics of the diffusivityco-
efficients and other system parameters, the simulator presented
in [37] was used to test the behaviour of the system under
the effect of disturbances and neglected inputs. In particular,
the effect of the variation of the so-called bootstrap current
(a plasma self-generated current source proportional to the
inverse of the magnetic flux gradient that introduces a non-
linearity in the system dynamics) around the equilibrium and
the Electron Cyclotron Current Drive (ECCD) input, turned
on for 8 s≤ t ≤ 20 s, act as unknown exogeneous current
sources in the evolution equation. For a rigorous treatment,
they can be considered as disturbances both in the state and
input (as in Theorem 4.2 and Corollary 4.3). The variation of
the resistivity coefficients is caused mainly by variationsin
the temperature profile, which is affected by the LH antenna.

The original equilibrium was chosen from experimental data
drawn from Tore Supra shot 35109. The effect of the ECCD
antennas was overemphasized in order to better illustrate its
action on the state and the Lyapunov function (the power in
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(c) Normalized evolution of the Lyapunov function.

Figure 4. Response of the nominal system without control action.

the simulation was chosen as three times the actual capacityof
these actuators). A controller parameterγ = 0.75 was found
to yield acceptable results (both in terms of the amplitude
of the control and the effect of the noisy measurements in
the system). The results are shown in Fig. 6, with control
action starting att = 16 s. While a steady-state error remains
when the ECCD is turned on, it is significantly reduced by
the feedback action. The convergence speed is also noticeably
improved.

D. Exploiting the Lyapunov Approach: Tokamak Simulation
with Constrained Controller

In view of a possible implementation of the control law
in a real tokamak experiment, strict constraints have to be
imposed on the control action. For this application, the actuator
considered is the current current density generated by the
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(c) Evolution of the controlu.
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(d) Normalized evolution of the Lyapunov function.

Figure 5. Response of the nominal system with unconstrainedcontrol action
(γ = 1.6).

(a) Evolution of the z profile in time.

(b) Evolution of the controlu.
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(c) Normalized evolution of the Lyapunov function.

Figure 6. Response of the disturbed system, disturbance applied at t = 8
s and removed att = 20 s with unconstrained control action beginning at
t = 16 s (γ = 0.75).

lower hybrid waves. This current deposit profilejlh(r, t)
depends on two main physical parameters: the power delivered
by the antennasPlh(t) and the parallel refractive indexN‖(t).
In Tore Supra two LH antennas exist and their parameters may
vary in the following manner:Plh,1 ≤ 1.5 MW, Plh,2 ≤ 3
MW, N‖,1 ∈ [1.43, 2.37] andN‖,2 ∈ [1.67, 2.33]. However,
in this paper only one set of parameters(Plh, N‖) is used
to derive a controller that illustrates the usefulness of the
control Lyapunov function, as defined in Proposition 4.1, from
a practical standpoint.

Based on Proposition 4.1, we propose to choose, at each
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time step, a couple(P ∗
lh, N

∗
‖ ) as follows:

(P ∗
lh, N

∗
‖ ) = arg min

(Plh,N‖)∈U

∫ 1

0

f(r)
[

ηu(Plh, N‖)
]

r
zdr

(31)
subject to the constraints:

0 ≥
∫ 1

0

f(r)
[

ηu(P ∗
lh, N

∗
‖ )
]

r
zdr ≥ −γV (z) (32)

where U .
= [Plh,min, Plh,max] × [N‖,min, N‖,max] and u :

U → C∞([0, 1]) is a nonlinear function representing the
relation between the engineering parameters and the variations
in the jlh profile as presented in [37].

Remark 5.1: The inequality in the left-hand side of(32)
guarantees that the worst case of the optimization scheme is
∫ 1

0 f(r)
[

ηu(P ∗
lh, N

∗
‖ )
]

r
zdr = 0. In other words, the closed-

loop system verifies the ISS inequalities of Theorem 4.2 and
Corollary 4.3 for a value ofβ ≥ α. The inequality in the right-
hand side of(32) is not necessary for the stability of system
(4)-(6), but aims to limit the contribution of the controller on
the rate of convergence of the closed-loop system. If, for all
time, there exist(Plh, N‖) ∈ U such that the control proposed
in Corollary 3.6 is exactlyu(Plh, N‖), then it is a solution to
the constrained optimization problem.

Since solving this optimization problem analytically is quite
difficult, a numerical method using a gradient-descent algo-
rithm on the discretized parameter space was implemented in
practice. As the state dynamics describe the system deviation
from an equilibrium, choosingu = 0 (i.e. (Plh, N‖) =
(P lh, N‖)) always gives a feasible starting point. In general,
we might not find a solution of the proposed problem (31),
and we could have problems facing local-minima, but under
simulation with data taken from Tore Supra shots 35109 and
31463 (the first generated by modulating the LH power, the
second including also ECCD action) the results are satisfying.

The values ofu and ur for the different vertices of the
parameter grid were calculated off-line to allow real-time
control. In this case, the mean time taken by the algorithm
to determine the control values was432 µs using a Matlabc©

function running on a processor at2.54 GHz.
For the first simulation, using an equilibrium point taken

from Tore Supra shot 35109, we introduce a disturbance
as in the previous section, corresponding to three times the
maximum ECCD power for8 s≤ t ≤ 20 s and then activate
the control att = 16 s to attenuate its effect. Results are
shown in Fig. 7. It can be seen that, despite the constraints,the
attenuation of the disturbance is very effective, with the value
of the Lyapunov function rapidly reduced once the feedback
control is activated. The control value was updated every0.1
s, which is much greater than the required computing time.

The second proposed scenario is a change of operating
point, where both equilibria were drawn from Tore Supra
shot 35109. Control action starts att = 4 s and the change
of reference is applied att = 17 s. The results can be
seen in Fig. 8. It is interesting to see the behaviour of the
Lyapunov function under the constrained control: even though
an exponentially decreasing upper bound exists, the actual
shape is more irregular than in the unconstrained case (similar

(a) Evolution of the z profile in time.
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(b) Antenna parameters used to calculate the control
input.

(c) Evolution of the actualjlh applied to the system.
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(d) Normalized evolution of the Lyapunov function.

Figure 7. Response of the disturbed system, disturbance applied at t = 8 s
and removed att = 20 s with constrained control action beginning att = 16
s (γ = 0.6).
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to a time-varying gain guaranteeing at all times a negative
derivative for the Lyapunov function).

(a) Evolution of the z profile in time.
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(b) Antenna parameters used to calculate the control
input.

(c) Evolution of the actualjlh applied to the system.

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Ly
ap

un
ov

 F
un

ct
io

n 
V

(z
)

(d) Normalized evolution of the Lyapunov function.

Figure 8. Response of the system, change of reference applied at t = 17 s
with constrained control action beginning att = 4 s (γ = 0.6).

Finally, a more complicated tracking scenario is proposed,
where a time-varying reference is generated from Tore Supra
shot 31463 (which involves both LH and ECCD action).
Furthermore, only one equilibrium point is calculated, corre-
sponding to the mean value of the parameters applied during
the shot instead of one for each point of the trajectory. Fig.
9 represents (a) the mean tracking error, (b) the values for
the engineering parameters of the LH antenna, (c) the LH
current deposit profile, and (d) the safety factor profile. This
result illustrates the robustness of the controller with respect
to deviations from the calculated equilibrium (used in the
computation of the feedback).

VI. CONCLUSION

In this paper, a strict Lyapunov function was found for a
diffusion equation with time-varying distributed coefficients.
This function guarantees some ISS properties for the system
and allows for the construction of simple control laws that
maintain these properties and improve the performance of the
system. A particularly important contribution was a robustness
study of the system with respect to disturbances and errors
in the model and measurements, since for most physical
applications the exact values and behaviour of the diffusivity
coefficients is not well known. Another contribution is the
consideration of the distributed and time-varying nature of
these coefficients in the nominal scenario without constraining
their rate of variation. Finally, the proposed Lyapunov function
design was applied to the control of the gradient of the poloidal
magnetic flux profile in the Tore Supra tokamak, with the
objective of safety factor regulation.

Future work will be devoted to the implementation and
testing of the proposed constrained control law with a more
complex simulation code, METIS and/or CRONOS, see [1],
[2] respectively. These codes include energy and momentum
conservation laws as well as refined plasma/wave interaction
descriptions for the antennas. Some effort will also be devoted
to the estimation of the diffusivity coefficients in view of an
experimental implementation on Tore Supra.

APPENDIX

Proof of Theorem 2.1:This proof is organized as follows:

(a) First, an auxiliary problem in two-dimensional Cartesian
coordinates under symmetry conditions is formulated.

(b) Next, the existence and uniqueness of solutions to the
auxiliary problem is shown using Theorem 5.1.21 and
Corollary 5.1.22 in [18] (pages 206-208). Which in turn
imply the existence and uniqueness of solutions to the
problem (4)-(6).

(a): Consider the following two-dimensional Cartesian aux-
iliary system:

ζt(x1, x2, t) = η(x1, x2, t)∆ζ(x1, x2, t) + F (x1, x2, t),

∀(x1, x2, t) ∈ Ω× [0, T ) (33)

with symmetric boundary condition:

ζν(x1, x2, t) = 0, ∀(x1, x2, t) ∈ ∂Ω× [0, T ) (34)
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(d) Evolution of the safety factor profile.

Figure 9. Response of the system, with constrained control action beginning
at t = 3.1 s (γ = 2.5).

whereζν is the derivative ofζ in the outward normal direction
to ∂Ω, and with symmetric initial conditionζ0 ∈ C3+αc(Ω),
0 < αc < 1:

ζ(x1, x2, 0) = ζ0(x1, x2), ∀(x1, x2) ∈ Ω (35)

where ∆ is the Laplacian, F (x1, x2, t)
.
=

η(x1, x2, t)u(x1, x2, t). This system is equivalent, when
imposing a central symmetry condition and sufficient
regularity of the initial condition, to (1)-(3).

(b): To apply Theorem 5.1.21 and Corollary 5.1.22 in [18]
(pages 206-208) it must be shown first that the diffusive opera-
tors verify a uniform ellipticity condition inΩ. This is trivially
verified as a direct consequence ofP1 and therefore Theorem
5.1.21 gives the existence and uniqueness of solutions and
Corollary 5.1.22 establishes the desired regularity (suchthat
the gradient is inC2+αc,1+αc/2(Ω × [0, T ])). This degree of
regularity is sufficient to ensure that all the integrals used for
the definition of the Lyapunov function and its time derivative
are well defined. This concludes the proof of Theorem 2.1.
�

Existence, uniqueness and regularity results are also valid
when the control input is of the form proposed in Corollary
3.6 (which amounts to a feedback in the variableζ). and
can extend to certain forms of non-homogeneous boundary
conditions thanks to the structure of the operators considered
in [18].
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