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A first principles derivation of animal group size
distributions

Qi Ma*, Anders Johansson, David J. T. Sumpter
Mathematics Department, Uppsala University, Box 480, 751 06 Uppsala, Sweden

Abstract

Several empirical studies have shown that the animal group size distribution
of many species can be well fit by power laws with exponential truncation.
A striking empirical result due to H-S Niwa is that the exponent in these
power laws is one and the truncation is determined by the average group size
experienced by an individual. This distribution is known as the logarithmic
distribution. In this paper we provide first principles derivations of the loga-
rithmic distribution and other truncated power laws using a site-based merge
and split framework. In particular, we investigate two such models. Firstly,
we look at a model in which groups merge whenever they meet but split
with a constant probability per time step. This generates a distribution sim-
ilar, but not identical to the logarithmic distribution. Secondly, we propose
a model, based on preferential attachment, that produces the logarithmic
distribution exactly. Our derivation helps explain why logarithmic distribu-
tions are so widely observed in nature. The derivation also allows us to link
splitting and joining behavior to the exponent and truncation parameters in
power laws.

1. Introduction

Animals are often found in groups. Fish school, birds flocks and insects
swarms are ubiquitous examples. Being in groups benefits individuals in
several ways. Amongst other things, it can enhance their foraging efficiency,
reduce their chance of being captured by a predator, and help to conserve
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energy (Foster et al., 1981; Parrish, 1989; Barbraud et al., 2001; Sumpter,
2010). However, animal groups do not always have a typical size, and group
sizes often have large variation both among and within species (Gerard et
al., 2002; Bonabeau et al., 1999). This property brings up several interesting
questions: How are animal group sizes distributed? Are there any common
patterns for these distributions? How do different distributions form?

A wide range of models have been suggested for distribution of animal
group sizes. The earliest such models proposed a single stable group size,
around which the size of the groups may fluctuate (Sibly, 1983; Beauchamp
et al., 2004; Clark et al., 1986; Mottley et al., 2000). For example, Caraco
proposed the Poisson and negative binomial distributions as one or, respec-
tively, two parameter models of group size distributions (Caraco et al., 1980).
Such distributions have a single peak at a group size somewhat larger than
one and a narrow variation around this maximum.

Observed group size distributions of many animal species do not fol-
low such Poisson or negative binomial distributions (Gerard et al., 2002;
Bonabeau et al., 1999). Most importantly, the variation in group sizes is
usually much wider than predicted by these distributions. The geometric
distribution is a special case of the negative binomial, obtained by maxi-
mizing the variance. In his influential review, Okubo predicted that group
sizes should follow a geometric distribution and presented a number of em-
pirical cases where this relationship held (Okubo, 1986). However, even the
geometric distribution fails to capture the large variation in group sizes ob-
served for many species. In particular, several studies have shown that many
species follow power law distributions over a number of orders of magnitude
(Bonabeau et al., 1995, 1999; Sjcberg et al., 2000).

A natural question emerges about how these distributions arise from in-
teractions between individual animals. Bonabeau and Dagorn proposed a
model for animal grouping based on a single assumption: if groups meet they
always merge to form a larger group (Bonabeau et al., 1995, 1999). Their
model predicts power law distributions of group sizes, which again appeared
consistent with some observational data of fish and mammals. However, in
their model individuals need to be continuously added in order to get a power
law. Furthermore, unless they add spatial structure to the model the power
law exponent is always —2. Even with spatial structure, where such models
give power laws with exponents between —4/3 and —3/2 (Takayasu et al.,
1988), the dynamics of their model are difficult to motivate from a biologi-
cal perspective. Although they suggest that power laws should be truncated
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by faster decreasing functions such as an exponential function, no natural
explanation on the cutoff is given. In particular, Bonabeau and Dagorn did
not provide a method for relating their model assumptions to the point in
the distribution at which the cutoff should occur.

Niwa proposed a site-based model (Niwa, 2003), which can be described
as follows. Assume that space is divided into s sites on which a total of ®
individuals are initially randomly distributed. Every site is either empty or
occupied by one group. At each discrete time step, (1) each group with size
larger than 1 has a probability p of splitting into a pair of groups. When a
group splits, the size of the two components is chosen uniformly at random;
(2) all groups move to a new randomly chosen site. If two groups move to
a same site, they merge to a new group with a size equal to the sum of the
two groups. The same rule holds if three or more groups meet.

Niwa predicted the following stable group size distribution for his model:

W(n) ~n'exp <_]\7;LP (1 — @(2;]—@—))) (1)

where W (n) is the probability density function of group of sizes. Niwa noted
that the final term (1 — exp(—n/Np)) makes little difference to the quality
of data fitting compared to a simpler distribution

Win) ~ n~" exp(——-) (2)
Np
Here, if n is considered to be a continuous variable, then the single parameter
Np denotes the expected size of groups in which an arbitrary individual
engages, i.e.
[ n*W(n)dn 5
~ [nW(n)dn (3)
This is a spectacularly simple yet powerful result. Simply by measuring the
average group size experienced by an individual, Niwa is able to recreate
the whole distribution of group sizes. Furthermore, Niwa showed that this
distribution fits well with data of several fish species, and to a lesser degree
that of several mammal species. More recently, Griesser et al. (2011) have
shown that it fits data for house sparrows too.
There are however a number of limitations with Niwa’s derivation of the
above distribution. Firstly, he used simulation results to establish how fluctu-
ations in group size change as a function of group size itself. This relationship

Np
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is then used in a stochastic differential equation approximation of the site-
based model. However, since this initial result is obtained by simulation, the
further results based on the stochastic differential equation lack a rigorous
foundation. Secondly, given the stochastic differential equation, the deriva-
tion of the potential function does not appear correct. Specifically, equations
(8), (9) and (11) in Niwa’s paper do not appear to follow. Thirdly, Niwa
states self-consistency of the model by calculating Np in continuous sense,
while it is more natural to use a discrete distribution. Animals are discrete
entities. The discrete calculation gives different result from the continuous
one and equation (3) fails to hold.

Given the excellence of Niwa’s distribution in explaining observations and
its one-parameter simplicity, it is important that we have a clear derivation
linking individual behavior of animals to the predicted group size distribu-
tion. In this paper we give several such derivations and at the same time
address the above issues in Niwa’s original paper.

To make this derivation we use a discrete analogue of a general continuous
split-merge model, also called Coagulation-Fragmentation Processes (CFP),
discussed by Gueron and Levin (Gueron et al.,; 1995). They study the fol-
lowing general evolution equation for the density distribution of groups,

D) p@)fa) - / " H) (e, 2
/f )y, x —y dy+/f )dy

where f(z) = f(x,t) denotes number of groups of size x, p(x) is the rate of
split for groups of size =, ¥(z,y) = ¥(y,z) is a symmetric function denotes
merge rate of group of size x and group of size y. The first two terms in (4)
account for decrease caused by split of groups of size x and groups of size x
merge with another group. ¢(x,y) = ¢(z,z — y) denotes the rate of a group
of size x splits to two groups whose size are respectively y and x —y. The last
two terms in (4) account for increment caused by merge of smaller groups to
become an x-sized group, and larger groups splitting to become size x.

We derive such an evolution equation for a slightly different version of
Niwa’s merge and split site-based model and find that it gives a distribution
similar to but not identical to that proposed by Niwa. We further discuss
several other models which produce a discrete version of Niwa’s distribution.

(4)



2. The logarithmic distribution

We begin by re-stating equation (2) as a discrete distribution and discuss
some of its properties. It is more natural to use a discrete distribution because
animal groups consist of integer number of individuals. Equation (2) is a
truncated power law with exponent —1 and an exponential tail from a cutoff
at Np. In discrete form this can be written as

Ka™
n

(5)

which is now the probability that a group is of size n. The parameter
K = —1/In(1 — a) is a normalization constant and a is a positive constant
smaller than one. This distribution is known as logarithmic distribution,
originally described by R.A. Fisher for abundance of different species in a
random sample of an animal population (Fisher et al., 1943). Figure la and
1b show a typical example of this distribution on linear and log-log scales,
respectively.

For animal groups, a key property of the logarithmic distribution is its
relationship to the average group size experienced by an individual, denoted
as Np . Following Niwa, we define

00 2W [eS) n 1
NP — Zn:l n (n) O Zn;l na _ (6)

> nWi(n) Do @ l—a
Note that the mean group size E(n) = Ka/(1 — a) is always less than Np.
Thus the size of the group in which a (uniformly) randomly chosen individual
is in is likely to be larger than the size of a randomly chosen group (see
figure la,b). Equation (6) further implies that the group size experienced
by an individual is geometrically distributed. In other words, the size-biased
logarithmic distribution equals a geometric distribution with parameter (1 —
a) (Patil et al., 1978) .
Furthermore, by equation (6) we know that, unlike in equation (2),

a # exp(—1/Np)

although when Np is large, a ~ exp(—1/Np). In any case, the parame-
ters in equation (5) can be expressed simply in terms of average group size
experienced by a random individual, i.e.

1 1
—1-— and K =
“ NP an IH(NP)

(7)



These relationships make fitting of this distribution to data straightforward.
In order to perform such a fitting one need only estimate Np directly from
data and then compare the overall fit of

1 (1—1/Np)"
IH(NP) n (8)

W(n) =
to the empirical distribution (Griesser et al., 2011).

3. Merge and split model

We now investigate a simpler version of the site-based model proposed
by Niwa for how groups split and merge (Niwa, 2003, 2004). Assume a
system with fixed total population ® and s sites. Each site is either empty
or occupied by one group. In time interval 7, each group with size larger
than one splits to two groups with probability pr, i.e. p is the instantaneous
rate of splitting. The two component groups both move to randomly chosen
empty sites. With rate ¢, each group moves to a randomly chosen site. If
this new site is occupied, the moving group members are added to the group
at the new site.

We ran computer simulations of the above model using a variation of
Gillespie algorithm (Gillespie, 1977). The stable group size distribution for
one such simulation is shown in Figure 1(c,d). Repeated runs of the simula-
tion suggested that the group size distribution of this model was independent
of initial condition. For these parameter values, the distribution from the
simulation was similar to that of Niwa’s distribution. Estimating Np from
the simulation and substituting this into equation (8) gives a distribution
which, at least qualitatively, looks like the stable group size distribution (i.e.
compare figures la and 1c).

In order to investigate the nature of the relationship between logarithmic
distribution and the merge & split model, we now derive deterministic evolu-
tion equations for our stochastic merge and split model. The correspondence
between stochastic coagulation-fragmentation models and such deterministic
models are studied by Gueron (1998) and Durrett et al. (1999). Let f(n,t) be
the number of groups with size n at time ¢, Z(t) =Y >~ | f(n,t) denotes the
total number of groups, W(n,t) is the fraction of groups with size n, there-
fore f(n,t) = Z(t)W(n,t). For large random systems, W can be treated as
the density distribution of group size. Time evolution of f(n,t) is the result



of the balance between increase and decease of the number of groups in size n
caused by both splitting and merging. This can be expressed by four terms:

1. Increment by the merge of groups with size ¢ and n —i. A group of size
i (i < n) moves to a site occupied by a group of size n — ¢, they merge
to an m-sized group. This event happens at rate f(i,t)qf(n —i,t)/s.
Groups whose size is less than n all have the chance to merge to an n-
sized group, so the rate at which two groups merge to become a group
of size n is

n—1
D (i)

2. Increment from splitting of groups whose size are larger than n. The
rate that a group of size n created by splitting of group with size 4
(¢ > n)is 2f(i,t)p/(i — 1). Adding up the rate for all groups larger

than n, we get
i 2f(i, t)p
el LT .
3. Decrease by a group of size n splitting to two smaller components, the
rate of this event is pf(n,t).
4. Decrease by groups of size n-merging with another group, which can
happen in three ways: a group of size n moves to a site occupied by
a group whose size is not n, the corresponding rate of this event is
f(n,t)q(Z(t) — f(n,t))/s; a group of size n moves to a site occupied
by an n-sized group, this will lead to 2 groups’ lost for n-sized groups,
therefore decreases f(n,t) by 2qf(n,t)(f(n,t) — 1)/s; a group with
size other than n moves and lands on a site occupied by an n-sized
group, oceurs at rate ¢(Z(t) — f(n,t))f(n,t)/s. Adding up these three
possibilities gives a decrease in f(n,t) of

2 (0, 0)(2(0) - )

Combining the above four terms, we can obtain the evolution equation

for f(n,t), i.e:

i=1 i=n+1

—pfln,t)r =22 f(n,1)(Z(t) = V)7
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for n = 2,3,4,.... Since groups with only one individual can neither be
formed by merging nor can they split to smaller groups, the evolution of
f(1) is determined by two terms. Specifically,

Ft ) - fe =3 200 %q (LOZE) -1 (10)

, 1—1
=2
gives the evolution of groups of size one. Finally,

2+ 7) — 2() = p(2() ~ FL0)7 oz 2D

gives the mean field evolution of the total group number Z(t). We note that,
interpreting our model in terms of Gueron and Levin’s (Gueron et al., 1995)
evolution equation, i.e. equation (4), the merging rate of groups of size i and
n—i merge to a group of size n is ¥ (i,n —i) = 2q/s, and the splitting rate of
a group of size n splitting to groups of size i and n—i1is p(n,1) = 2p/(n—1).

We now assume that the above equations have a unique stable group size
distribution, namely f(n,t) = f(n) and cov(f(n), f(m)) = 0 when t — co.
As aresult, Z =3 f(n) is constant at steady state. We also assume the
system is large enough so that Z ~ Z — 1 and since f(1) = ZW (1), we get
at steady state

4, =12(1- W) (12)
Simulation results confirm that the total number of groups converges to and
then fluctuates around the theoretical value of Z, for a wide range of p values
(results not shown).

Treating the total group number Z = Z, as constant allows us to simplify
the evolution equations. Substituting Z, in to the right hand side of equations
(9) and (10) and still assuming Z, ~ Z, — 1 gives the following iteration
expression for f(n) at stationary state,

f) =1z 114/(1) Z iffi)l (13)
_ps 5, W(l)+2
f(2)= EW(l)(l - W(1)) (m) (14)



(n =B -W(1)-W(1)*
G- +2 J® Y
g(n = 1) -

T psB -2 (D) - 1) +2] ;f(i)(f(n —i)— f(n—1—1))
(15)

Note that f(1) = ZW (1) = ps(1 — W(1))W(1)/q. Thus f(n) (n = 2,3,...)
can be expressed entirely in terms of W (1) and the model parameters p, ¢
and s.

Using the conservation condition Y>> nf(n) = ®, we can get a numer-
ical solution for W(1). Specifically, for any given set of parameter values,
we assume there is a unique W (1) which is consistent with the conservation
condition. In practice this appears to hold. Thus given this value for W (1)
we can then calculate all f(n) accordingly. The calculated W(n) = f(n)/Z
for various values of p are shown in figure 2 and compared to simulation out-
comes. The numerical solution of the evolution equation accurately reflects
the simulation result over a wide range of parameter values.

Equations (13) to (15) are not consistent with the logarithmic distribution
(i.e. equation 5). If they were we should have the ratio

f(n) =

_ nW(n) _
B = G gwm = ¢ (16)

for some constant a. Such a solution simply does not hold for equation
(15). We thus reject the idea that the logarithmic distribution represented
by equation (5) is the exact solution to our merge and split model.

To see the difference between the logarithmic distribution and the real
solution of our model, we compare R(n) to: (1) its value estimated from
the numerical solution of equations (13) to (15); (2) that arising from our
discussion of logarithmic distribution, namely a = 1 — 1/Np; and (3) to
the value a = exp(—1/Np) suggested by Niwa and consistent with equation
(2). Figure 3 displays this difference for various splitting rates. When p is
small, R(n) from the simulation is approximately constant and equal to both
exp(—1/Np) and 1 —1/Np, except for at very small n. As groups split faster,
R(n) is no longer a constant, but still approaches a constant close to 1—1/Np
as n becomes larger. When p is large, intuitively there will be more small
groups, and Np is smaller. Here the approximation by a constant becomes
poorer and further away from 1 — 1/Np. However, in this case exp(—1/Np)
is visibly larger than 1—1/Np (figure 3d) and as a result exp(—1/Np) gives a
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better match to R(n) calculated from the simulations. This result goes some
way to explaining why equation (2) gave a good approximation of the group
size distribution produced by his site-based model (Niwa, 2003).

Given the importance of the parameter Np it would be useful to have
this quantity as a function of the site-based model’s parameters, namely p,
q, ® and s. Niwa (2004) gave an estimation of Np as

o
NP = 400q7 (17)
sp

where ¢y = 1.54 was estimated numerically from simulations. Figure 4a
compares Np from the simulation with equation (17). We see that this gives
a good fit, based on one fitted parameter.

We can remove the need to fit a parameter such as ¢y in this relationship,
by estimating Np directly from equation (8). We use Z, = ®/E(n) = ps(1 —
W(1))/q and substitute W (1) = Ka along with equations (7) to get an
implicit expression

ps(Np —1)?

Np =
P ps(Np)In Np — @g(In Np)?

(18)

Np can then be estimated by solving this equation numerically. Similarly,
we can estimate the mean group size by solving a numerically and then sub-
stituting in to E(n) = a/[(a — 1)In(1 — a)]. The comparison of simulation
and this solution for Np and that of the mean group size for different split-
ting rates p are shown in figure 4. Once again, the logarithmic distribution
gives reasonably good estimations for both Np and the mean group size. To
summarize, while equation (18) is more complicated than equation (17) it
has the advantage that it does not require an additional fitted parameter.
To investigate how system parameters affect Np, we rewrite equation (18)

as

@_ NP o (NP_1)2 (19)

sp InNp Np(InNp)?
When Np is relatively large, i.e. Np —1 =~ Np, the right side of the above
equation approximately equals to

_ Np Np
N In Np (ln ]\/vp)2

G(Np) (20)

When Np is large, over any particular order of magnitude, Np increases
much faster than In Np. Furthermore, although (In Np)? changes faster than

10



In Np, the second term in equation (20) is smaller than the first. As a
result, G(NNp) is roughly a linear function of Np over reasonably small ranges.
This property can be contrasted with the result showed in equation (17),
namely the truncation size of the truncated power law distribution grows
roughly linearly with the total population when p, ¢ and s are constant
(figure 5). Our results supports this suggestion over small ranges. However,
over larger ranges, i.e. several orders of magnitude, G(Np) is not exactly a
linear function.

4. Other derivations of the logarithmic and related distributions

There are alternative ways of deriving the logarithmic distribution (equa-
tion 5) from first principles. The first point to note is that the logarithmic
distribution is a limiting case of the negative binomial distribution (Fisher et
al., 1943). If an observed variable follows the negative binomial distribution

(k+n—1)!

mpn(l =™ P)k (21)

f(k,p) =

then taking the limiting case k = 0, and assuming that group sizes are never
zero, we recover equation (5) with a = p. The negative binomial distribution
has been used for modeling animal group sizes (Caraco et al., 1980; Cohen,
1972), but in general the focus has been on parameter values between k = 1,
which corresponds to the geometric distribution and k& — oo which corre-
sponds to the Poisson distribution. Thus truncated power laws, of which the
logarithmic distribution is an example, can be put in the same framework as
other models of animal group size distributions.

While the merge-split model above is not exactly consistent with loga-
rithmic distribution, it is possible to "backwards engineer’ such a merge and
split model. Note that from equation (5) we require

W(n) a(n—1)

Wi(n—1) T n (22)

We now discuss an evolution equation which fulfills this property.

The main idea in creating such a distribution is the use of preferential
attachment (Yule, 1925; Barabasi et al., 1999; Newman, 2001) with splitting.
In particular, larger groups have both higher merge and split rates. Assume

11



as before a system with conserved population ®. We now insist that groups
of size 1, decide to merge with other groups with rate ¢, and choose the group
to merge with by preferential attachment. So that the probability it joins a

group of size n is
nf(n,t)

)
Groups with size n > 1 never merge with other groups (except those consist-
ing of single individuals) but split with rate pn, i.e. larger groups split more
often. When these groups split they do so in to n groups of size 1, so that
all individuals in the group are then on their own. This mechanism gives,

df(n,t) nf(n,t) (n—1)f(n—1,t)

forn=2,3,..., and
of ( = 1,6) -1 >
Ue p0) 20T =D g0y 5 )
n—=>2 n=2
(24)
At equilibrium, equation (23) equals to 0, we obtain
f(n) (n—1) 1
y (25)
_ )
fln—1) nol4 q?(l)

Since f(n,t) = Z(t)W(n,t), and in equilibrium Z = )" f(n) is constant, the
above equation is identical to equation (22) with
1

pP
1+ af(1)

a= (26)

This derivation gives a direct link between logarithmic distribution and a
simple preferential attachment mechanism. Finally, we identify

L)
N 27
=14 20 (27)
as the average group size experienced by an individual. Here f(1) is a con-
stant determined by system parameters. To show this, we rewrite equation
(23) in equilibrium as
g(n—1)f(n—1)f(1)

nfn) = qf(1) +q@ (28)
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Substituting the above equation into conservation condition ® = 22021 nf(n) =
J()+ >, nf(n), we can get

)
O+ ) - Le2 =0 (29)
q q
which leads to
o [pr 4p p
f==-H/=+=-=% 30
(1) 2(q2 . q) (30)
and
1 1 q
Np= - S 31
p=5 4+p (31)

We thus find Np is specified only by the ratio of system parameters p and
g. As long as the total population & is large enough, Np is independent of
®. This property distinguishes our preferential attachment model from the
merge and split model in the previous section, where equation (19) shows a
clear relationship between population density and Np.

Logarithmic series can be categorized to a truncated power law with power
exponent -1. For more general truncated power laws with other exponents,
Gueron et al. (1995) gave detailed derivation in the CFP framework with
some special forms of merging and splitting functions. They solve equation
(4) analytically for three cases with the splitting and merging rate in the
following form: the rate that a group of size < and a group of size n — i merge
to become a group of size nis ¥ (i,n—1i) = aa(i)a(n —1), the rate of a n-sized
group splitting to a group of size ¢ and n — i is ¢(n, ) = 2Fa(n), where a(n)
is some nonnegative function, « and 3 are positive constants and /5 < 2.
The three cases they solved are where: (1) a(n) = 1; (2) a(n) = n; (3)
a(n) = 1/n. Via Laplace transform, Gueron and Levin derive the solution of

(4) as:
ﬂ@=26(

(07

- (1n) ) exp(—An) (32)

lim a(n)
rx—0 n2

on the condition

>0

where X is a constant determined by population size. We can now see that
the logarithmic distribution is actually a specific example of equation (32),
where a(n) = n. Gueron and Levin’s distribution gives a very general and
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natural way of producing truncated power laws. For example a(n) = n? gives

group size distribution 2 1
f(n) = Eﬁe A

The Gueron & Levin approach requires that the CFP is reversible for

existence and uniqueness of the stationary distribution. CFP reversibility

results from their assumption that (i, 7) = b(i)b(j) and ¢(i,7) = b(i + 7).

Durrett et al. (1999) generalized the condition on the merging and splitting
rate to their ratio satisfying the following form:

i) alitd)
WD =267~ alial)

without losing the reversibility of the CFP for some positive function a(i).
However, this provides only a small number of merge-split models which are
reversible and none of the models we have discussed in this paper satisfy this
property. Our preferential attachment model has merging rate

W(i,n —i) = {&’,i(n —4) i=1

0 otherwise

and splitting rate

p(n,i) = pn.
Still, it is possible that there are a whole range of models which fit the evolu-
tion equation (32) and produce distributions similar or identical to truncated

power laws. Our numerical investigations suggest that CFP can produce sta-
ble distributions even when reversibility is not satisfied.

5. Discussion

A large number of recent theoretical studies have derived power law dis-
tributions from assumptions about how individuals interact (Newman, 2001,
2005; Sornette, 2004; Ma et al., 2008; Takayasu et al., 1988; Barabasi et al.,
1999). On the whole these studies are concerned with producing distribu-
tions with a power law tail rather than, as we have done here, simultaneously
deriving both the power law and an exponential decay above some point of
truncation. The exponential decay is often viewed as an inconvenient ne-
cessity, required when fitting models to data because all natural systems
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have some physical limit to their size. In many data sets involving power
laws, however, the exponential decay should have a genuine physical, bio-
logical or sociological interpretation (Newman, 2001). For example, Kéfi et
al. (2007) found that vegetation patch sizes are power law distributed with
an exponential decay which reflects grazing pressure. The animal group size
distributions, we have focussed on here, are another such example, where
there is a clear truncation point in the distribution when groups become
large (Bonabeau et al., 1999; Niwa, 2003; Griesser et al., 2011).

The fact that we can link the merging and splitting of groups with the
logarithmic distribution means that it has a number of useful properties. In-
deed, it is the average group size experienced by an individual, Np, which is
central to the entire model. Some previous models (Bonabeau et al., 1995,
1999; Sjoberg et al., 2000) suggested animal group size distributions should
be fitted by truncated power laws but these failed to explain where the trun-
cation should occur or the behavioral background of the truncation size. Both
the merge and split model and the preferential attachment model we discuss
in this paper can be used to calculate Np directly (through equations 18 and
31, respectively). The truncation parameter a can then be calculated from
Np.

We have shown that the logarithmic distribution can be derived from
mechanisms based on joining through preferential attachment, with splitting
rate increasing with group size. Furthermore, the merge and split model in
section 2 gives approximately the logarithmic distribution. The fact that data
generated from this model is well fit by equation (5), raises the possibility that
there are a whole range of site-based mechanisms that produce something
close to the logarithmic distribution. This may explain why the logarithmic
distribution is widespread in natural populations (Niwa, 2003; Griesser et al.,
2011).

While the merge & split model and preferential attachment model pro-
vide different derivations of the same distribution, these models produce
completely different scaling relations between Np and population size. In
the merge & split model, V,, depends on the total population size ® roughly
linearly over small ranges when other system parameters are fixed. In the
preferential attachment model, Np is independent with the total popula-
tion. This property may apply to model selection for empirical data. If the
experienced group size grows roughly linearly with the system size when en-
vironmental factors do not change, probably groups in the system follow the
merge and split mechanism. Otherwise if the experienced group size does
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not change with the total population, there is good chance that individuals
chose the group to join by preferential attachment.

The research presented here has built upon two results provided by Gueron
and co-workers (Gueron, 1998; Durrett et al., 1999; Gueron et al., 1995).
Firstly, Gueron & Levin provided a clear framework to describe general CFPs,
i.e. equation (4). We have used a discretized version of this framework to
describe our models. Secondly, for symmetrical splitting rate and merging
rate Gueron & Levin generalized logarithmic distribution to other truncated
power laws.

The logarithmic distribution is a limiting case of two important distri-
butions, truncated power laws (Bonabeau et al., 1995, 1999; Sjéberg et al.,
2000) and the negative binomial distribution (Caraco et al.; 1980; Cohen,
1972; Okubo, 1986). In this sense, there is a stronger link between the
different types of distributions used to model animal groups than that has
previously been suggested (Gerard et al., 2002; Bonabeau et al., 1999). We
maintain that the logarithmic distribution should be the first model of choice
in fitting experimental data from fission-fusion groups, precisely because it
can be related to both merge/split and preferential attachment processes.
The Gueron-Levin distribution (equation 32) or the negative binomial dis-
tribution (equation 21) then provide two useful generalizations.
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Figure 1: (a) Histogram of group size distribution in the form of equation
(8), with Np set equal to that estimated from the simulation in (c), i.e.
Np =11. (b) Same data as in (a), plotted in log-log scale. (c) Histogram of
the stable group size distribution by simulation of the merge and split model.
Total population ® = 10000, splitting rate p = 0.5, moving rate ¢ = 1, total
number of sites s = 10000, simulation time step T=400000. Every group has
size 10 for the initial state. (d) Same data as in (c), plotted in log-log scale;
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Figure 2: Comparison of simulated group size distribution (the crosses, with
total population ® = 10000, moving rate ¢ = 1, total number of sites s =
10000, simulation time step T=400000. Every group has size 10 for the initial
state), evolution equation iteration (the solid line), and Niwa’s distribution
as in equation(5) (the dashed line).
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Figure 3:° Comparison of nW(n)/(n — 1)W(n — 1) from numerical solution
(the solid line) with a = exp(—1/Np) (the dotted line) and a = 1 — 1/Np
(the dashed line). Np used here is estimated from the numerical solution.
® = 10000, s=10000, ¢ = 1.
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Figure 4: Np and mean group size versus splitting rate p. & = 10000,
s=10000, ¢ = 1. The crosses denote simulation results, solid line is the cor-
responding value derived numerically from the evolution equations. Dashed
line is calculated by using logarithmic distribution with W (1) = Ka, and
dotted line in (a) is the estimation proposed by Niwa in the form of equation
(17).
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Figure 5: Scaling relation between Np and total population size. The solid
line is total population ® versus the corresponding solution Np of equation
(18) when p = 0.2, ¢ = 1 and s = 15000. The dashed line is the linear fitting
of the solid line.
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Research Highlights:

» First principles derivations of the logarithmic
distribution and other truncated power laws using a
site-based merge and split framework.

» Link the truncation size to the merging and splitting
behaviors of animal groups.

» The logarithmic distribution and truncated power laws
can be obtained by preferential attachment
mechanisms.

» The logarithmic distribution is a limiting case of
truncated power law and negative binomial
distribution.





