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Multivariate Cramér-Rao inequality for prediction and
efficient predictors

Emmanuel Onzon – UPMC LSTA

Abstract

We derive and discuss a matricial Cramér-Rao type inequality for the quadratic prediction

error matrix. A study of the attainment of the bound follows. Then we introduce an

unbiased predictor for a bivariate Poisson process and prove that it is efficient, i.e. its

quadratic error attains the Cramér-Rao bound.

Keywords: Cramér-Rao inequality, Efficient predictor, Information inequality,

Prediction, Fisher information, Parametric models

1. Introduction

We consider statistical prediction theory as an extension of statistical estimation

theory as presented in Bosq and Blanke (2007). To put this extension in perspective we

briefly recall the framework of statistical estimation before presenting the framework of

statistical prediction.

In statistical estimation theory, the statistician observes a random variableX : Ω → X
where (Ω,A) and (X ,B) are measurable spaces. The distribution of X is unknown but

is assumed to belong to some family of probability measures (Pθ)θ∈Θ where θ ∈ Θ is

the parameter of the family (we have implicitly Pθ a probability measure on A and

Pθ = X(Pθ)). In this framework, the problem is to estimate the unknown parameter θ

or a function of this parameter, say g(θ), thanks to the observed variable X . To this end

the statistician computes an estimator which is a measurable function of X . A classic

reference for statistical estimation theory is the book Lehmann and Casella (1998).
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In the framework of statistical prediction theory, we consider the unobserved random

variable Y : Ω → Y in addition to the observed random variable X , with (Y, C) a

measurable space. The probability measure Pθ is not the distribution of X anymore but

the probability measure on the underlying probability space Ω, thus (Ω,A, Pθ , θ ∈ Θ) is

a statistical model. The problem is to predict g(X,Y, θ) where g : X × Y × Θ → Z is

a known function such that the function (x, y) 7→ g(x, y, θ) is measurable for all θ ∈ Θ

and g(X,Y, θ) ∈ L2(Pθ) for all θ. To do this the statistician computes a predictor p(X)

which is a measurable function of X , such that p(X) ∈ L2(Pθ) for all θ. If g only depends

on Y the problem is said to be a pure prediction problem, if g only depends on X then

this is an approximation problem, and if g only depends on θ then this is an estimation

problem. So the framework of statistical prediction includes the framework of statistical

estimation.

In this paper we present a few results about statistical predictors where we assume

Θ ⊂ Rd and Z = Rk.

The framework of statistical prediction theory can be used to pose the problem of

prediction of a time series in the following way. Let (Zt)t>0 be a stochastic process,

and consider the problem of predicting Zt+h assuming we know the process at time

t (or until time t). If we put this problem in the previous setting, we have X = Zt

(or X = (Zs)06s6t) and Y = g(X,Y, θ) = Zt+h. Since the conditional expectation

Eθ[Zt+h|Zt] (or Eθ[Zt+h|(Zs)06s6t]) is the best predictor of Zt+h for the quadratic error,

it is also of interest to consider the function to be predicted g(X,Y, θ) = Eθ[Zt+h|Zt] (or

g(X,Y, θ) = Eθ[Zt+h|(Zs)06s6t]) which is Eθ[Y |X ].

A convenient way to evaluate the accuracy of a predictor is to use the quadratic

prediction error (QPE). When Z = R the QPE is

Rθ(p, g) = Eθ

(
p(X)− g(X,Y, θ)

)2

This risk function induces the following preference relation between predictors. The

predictor p1 is said to be preferable to the predictor p2 for predicting g(X,Y, θ) if

Rθ(p1, g) 6 Rθ(p2, g), ∀θ ∈ Θ.

Many results of estimation theory regarding the accuracy of an estimator have been

generalized to statistical prediction theory for the accuracy of a predictor when using
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the QPE in the case Z = R. Those results are presented in details in Bosq and Blanke

(2007). We review a few of them.

The best σ(X)-measurable quantity to predict g(X,Y, θ) for the quadratic error is its

conditional expectation with respect to X . EX
θ g(X,Y, θ) usually depends on θ, then a

common strategy is to compute an estimator θ̂ of θ and take p(X) = EX
θ̂
g(X,Y, θ̂) as a

predictor. Such a predictor is called a plug-in predictor. The class of plug-in predictors

is a useful and important one, nonetheless the results that follow are not limited to them.

The concept of sufficiency is generalized to prediction in the following way. A statistics

S(X) is said to be P-sufficient for predicting g(X,Y, θ) if the conditional distribution ofX

with respect to S(X) does not depend on θ and for all θ, X and g(X,Y, θ) are conditionaly

independent given S(X). A Rao-Blackwell theorem for prediction states that if S(X) is

P-sufficient for predicting g(X,Y, θ) then ES(X)p(X) is preferable to p(X) for predicting

g(X,Y, θ). Unbiasedness is generalized to prediction too. A predictor p(X) of g(X,Y, θ)

is said to be unbiased if

Eθ

(
p(X)

)
= Eθ

(
g(X,Y, θ)

)
, θ ∈ Θ

When the predictor p(X) is not unbiased it is said to be biased and one calls the bias of

p(X) for predicting g(X,Y, θ) the quantity b(θ) = Eθ

(
p(X)− g(X,Y, θ)

)
.

A Lehmann-Scheffé theorem states that, if the statistics S(X) is complete and P-

sufficient for predicting g(X,Y, θ) and p(X) is unbiased, then ES
(
p(X)

)
is the unique

optimal unbiased predictor of g(X,Y, θ) (an optimal predictor of g(X,Y, θ) is a predictor

preferable to any predictor for predicting g(X,Y, θ)).

A Cramér-Rao type inequality is obtained in Yatracos (1992). It is presented in Bosq

and Blanke (2007) under the following form.

Assumptions 1. Θ ⊂ R is an open set, the model associated with X is dominated by a

σ-finite measure µ, the density f(x, θ) ofX is such that {x : f(x, θ) > 0} does not depend

on θ, ∂f(x, θ)/∂θ does exist. Finally the Fisher information IX(θ) = Eθ

(
∂
∂θ ln f(X, θ)

)2

satisfies 0 < IX(θ) <∞, θ ∈ Θ.

Theorem 1. If assumptions 1 hold, and p(X) is an unbiased predictor, and the equality∫
p(x)f(x, θ)dµ(x) = Eθ

(
g(X,Y, θ)

)
3
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can be differentiated under the integral sign, then

Eθ

(
p− g

)2 > Eθ

(
g − EX

θ g
)2 +

(
∂
∂θ (Eθg)− Eθ

(
EX

θ g
∂
∂θ ln f(X, θ)

))2

IX(θ)

where we noted p for p(X) and g for g(X,Y, θ).

Since the quadratic prediction error can be decomposed the following way

Eθ

(
p− g

)2 = Eθ

(
p− EX

θ g
)2 + Eθ

(
EX

θ g − g
)2

the inequality in theorem 1 can be written

Eθ

(
p− EX

θ g
)2 >

(
∂
∂θ (Eθg)− Eθ

(
EX

θ g
∂
∂θ ln f(X, θ)

))2

IX(θ)

Of course Eθ

(
EX

θ g(X,Y, θ)
∂
∂θ ln f(X, θ)

)
can also be written Eθ

(
g(X,Y, θ) ∂

∂θ ln f(X, θ)
)
.

The following corollary is corollary 1.1 p.22 in Bosq and Blanke (2007)

Corollary 2. If, in addition, the equality

Eθg(X,Y, θ) =
∫
EX=x

θ

(
g(X,Y, θ)

)
f(x, θ)dµ(x)

is differentiable under the integral sign, then

Eθ

(
p(X)− EX

θ g(X,Y, θ)
)2

>

[
Eθ

(
∂EX

θ g(X,Y,θ)
∂θ

)]2

IX(θ)

The Cramér-Rao bound for estimators has been generalized for biased estimators.

In such a case, the bound not only depends on g′(θ) but also on the bias b(θ) and its

derivative. It has been generalized for the multivariate case too, i.e. when θ ∈ Rk or

g(θ) ∈ Rd. Then, depending on the version of the inequality, the left-hand side of the

inequality is either the covariance of the norm of the estimator or the covariance matrix

of the estimator. In the later case the two matrices are compared with the Löwner semi-

order (i.e. A 6 B iff B − A is positive semidefinite). We refer to Lehmann and Casella

(1998) chapter 2 for the Cramér-Rao inequality for estimators (where it is called the

information inequality).

Bosq and Blanke generalized the inequality of theorem 1 for Θ ⊂ Θ0 and g taking its

values in B, with Θ0 and B separable Banach spaces. Under some regularity conditions
4
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about the density function f they obtain the following inequality

Eθ

(
x∗(p− g)

)2 > Eθ

(
x∗(g − EX

θ g)
)2 +

x∗
(
∂u(Eθg)− Eθ

(
EX

θ g
∂uf(X,θ)
f(X,θ)

))2

IX,u(θ)

for any x∗ ∈ B∗ the topological dual of B and any u ∈ Θ0 such that the derivatives exist,

and where we noted ∂uh(θ) = ∂
∂th(θ + tu)

∣∣
t=0

, IX,u(θ) = Eθ

(
∂uf(X,θ)
f(X,θ)

)2

, p = p(X) and

g = g(X,Y, θ). We refer to Bosq and Blanke (2007) for more details.

Nayak introduced a matricial Cramér-Rao type inequality for prediction in the case of

a multidimensional parameter θ and a random vector to predict, that generalizes theorem

1. In his paper, Nayak (2002), he also gives a Bhattacharyya type bound for predictors.

In the second section we give a proof of the matricial inequality given by Nayak and

discuss it. Then in the third section we study the attainment of the bound. In the last

section we consider an unbiased predictor for the bivariate Poisson process and prove its

efficiency.

2. Cramér-Rao type inequality for prediction

We denote Jθh(θ0) the jacobian matrix of a function h with respect to the variable θ

and evaluated at the point θ0, and L̇θ the gradient of ln f(x, θ) with respect to θ a vector

of Rd, where f(x, θ) is the density of X .

L̇θ = ∇θ ln f(x, θ)

When an inequality involves matrices, then it always refers to the Löwner semiorder (i.e.

A 6 B iff B −A is positive semidefinite).

Assumptions 2. Θ ⊂ Rd is an open set, the model associated with X is dominated by

a σ-finite measure µ, the density f(x, θ) of X is such that {x : f(x, θ) > 0} does not

depend on θ, ∇θf(x, θ) does exist. Finally the Fisher information

IX(θ) = Eθ

(
L̇θL̇

T
θ

)
satisfies det

(
IX(θ)

) 6= 0 and IX,i,j(θ) < ∞, θ ∈ Θ, where IX,i,j(θ) is the coefficient at

line i and column j of the matrix IX(θ).

5
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Assumptions 3. The equality∫
EX=x

θ

(
g(X,Y, θ)

)
f(x, θ) dµ(x) = Eθ

(
g(X,Y, θ)

)
can be differentiated under the integral sign with respect to each component of θ (where

g : X × Y ×Θ → Rk and the function (x, y) 7→ g(x, y, θ) is measurable for all θ ∈ Θ).

Theorem 3. Suppose assumptions 2 and 3 hold. Let p : X → Rk be an unbiased

predictor of g(X,Y, θ) and g : X × Y × Θ → Rk a function such that for all θ ∈ Θ the

function (x, y) 7→ g(x, y, θ) is measurable and g(X,Y, θ) ∈ L2(Pθ) and Θ ⊂ Rd.

If the equality ∫
p(x)f(x, θ) dµ(x) = Eθ

(
g(X,Y, θ)

)
(1)

can be differentiated under the integral sign with respect to each component of θ, then

Eθ

(
p− EX

θ g
)(
p− EX

θ g
)T > G(θ) IX (θ)−1G(θ)T (2)

where we denoted p = p(X), g = g(X,Y, θ) and G(θ) = Eθ

(
JθE

X
θ g

)
.

Proof. Let Z =

p− EX
θ g

L̇θ

. Differentiability of (1) under the integral sign allows to

show Jθ(Eθp) = EθpL̇
T
θ , hence Jθ(Eθg) = EθpL̇

T
θ . Using these relations one gets

Eθ

[
ZZT

]
=

 Eθ(p− EX
θ g)(p− EX

θ g)
T Jθ

(
Eθg

)− Eθ

[(
EX

θ g
)
L̇T

θ

]
(
Jθ

(
Eθg

)− Eθ

[(
EX

θ g
)
L̇T

θ

])T

IX(θ)

 > 0

Using assumption 3 one gets

Jθ

(
Eθg

)− Eθ

[(
EX

θ g
)
L̇T

θ

]
= Eθ

(
JθE

X
θ g

)
which is G(θ). Hence

Eθ

[
ZZT

]
=

Eθ(p− EX
θ g)(p− EX

θ g)
T G(θ)

G(θ)T IX(θ)

 > 0

g(X,Y, θ) and L̇θ are square integrable therefore Eθ

[(
EX

θ g
)
L̇T

θ

]
does exist. For all α ∈

Rk+d it holds αTEθ

[
ZZT

]
α > 0 therefore, letting α =

 β

−IX(θ)−1G(θ)Tβ

 where β is

any vector of Rk, one gets

αTEθ

[
ZZT

]
α = βT

(
Eθ(p− EX

θ g)(p− EX
θ g)

T − bbT −G(θ)IX (θ)−1G(θ)T
)
β > 0

6
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Which implies the matrix inequality. 2
This theorem can be extended for the case of biased predictors

Theorem 4. Suppose assumptions 2 and 3 hold. Let p : X → Rk be a predictor of

g(X,Y, θ) with bias b(θ) a differentiable function and g : X ×Y×Θ → Rk a function such

that for all θ ∈ Θ the function (x, y) 7→ g(x, y, θ) is measurable and g(X,Y, θ) ∈ L2(Pθ)

and Θ ⊂ Rd.

If the equalities ∫
p(x)f(x, θ) dµ(x) = Eθ

(
g(X,Y, θ)

)
+ b(θ)

∫
f(x, θ) dµ(x) = 1 (3)

can be differentiated under the integral sign with respect to each component of θ, then

Eθ

(
p−EX

θ g
)(
p−EX

θ g
)T > b(θ)b(θ)T +

(
G(θ)+Jθb(θ)

)
IX(θ)−1

(
G(θ)+Jθb(θ)

)T (4)

where we denoted p = p(X), g = g(X,Y, θ) and G(θ) = Eθ

(
JθE

X
θ g

)
.

Proof. The proof is the same except one takes Z =

p− EX
θ g − b(θ)

L̇θ


and α =

 β

−IX(θ)−1
(
G(θ) + Jθb(θ)

)T
β

. Now one has Jθ(Eθg) = EθpL̇
T
θ − Jθb(θ).

(the differentiability of (3) allows to have EθL̇θ = 0) 2
Remark 1. A proof of this inequality in the case k = 1 (i.e. g(X,Y, θ) ∈ R) is given in

Nayak (2002).

Remark 2. If we relieve the assumption 3 in theorem 3 and in theorem 4 then G(θ) in

the bound for each theorem becomes

G(θ) = Jθ

(
Eθg(X,Y, θ)

)−Eθ

[(
EX

θ g(X,Y, θ)
)
L̇T

θ

]
= Jθ

(
Eθg(X,Y, θ)

)−Eθ

[
g(X,Y, θ)L̇T

θ

]
Remark 3. The bound is invariant by reparameterization θ = h(ξ) where h is differen-

tiable.

7
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Remark 4. In the previous theorems we obtain a matricial result. We can deduce a

result about the norm of the error, taking the trace of the matrices. The matrix

Eθ

(
p− EX

θ g
)(
p− EX

θ g
)T − G(θ) IX (θ)−1G(θ)T

in theorem 3 is positive semi-definite, thus its trace is positive (as the sum of its eigen

values which are positive reals). Therefore

Eθ

∣∣∣∣p− EX
θ g

∣∣∣∣2 > trace
(
G(θ) IX (θ)−1G(θ)T

)
and in the case of a biased predictor

Eθ

∣∣∣∣p− EX
θ g

∣∣∣∣2 >
∣∣∣∣b(θ)∣∣∣∣2 + trace

((
G(θ) + Jθb(θ)

)
IX(θ)−1

(
G(θ) + Jθb(θ)

)T
)
.

3. Attainment of the bound

When the bound is attained for some value θ of the parameter, p(X)−EX
θ g(X,Y, θ)

takes a particular form.

Proposition 5. Given the assumptions of theorem 3, the equality in (2) holds iff

p(X) = EX
θ g(X,Y, θ) +G(θ)IX (θ)−1L̇θ, Pθ-a.s. (5)

Proof. We denote p = p(X) and g = g(X,Y, θ). One considers

Z = p− EX
θ g −G(θ)IX (θ)−1L̇θ

EθZZ
T = Eθ

(
p− EX

θ g
)(
p− EX

θ g
)T −G(θ)IX(θ)−1G(θ)T = 0

hence p− EX
θ g = G(θ)IX(θ)−1L̇θ, Pθ-a.s. 2

Proposition 6. Given the assumptions of theorem 4, the equality in (4) holds iff

p(X) = EX
θ g(X,Y, θ) + b(θ) +

(
G(θ) + Jθb(θ)

)
IX(θ)−1L̇θ, Pθ-a.s. (6)

Proof. The proof is the same taking Z = p−EX
θ g− b(θ)−

(
G(θ) + Jθb(θ)

)
IX(θ)−1L̇θ.

Remark 5. This result improves on Nayak (2002) who remarked that, in the case k = 1

(i.e. g : X ×Y×Θ → R), equality in (4) holds iff there exists H : Θ → Rd and a : Θ → R
such that (in our notation) EX

θ g(X,Y, θ) = 〈H(θ), L̇θ〉+ a(θ) + p(X) , Pθ-a.s.
8
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We recall that an estimator which variance attains the Cramér-Rao bound is called

efficient. Following this convention we call a predictor which quadratic prediction error

attains the bound of inequality (4) an efficient predictor. When k = d and the predictor

is efficient, i.e when the bound is globally attained, the density family satisfies some

special conditions.

Theorem 7. Suppose assumptions 2 and 3 hold. Let p : X → Rk be an efficient unbiased

predictor of g(X,Y, θ) and g : X × Y × Θ → Rk a function such that for all θ ∈ Θ the

function (x, y) 7→ g(x, y, θ) is measurable and g(X,Y, θ) ∈ L2(Pθ) and Θ ⊂ Rd. Denote

p = p(X), g = g(X,Y, θ) and G(θ) = Eθ

(
JθE

X
θ g

)
.

If G(θ) is an invertible matrix and there exists a differentiable function θ 7→ A(θ),

Θ → Rk, such that
(
JθA(θ)

)T = IX(θ)G(θ)−1.

Then there exists a function B : X ×Θ → R differentiable in θ ∈ Θ such that

f(x, θ) = exp
(〈A(θ), p(x)〉 −B(x, θ)

)
, for all θ ∈ Θ and PX,θ-a.a. x ∈ X

and ∇θB(x, θ) =
(
JθA(θ)

)T
EX=x

θ g for all θ ∈ Θ and PX,θ-a.a. x ∈ X .

Remark 6. The family of densities fθ(x) = exp{〈A(θ), p(x)〉 − B(x, θ)} is not an ex-

ponential family since B(x, θ) might not be a sum B1(x) + B2(θ), we call such a family

an extended exponential family. Nevertheless when g only depends on θ, the equality

∇θB(x, θ) =
(
JθA(θ)

)T
EX=x

θ g implies that there exists B1 and B2 such that B(x, θ) =

B1(x) + B2(θ), for all θ ∈ Θ and x ∈ X . This case is precisely when the framework of

prediction degenerates to the framework of estimation.

Remark 7. In the case of estimation (i.e. when g only depends on θ), the assumption

that there exists a differentiable function θ 7→ A(θ), Θ → Rk, such that
(
JθA(θ)

)T =

IX(θ)G(θ)−1 can be relieved, see Müller-Funk et al. (1989) or Liese and Miescke (2008).

Proof. We have p(X)−EX
θ g(X,Y, θ) = G(θ)IX (θ)−1L̇θ, Pθ-a.s. (proposition 5). Hence

L̇θ = IX(θ)G(θ)−1
(
p(X)− EX

θ g(X,Y, θ)
)
, Pθ-a.s. (7)

Since
(
JθA(θ)

)T = IX(θ)G(θ)−1, one has IX(θ)G(θ)−1p(X) = ∇θ〈A(θ), p(X)〉. There-

fore

IX(θ)G(θ)−1EX
θ g(X,Y, θ) = ∇θ

(
log f(X, θ)− 〈A(θ), p(X)〉)

9



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Thus there exists a function B(x, θ) differentiable in θ such that

∇θB(x, θ) = IX(θ)G(θ)−1EX=x
θ g(X,Y, θ) for all θ and PX,θ-a.a. x.

Therefore one can integrate (7) and get

f(x, θ) = exp
(〈A(θ), p(x)〉 −B(x, θ)

)
, for all θ and PX,θ-a.a. x 2

This proof can be extended to the case of a biased predictor.

Theorem 8. Suppose assumptions 2 and 3 hold. Let p : X → Rk be a predictor of

g(X,Y, θ) with differentiable bias b(θ) and g : X × Y × Θ → Rk a function such that

for all θ ∈ Θ the function (x, y) 7→ g(x, y, θ) is measurable and g(X,Y, θ) ∈ L2(Pθ) and

Θ ⊂ Rd, and the predictor p(X) attains the bound in (4) for each θ. Denote p = p(X),

g = g(X,Y, θ) and G(θ) = Eθ

(
JθE

X
θ g

)
.

If G(θ) is an invertible matrix and there exists a differentiable function θ 7→ A(θ),

Θ → Rk, such that
(
JθA(θ)

)T = IX(θ)
(
G(θ) + Jθb(θ)

)−1.

Then there exists a function B : X ×Θ → R differentiable in θ ∈ Θ such that

f(x, θ) = exp
(〈A(θ), p(x)〉 −B(x, θ)

)
, for all θ ∈ Θ and PX,θ-a.a. x ∈ X

and ∇θB(x, θ) =
(
JθA(θ)

)T (
EX=x

θ g + b(θ)
)

for all θ ∈ Θ and PX,θ-a.a. x ∈ X .

The following theorem is a converse.

Theorem 9. Suppose assumption 2 holds. Let g : X × Y ×Θ → Rk be a function such

that for all θ ∈ Θ the function (x, y) 7→ g(x, y, θ) is measurable and g(X,Y, θ) ∈ L2(Pθ)

and Θ ⊂ Rd. Suppose the observed variable X has density

f(x, θ) = exp
(〈A(θ), p(x)〉 −B(x, θ)

)
, θ ∈ Θ (8)

with p : X → Rk a measurable function and A : Θ → Rd differentiable with invertible

Jacobian matrix and B : X × Θ → R twice differentiable with respect to θ, where A and

B satisfy EX
θ g(X,Y, θ) =

(
JθA(θ)

)−1 T∇θB(X, θ).

If
∫
f(x, θ) dµ(x) is two times differentiable under the integral sign, then p(X) is an

efficient unbiased predictor of g(X,Y, θ).

10
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Remark 8. Any density f(x, θ) that does not vanish can be written like (8), by choosing

A(θ) = θ, p(x) = 0, and B(x, θ) = − log(f(x, θ)). But under this form, the quantity to

predict given by the theorem is not necessarily interesting. The theorem is useful when

it is possible to write the density in such a way that the quantity
(
JθA(θ)

)−1T∇θB(X, θ)

is an interesting quantity to predict.

Proof. It holds
∫
f(x, θ) dµ(x) = 1 hence for all i = 1, . . . , d,

∫
∂

∂θi
f(x, θ) dµ(x) = 0

therefore

Eθ

( ∂

∂θi
A(θ)T p(X)− ∂

∂θi
B(X, θ)

)
= 0 (9)

Thus Eθ

((
JθA(θ)

)T
p(X)−∇θB(X, θ)

)
= 0, hence

Eθp(X) = Eθ

(
(JθA(θ))−1T∇θB(X, θ)

)
= Eθg(X,Y, θ).

Therefore p(X) is unbiased for predicting g(X,Y, θ). We now compute the Cramér-Rao

bound. We denote p = p(X) and g = g(X,Y, θ). Here we did not assume assumption (3)

thus G(θ) = Jθ

(
Eθg

)− Eθ

[(
EX

θ g
)
L̇T

θ

]
.

G(θ) = Jθ(Eθp)− Eθ

(
(JθA(θ))−1 T∇θB(X, θ)L̇T

θ

)
= Eθp(X)L̇T

θ − Eθ

(
(JθA(θ))−1 T∇θB(X, θ)L̇T

θ

)
= Eθ

[ (
p(X)− (JθA(θ))−1 T∇θB(X, θ)

)
L̇T

θ

]
Differentiating (8) we get L̇θ = ∇θ

(
A(θ)T p(X)−B(X, θ)

)
hence

G(θ) = Eθ

[ (
p(X)− (JθA(θ))−1 T∇θB(X, θ)

) (∇θ(A(θ)T p(X)−B(X, θ))
)T ]

=
(
JθA(θ)

)−1 T
Eθ

[ (
(JθA(θ))T p(X)−∇θB(X, θ)

) (∇θ(A(θ)T p(X)−B(X, θ))
)T ]

=
(
JθA(θ)

)−1 T
Eθ

[∇θ

(
A(θ)T p(X)−B(X, θ)

) (∇θ(A(θ)T p(X)−B(X, θ))
)T ]

=
(
JθA(θ)

)−1 T
Eθ

[
L̇θL̇

T
θ

]
=

(
JθA(θ)

)−1 T
IX(θ)

Hence the Cramér-Rao bound is G(θ)I−1(θ)G(θ)T =
(
JθA(θ)

)−1 T
IX(θ)

(
JθA(θ)

)−1.

We now compute Eθ(p− EX
θ g)(p− EX

θ g)
T , we differentiate (9) with respect to θj

Eθ

( ∂

∂θi
A(θ)T p(X)− ∂

∂θi
B(X, θ)

)2

=
( ∂2

∂θi∂θj
B(X, θ)− ∂2

∂θi∂θj
A(θ)T p(X)

)
Eθ

((
JθA(θ)

)T
p(X)−∇θB(X, θ)

)((
JθA(θ)

)T
p(X)−∇θB(X, θ)

)T

11



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

=
( ∂2

∂θi∂θj
B(X, θ)− ∂2

∂θi∂θj
A(θ)T p(X)

)
16i,j6d

Now Fisher’s information is also equal to

IX(θ) = −Eθ

( ∂2

∂θi∂θj
log(f(X, θ))

)
16i,j6d

=
( ∂2

∂θi∂θj
B(X, θ)− ∂2

∂θi∂θj
A(θ)T p(X)

)
16i,j6d

Hence

Eθ

((
JθA(θ)

)T
p(X)−∇θB(X, θ)

)((
JθA(θ)

)T
p(X)−∇θB(X, θ)

)T

= IX(θ)

i.e.

Eθ

(
p(X)− (

JθA(θ)
)−1 T∇θB(X, θ)

)(
p(X)− (

JθA(θ)
)−1 T∇θB(X, θ)

)T

=
(
JθA(θ)

)−1 T
IX(θ)

(
JθA(θ)

)−1
.

Therefore

Eθ

(
p− EX

θ g
)(
p− EX

θ g
)T =

(
JθA(θ)

)−1 T
IX(θ)

(
JθA(θ)

)−1 = G(θ)IX (θ)−1G(θ)T .

The Cramér-Rao bound is attained, p is an efficient unbiased predictor for g. 2
The following is a multivariate version of theorem 1.8 from Bosq and Blanke (2007).

Theorem 10. Suppose assumption 2 holds. Let g : X × Y × Θ → Rk be a function

such that for all θ ∈ Θ the function (x, y) 7→ g(x, y, θ) is measurable and g(X,Y, θ) ∈
L2(Pθ) and Θ ⊂ Rd. Let s(X) be an efficient unbiased estimator of ψ(θ) : Θ → Rk a

differentiable function and suppose g is such that EX
θ g(X,Y, θ) = φ(X) + ψ(θ), θ ∈ Θ

with φ mesurable, φ and ψ known functions. Then p(X) = φ(X) + s(X) is an efficient

unbiased predictor of g(X,Y, θ).

Proof. The efficiency of s(X) for estimating ψ(θ) implies

Eθ

(
s(X)− ψ(θ)

)(
s(X)− ψ(θ)

)T =
(
Jθψ(θ)

)
IX(θ)−1

(
Jθψ(θ)

)T

Let us denote p = p(X) and g = g(X,Y, θ). The Cramér-Rao bound of p predictor of g

is G(θ)IX (θ)−1G(θ) with

G(θ) = Jθ

(
Eθg

)− Eθ

[(
EX

θ g
)
L̇T

θ

]
= Jθ

(
Eθφ(X)

)
+ Jθψ(θ)− [

Eθ(φ(X)L̇T
θ ) + Eθ

(
ψ(θ)L̇T

θ

)]
= Jθ

(
Eθφ(X)

)
+ Jθψ(θ)− Jθ

(
Eθφ(X)

)− ψ(θ)Eθ

(
L̇T

θ

)
12
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NowEθ(L̇θ) = 0, henceG(θ) = Jθψ(θ) and the Cramér-Rao bound is
(
Jθψ(θ)

)
IX(θ)−1

(
Jθψ(θ)

)T .

The quadratic error of the predictor with respect to the conditional expectation is

Eθ

(
p−EX

θ g
)(
p−EX

θ g
)T = Eθ

(
s(X)−ψ(θ)

)(
s(X)−ψ(θ)

)T =
(
Jθψ(θ)

)
IX(θ)−1

(
Jθψ(θ)

)T

The Cramér-Rao bound is attained, p is an efficient unbiased predictor of g. 2

4. Prediction of a bivariate Poisson process

Let us consider the bivariate Poisson process
(
Nt

)
t>0

=
(
N1(t), N2(t)

)
t>0

following

the definition of Marshall and Olkin (1967). It is markovian and its increments are

independent and stationary. The parameter of the model is θ = (λ1, λ2, λ3) where

(λ1 − λ3, λ2 − λ3, λ3) ∈ (R∗
+)3. The distribution is

f(x, θ) = Pθ

(
Nt =

x1

x2

 )
= e−(λ1+λ2−λ3)t

min(x1, x2)∑
k=0

λk
3(λ1 − λ3)x1−k(λ2 − λ3)x2−ktx1+x2−k

k!(x1 − k)!(x2 − k)!

with x =
(
x1 x2

)T

∈ N2. Kocherlakota and Kocherlakota (1992) p. 106 and the

reparameterization (λ1, λ2, λ3) 7→ (λ1t, λ2t, λ3t) (see formula (6.16) in Lehmann and

Casella (1998) p.125) allow to show that the inverse of the information matrix is

I(θ)−1 =
1
t


λ1 λ3 λ3

λ3 λ2 λ3

λ3 λ3 δ


(δ is given in Kocherlakota and Kocherlakota (1992))

In what follows we study the problem of predicting Nt+h assuming we know the

process at time t (we do not assume that we know the process before time t). Thus in

the framework of statistical prediction, presented in the introduction, we have X = Nt

and Y = Nt+h. The assumption 2 is fulfilled.

The following equality in distribution holdsN1(t)

N2(t)

 d=

Z1 + Z3

Z2 + Z3


where Z1, Z2 and Z3 are independent random variables with Poisson distribution and

respective parameters (λ1 − λ3)t, (λ2 − λ3)t and λ3t. Using this property we compute
13
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the conditional expectation of Nt+h

EX
θ Y = ENt

θ Nt+h = Eθ[Nt+h −Nt] +Nt = EθNh +Nt = h

λ1

λ2

 +Nt

Using this expression of the conditional expectation of Y = Nt+h given X = Nt and

Lebesgue’s theorem one can prove that assumption 3 is fulfilled.

The predictor p(Nt) = t+h
t Nt is unbiased. The equality (1) can be differentiated

under the integral sign with respect to λ1, λ2 and λ3, using Lebesgue’s theorem.

We know that p(Nt) is efficient in the univariate case (see Bosq and Blanke (2007)

example 1.13 p. 26). We are going to see that it is also true in the bivariate case. The

quadratic error of the predictor with respect to the conditional expectation is

Eθ

(
p(Nt)− ENt

θ Nt+h

)(
p(Nt)− ENt

θ Nt+h

)T =
h2

t

λ1 λ3

λ3 λ2


We now compute the Cramér-Rao bound G(θ)I(θ)−1G(θ)T .

G(θ) = Eθ

(
JθE

Nt

θ Nt+h

)
=

h 0 0

0 h 0


Eθ

(
p(Nt)− ENt

θ Nt+h

)(
p(Nt)− ENt

θ Nt+h

)T = G(θ)I(θ)−1G(θ)T

The Cramér-Rao bound is attained.
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