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Collective motion from local attraction

Daniel Strömbom a,∗
aMathematics Department, Uppsala University

Box 480, 751 06 Uppsala, Sweden.

abstract

Many animal groups, for example schools of fish or flocks of birds, exhibit complex
dynamic patterns while moving cohesively in the same direction. These flocking pat-
terns have been studied using self-propelled particle models, most of which assume
that collective motion arises from individuals aligning with their neighbours. Here,
we propose a self-propelled particle model in which the only social force between
individuals is attraction. We show that this model generates three different phases:
swarms, undirected mills and moving aligned groups. By studying our model in the
zero noise limit, we show how these phases depend on the relative strength of at-
traction and individual inertia. Moreover, by restricting the field of vision of the
individuals and increasing the degree of noise in the system, we find that the groups
generate both directed mills and three dynamically moving, ’rotating chain’ struc-
tures. A rich diversity of patterns is generated by social attraction alone, which may
provide insight into the dynamics of natural flocks.

1 Introduction

A number of models of flocking, often referred to as self-propelled particle (SPP)
models, have been constructed and analysed in recent years (Aoki, 1982; Huth et al.,
1991; Vicsek et al., 1995; Grégorie et al., 2003; Czirók et al., 1997; Couzin et al., 2002;
Czirók et al., 1999; D’Orsogna et al., 2006; Wood et al., 2007; Romanczuk et al.,
2008; Lukeman et al., 2009). The main difference between the different models is the
form of the local interaction rule and how neighbouring particles affect each other.
The interaction rule typically depends on a few directional components, from average
orientation of neighbours alone in Vicsek et al. (1995) to orientation, attraction and
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repulsion in e.g. (Aoki, 1982; Huth et al., 1991; Couzin et al., 2002). Typically,
the distance between neighbours determines whether they are attracted, repelled or
aligned to each other. For a recent review see Yates et al. (2009).

All the above models assume that individuals change their orientation in response
to the orientation of, at least some, of their neighbours. This explicit local align-
ment rule then produces collective motion in the same direction of large numbers of
individuals on a global scale (Grégorie et al., 2003; Vicsek et al., 1995). So do all
organisms exhibiting collective motion measure local alignment? We expect the an-
swer to vary depending on the species studied. For example, locusts interact through
cannibalistic interactions, where locusts chase those in front and escape those be-
hind (Bazizi et al., 2008; Hale, 2008), but nonetheless produce highly aligned groups
(Buhl et al., 2006). Starling flocks also exhibit co-ordinated collective motion, but
as yet there is little information about what determines an individual’s propensity
to change direction (Ballerini et al., 2008). Some fish species, for example Saithe,
do appear to match their direction to that of their neighbours (Partridge, 1981).
However, Pitcher et al. (1980) found that disabling the lateral line, otherwise used
by fish to obtain directional information, did not reduce the degree to which neigh-
bouring fishes direction was correlated. Szabó et al. (2006) have shown that even
simple tissue cells from the scales of gold fish can align at high densities, although
it is highly unlikely that they achieve this by explicitly measuring the directions of
their neighbours. In general, the fact that we see groups move collectively or even
that we see individuals in a group locally aligned does not imply that they are using
a specific local alignment rule.

Removing the alignment term from SPP models leaves us with only attraction and
repulsion. One possibility is that an asymmetrical combination of attraction to indi-
viduals in front and repulsion from those behind can produce a coordinated moving
cluster. Such a phenomena is seen in the optimal velocity model Bando et al. (1995);
Sugiyama (2008) and an ’escape and pursuit’ model (Romanczuk et al., 2008). Here
we concentrate on a further simplification in which we use just one term for social
interactions, namely local attraction. SPP models with global attraction as the only
interaction produce a range of dynamic structures, some of which produce dynamic
moving patterns (Mikhailov et al., 1999; Erdmann et al., 2005; Ebeling et al., 2008).
Here we concentrate on a minimal model in which we use local attraction.

For a model with only attraction modified classical mechanics can be applied to
analyse the model. One advantage of this approach is that it allows us to determine
analytically for which dynamic shapes alignment is or is not required. While the
model we propose is simpler than those suggested previously, we will show that
not only can attraction alone produce many of the patterns seen in models with
alignment, but it produces a rich variety of complex dynamic patterns of its own.
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2 The model

The general set-up of our model is the same as in the SPP models discussed in
the introduction. N particles move within an L × L two dimensional space with
periodic boundary conditions (i.e. on a torus). Initially the particles are given random
positions and headings. The position of particle i at time t is denoted by Pi,t, while

the unit vector indicating direction is denoted D̂i,t. On each time step each particle
interacts with neighbouring particles located within a distance of R. The only social
interaction in the model is an attraction to the centre of mass of the neighbouring
particles, and Ĉi,t is used to denote normalized direction toward this centre of mass.
The parameters d, c, e are used to set the relative strength’s of the forces acting
on a particle. d determines the directional inertia of the particle, or its tendency to
continue in its previous direction. c is the particle’s attraction to the centre of mass of
its neighbouring particles (Ĉ), while e determines the degree of random motion. δ is
the (average) speed of the particles. Noise is incorporated into the model in two ways.
Firstly, the directional error is given by ε̂i,t = [cos θi,t, sin θi,t], where θi,t taken from
a normal distribution with mean 0 and standard deviation 1. Secondly, variation in
speed is modelled by a random variable ζi,t taken from a uniform distribution with
range [−η/2, η/2].

At each time step a new direction and position for each particle is calculated as
follows. Particle i’s heading at time t + 1 given the state at time t is

Di,t+1 = dD̂i,t + cĈi,t + eε̂i,t, (1)

which is then normalized to give D̂i,t+1 and the new position is calculated by

Pi,t+1 = Pi,t + δ(1 + ζi,t)D̂i,t+1. (2)

In some simulations the particles cannot detect other particles in a region behind
them, defined to be a blind angle β. Specifically, particle i at position Pi with nor-
malized heading D̂i will not be influenced by particle j at position Pj if

∣∣∣∣∣arccos

(
PiPj · D̂i

|PiPj|
)∣∣∣∣∣ <

β

2
.

Appropriate modifications were made in all calculations to account for periodic
boundary conditions.

As a test of model robustness, two different heading/position update schemes are
employed: sequential random and simultaneous. Sequential random is where the
particles update their heading/position sequentially in each time step and the order
in which they do so is random from one time step to the next. Simultaneous is
where at each time step each particle calculates its heading/position based on the
neighbour data from the previous time step.

3



We use measures to analyse the outcome of our simulations. First the well known
alignment (Vicsek et al., 1995) defined by

α =
1

N

√√√√√
(

N∑
i=1

cos θi

)2

+

(
N∑

i=1

sin θi

)2

(3)

where θi is the directional angle of particle i. It measures the extent to which the
particles are moving in the same direction. It ranges from 0 to 1, with 1 if all particles
are moving in the same direction. The second measure is an approximation of the
spatial extent of the group, and is defined by

A = (max(x) − min(x))(max(y) − min(y)), (4)

where x and y are the sets of x- and y-coordinates of all the particles. The measure
gives the area of the smallest square containing the group and can range from 0,
where all particles occupy a single point, to L2, where the particles range over the
entire space.

3 Results

Before presenting simulations of our model we first derive the group structure in
terms of the parameters c and d in the error-free case (e = 0 and η = 0) and no
blind angle (β = 0). We now show that three group structures are possible: swarms,
undirected mills and moving aligned groups. Figure 1 shows the basic geometry of
how particles are influenced by attraction to centre of mass and directional inertia.
The attraction to the centre of mass is independent of the number of neighbours,
thus the centre of mass of a particle established by one neighbour particle is indis-
tinguishable from the centre of mass established by many neighbours. Hence we can,
for each particle in each time step, consider the interaction as a two body problem,
where the bodies are the particle itself and the centre of mass of its neighbouring
particles.

To get the criterion for the group structure to be a circle recall the dynamics of
circular motion from elementary physics. In the discrete case assuming constant
speed c is given by

c =
dδ

r
, (5)

where r is the radius of the circle and δ is the displacement (see appendix A for a
derivation of (5)). Now, in the continuous case (r = d2/c) and with infinite interac-
tion range, given any pair of d and c the particles will form a circle of radius r or
collapse to a point. In the discrete case with finite interaction radius R there are two
cut-offs. If the diameter 2r of the potential circle is larger than R then the centre of
mass detected by the particle will not be the centre of mass of the potential circle
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and hence no circle will form. Thus for circle formation we require

R ≥ 2r. (6)

[Figure 1 about here]

To obtain an upper limit on the main parameter d/c for circle formation we combine
(6) with (5) and get

d

c
≤ R

2δ
. (7)

We call any circle which forms in this manner an undirected mill, in order to empha-
sise that particles can move in either direction around the centre of mass.

For a lower limit on undirected mill formation note that a particle on a circle at
most can turn straight toward the centre of mass. The angle between previous and
current direction for motion on a circle is given by

ϕC = 2 arcsin
(

c

2d

)
. (8)

(see appendix A). The angle between the previous direction and a vector pointing
to the centre of mass by ψ. Then as the particle can never turn more than π if on a
circle we must always have

π ≥ ψ = arcsin

(
δ

R

)
+

π

2
. (9)

As 2 arcsin(x) is strictly increasing and the particle at most can turn to go straight
toward the centre of mass we have with (7) that

π

2
+ arcsin

(
δ

R

)
≥ 2 arcsin

(
c

2d

)
≥ 2 arcsin

(
δ

R

)
. (10)

Manipulating this gives √
R

2(R + δ)
≤ d

c
≤ R

2δ
(11)

which is the main condition for undirected mill formation.

So what about the swarms and aligned groups? Define ϕR to be the actual angle
between the previous and current direction. If ϕR > ϕC then each particle at each
time step will move in to the potential circle. Once inside they cannot move out and
collectively comprising a swarm. If ϕR < ϕC then each particle on the potential circle
will move outside of it. If close enough together and facing in a sufficiently similar
direction, when leaving the circle, two or more particles will keep in contact with
each other. Over time the distance to each other will decrease (at a rate depending
on d/c) in a damped oscillation type fashion and as the distance decrease their
directions converge and a cohesively moving aligned group will form.
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[Figure 2 about here]

Simulations in the error-free case without blind angle reflect the above analysis.
Figure 2 shows three simulation outcomes corresponding to the three group types.
The measures of alignment α (equation 3) and area A (equation 4) can now be used
to quantify the form of these groups over different values of of the model parameters,
δ, d and c. A cohesively moving aligned group should have high alignment and low
area. A mill is group where all particles are moving in a circular path around a
common centre and should thus be characterized by low alignment and constant
area, 4r2, where r is the radius of the mill. Finally a swarm is a group with low
and varying alignment and area approximately equal to the smallest circle that can
form.

[Figure 3 about here]

Figure 3 shows how alignment and area depend on the model parameter values.
Comparing simulations directly with the analytically predicted lines

d =

√
R

2(R + δ)
c and d =

R

2δ
c

we see that these accurately predict transitions between different structures. The
typical structures are stable in the presence of noise, e > 0. Increasing the noise
simply makes the structure less dense. The cohesively moving aligned group becomes
wider and the mill goes from being a thin circle to an annulus and eventually a disc.
Figure 4 shows typical examples as we increase noise.

[Figure 4 about here]

Introducing a blind angle (β > 0) has a dramatic effect on the types of collective
patterns observed in model simulations. Firstly, particles are more likely to form a
mill in which a clear majority travel round the circle in the same direction (figure
5a). These directed mills typically occur when the front of an elongated moving
dynamic group turns sufficiently far round so as to meet its tail. This shape then
stabilises into a circular mill.

In addition to the directed mill, we see the formation of three new structures in
simulations, which we call rotating chains. In these rotating chains the individuals
move on a closed curve with zero (figure 5b), one (figure 5c) or two (figure 5d) proper
self-intersections. The chains exhibit highly dynamic patterns. Those with zero or
two proper intersections are typically rotating around an axis which changes slowly
over time (see videos 1 and 2). The structure with one intersection is most striking
in that it exhibits a high degree of collective motion. In all cases it moves straight in
one direction (see video 3), while internally rotating round a figure of eight. Letting
the particles use the interaction rule with probability p and continue in the previous
direction with probability 1 − p the displacement δ can be decreased but still allow
for a sizeable structure (see video 4 where p = 0.1 and δ = 0.025).
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[Figure 5 about here]

All dynamic shapes formed when particles have a blind angle and these are stable in
the presence of a high degree of noise. The structures shown in figure 5 were generated
with both angular noise and propulsion noise. To investigate the robustness of theses
groups we increased η and at least up to η = 1 these types of shapes form and
persist. Noise appears to even stabilise these shapes, or at least make them flow
more smoothly. Indeed, in the error free case, we see some synchronization/clumping
within the group after it has formed. This results in the creation of a number of
tightly bound subgroups, rather than the particles being randomly or individually
positioned throughout the group shape. As e is increased sufficiently this clumping
is no longer seen.

The rotating chain structures are not only observed for specific parameter values,
nor is there always a unique structure for any given set of parameter values. Figure
6 shows the group alignment as a function d for fixed c = 1 in a situation with blind
angle and noise of both types. As d increases from 0 to 4 we observe well defined
peaks in the alignment profile. Comparing the collective structures to the observed
alignment measure we see that for low directional inertia (d < 0.7) one or more
small highly aligned groups (similar to those in figure 4) form, producing a high
degree of alignment. For intermediate directional inertia (0.7 < d < 2.6) it is usually
mills which form, although for d > 1.7 rotating chains with one intersection point
occasionally form. Between 2.6 < d < 3.6 single intersection chains are the most
common outcome, but while 2.6 < d < 3.1 the 0 and 2 intersection chains with low
alignment are also a stable outcome. For d > 3.6 rotating chains become increasingly
rare and usually no group (low alignment) is formed.

4 Discussion

Self-propelled particle models based on attraction alone can produce a large set
of collective patterns. Without a blind angle, both undirected mills and moving
dynamic groups were possible. The existence of an undirected mill in continuous
time follows from a result in classical mechanics of circular motion, see e.g. Young
(2007). In the continuous version of this model dynamic moving groups are not
possible, since as δ → 0 and R fixed, equation 11 gives

R

2δ
→ ∞.

Typically in our simulations, we choose δ to be an order of magnitude smaller than R
and thus the patterns we observe are not an unrealistic artefact of discrete updating.
Indeed, in the context of collective animal behaviour it is biologically realistic to
assume a finite interaction radius and discrete directional updates. In doing so, we
attempt to model an individual cycle of observe-assess-act in each time step, and
find that this alone can generate collective patterns.
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The addition of a blind angle causes undirected mills to become at least partially
directed. Even more striking is that a blind angle produces collectively moving groups
with internal motion. The rotating chains move largely in the same direction while
exhibiting a high degree of internal dynamics. Such internal dynamics are regularly
observed in bird flocks (Ballerini et al., 2008) and fish schools, but are not generally
seen in self-propelled particle models based on alignment terms (Aoki, 1982; Huth
et al., 1991; Vicsek et al., 1995; Grégorie et al., 2003; Czirók et al., 1997; Couzin et
al., 2002; Czirók et al., 1999; D’Orsogna et al., 2006; Wood et al., 2007). We would
go as far as to say that in our model the alignment term inhibits internal dynamics
within a group. We have run simulations which include a small alignment term and
this appears to promote aligned groups which look like those in figure 4b to such
a degree that the more interesting shapes of figure 5 are prevented from forming
(results not shown here).

Using the probability of updating scheme on the one self-intersection structure we
get groups that look less synthetic but still have the same mode of motion (see video
4). As decreasing p allow us to lower δ to very small values relative to the size of the
group structure it seems likely that groups of this type can persist in the presence
of a suitable close range repulsion interaction. These groups are less stable than the
typical one as particles may on occasion stray from the group.

In the non-blind angle case the interaction in the final groups are always almost
global. That is, the size of the group is less than or on par with the interaction
radius R. In the blind angle case we observe final groups where the interaction is
truly local. On average each particle in the group in figure 5c) is in contact with
40% of the other particles and the interaction radius R is slightly more than half the
(largest) width of the shape. By lowering R and increasing β one can produce more
exotic rotating chains with one self-intersection in which the degree of contact is as
low as 25%. Zero self-intersecting rotating chains have similar contact characteristics
and the doubly intersecting ones typically have a lower degree of contact.

Local interaction is not a necessary requirement for one self-intersecting rotating
chains to form. In the global attraction model a one self-intersecting rotating chain,
there called a dumbbell, has been observed and discussed (Ebeling et al., 2008).
Unfortunately a detailed direct comparison of the models is complicated due to the
continuous distance dependence of the interaction in the global case. However, con-
necting the two models will likely provide insight into the nature of the rotating
chains as well as requirements for their existence. So future work will involve con-
structing and analysing a model containing the global, the localised global and the
one presented in this paper as special cases.

In the error-free case the particles clump together in subgroups within the original
group shape. However, in more realistic situations with angular noise added this does
not occur and the groups appear visually less synthetic. These group structures not
only persist under angular noise but also if the speed of each individual is allowed to
vary randomly within a certain range. The fact that these groups are generated by
simple natural rules, exhibit collective motion with internal motion and persist, or
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rather are perfected, by angular noise and heterogeneity in speed make them highly
relevant for experimental investigation. Several research projects are now looking at
the rules of motion followed by individual animals within a group (Ballerini et al.,
2008; Nagy et al., 2010). Our contention is that an initial focus on between individual
attraction could prove a valuable starting point.

The first part of this paper shows that with simple mathematical reasoning one
can obtain reliable information about reasonably complex collective structures. Our
mathematical understanding of why the introduction of a blind angle admit the
formation of rotating chains and seem to promote orientation in general is weak.
Answering these two questions and understanding what type of groups form for
different parameter values, as we did in the non-blind angle case, are the primary
goals of our present and future work on this model. The find that only attraction
to the centre of mass and a blind angle typically produce totally aligned string-
like groups like those termed packs in Wood et al. (2007) might provide a suitable
starting point for such an analysis.

Acknowledgements: I would like to thank my supervisor David Sumpter for excellent
guidance and input throughout the entire process leading up to this paper. Thank you
to Richard Mann for suggestions regarding the form and content of the manuscript.
Finally I thank the three reviewers for their helpful and insightful comments and
remarks. This work was in part funded by an ERC starting grant to David Sumpter
(ref: IDCAB).

A Appendix

For a particle moving with constant speed δ on a circle of radius r the angle between
previous and current heading ϕc must be

ϕc = 2 arcsin

(
δ

2r

)
.

[Figure A.1 about here]

To see this consider figure A.1. From elementary geometry we know that

δ = 2r sin
(

α

2

)

so

α = 2 arcsin

(
δ

2r

)
.

Furthermore we have that

π = ϕc + 2ϕCM = α + 2ϕCM
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so ϕc = α and thus

ϕc = 2 arcsin

(
δ

2r

)
. (A.1)

[Figure A.2 about here]

In order to find an expression for ϕc in terms of the model parameters we need to
find the circle radius r in terms of c, d and δ. Consider figure 1. The heading of the
particle is determined by

δ̃t = cĈt + dD̂t

and this vector is then scaled by a number k to make its length δ,

δ̄t = kδ̃t with k =
δ

|δ̃t|
.

Hence

δ̄t = kcĈt + kdD̂t.

Also, the geometry forces |δ̄t| = |kdD̂t| so the triangles in figure A.2 are similar and
therefore we have that

|kdD̂t|
r

=
|kcĈt|

δ

kd|D̂t|
r

=
kc|Ĉt|

δ
d

r
=

c

δ
.

Solving this for c gives equation (5) and solving for r results in

r =
dδ

c
. (A.2)

.

Now, combining (A.1) and (A.2) we get (8), that is

ϕc = 2 arcsin
(

c

2d

)
. (A.3)
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Grégorie, G., Chaté, H. & Tu, Y. 2003 Moving and staying together without a leader.
Physica D 181.

10
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Highlights

> Local attraction alone produces swarms, mills and dynamic groups. > Strength of

attraction relative to inertia determines which will form. > An asymmetric interac-

tion zone promotes orientation and allow for additional groups. > Local attraction

can generate collective motion with nontrivial internal dynamics.

*Highlights



Figure captions

Figure 1: Figure showing the geometry of particle located at ∗ moving clock-wise
on a mill of radius r in terms of the model parameters. The parameters c and d
determines the heading δ̃t and this is then scaled by k = δ/|δ̃t| to produce the di-
rectional vector δ̄t of length δ. Of particular interest are the angles ϕC , between
the previous and the current heading, and ϕCM , between the current heading and a
vector pointing towards the center of mass.
Figure 2: Schematic phase diagram in the d-c plane indicating the phase formed
by typical examples of the structures taken from simulations. In clockwise order,
cohesively moving aligned group (dynamic parallel motion), mill and swarm. Each
black dot is a particle and the rod attached to it indicate the direction of travel.
Figure 3: The alignment and area for combinations of d and c in 0.1 to 1.1 from
simulations with R = 4 and δ being 0.25, 0.5, 1 and 2 (from left to right). (L =
10, N = 50, t = 5000, e = η = 0). The white lines correspond to the limits, cf figure
2. Areas exceeding 17 (no single typical structure has formed on the L× L square)
are set to 17 in order to enhance detail in the important parts of the plot.
Figure 4: a) Shows the effect of increasing e through 0.05, 0.1, 0.15, 0.2, 0.3, 0.4 on
the mill phase (N = 80, L = 10, R = 4, δ = 0.5, a = 1, c = 1, η = 0).
b) The effect on the dynamic parallel phase when increasing the e through 0, 0.1,
0.5, 1, 1.5, 2 with the other parameters as in a).
Figure 5: Additional structures appearing when a blind angle is introduced illus-
trated in a situation with plenty of both angular and propulsion noise. From left to
right: a) a fully oriented mill (d = 1.5) and rotating chains with b) zero (d = 2.6),
c) one (d = 3.2) and d) two self-intersections (d = 3.0). The other parameters being
L = 40, N = 100, R = 4, δ = 0.5, c = 1, e = 0.2, η = 0.5 and β = 2 in all four cases.
Figure 6: Proportion of runs resulting in an alignment value within a certain bin
versus d for fixed c = 1 in a situation with large blind angle and noise of both types.
d was increased incrementally by 0.1 from 0 to 4. For each d 100 independent runs
over 10000 time steps was conducted and the alignment was averaged over the last
1000 time steps in each. The other parameters was L = 40, N = 100, R = 4, δ = 0.5,
d = 2, c = 1, e = 0.2, η = 0.5 and β = 2. Through observation we established the
correspondence between this plot and the structures in figure 5. a) typically several
dynamic groups, b) mills, f) no group, and rotating chains with c) one, d) zero, e)
two self-intersections.
Figure A.1 Part of figure 1 highlighting the geometry needed to obtain an expres-
sion for the angle ϕc in terms of the radius r of the circle and speed δ of the particle.
Figure A.2 These two triangles from figure 1 are similar and thus we can derive an
expression for the radius of the circle in terms of c, d and δ.
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Figure 5.
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Figure 6.
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Figure A.1.
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