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Abstract 

Data shuffling is a recently proposed technique for masking numerical data where the confidential 

values are shuffled between records while maintaining all monotonic relationships between the 

variables in the data set. Data shuffling is based on the multivariate normal copula which assumes 

that there is no tail dependence in the data set. In many practical situations, however, tail 

dependence plays a crucial role in decision making. Hence, it is desirable that the data masking 

procedure be capable of preserving tail dependence when present. In this study, we provide a new 

data shuffling approach based on t copulas that is capable of maintaining tail dependence in the 

masked data in a large number of applications.  

Keywords: Statistical confidentiality, copulas, data shuffling, disclosure risk, data dissemination, 

tail dependence. 

1. Introduction 

Many organizations (private, public, and governmental) gather, store, analyze, 

share, and disseminate large quantities of data. Often some of the data that has 

been gathered by these organizations are considered sensitive. When this is the 

case statistical disclosure limitation techniques (data masking) are applied to the 

collected data to produce a new data set that ideally should be safe from attack of 

potential intruders and useful for the statistical analysis that legitimate users might 

want to perform (for a review of masking techniques see for example Muralidhar, 

and Sarathy 2003).   
 

Developments in data masking techniques have been driven by the desire to 

provide users with masked data that are capable of maintaining the same statistical 

characteristics as the original data. Early techniques relied on adding noise to the 

confidential data to mask the original values (Traub et al. 1984). However, the 

original noise addition techniques resulted in modifying the marginal distribution 

and relationships among variables. This led to the development of modified noise 

addition techniques that attempted to maintain linear relationships between the 

confidential variables (Kim 1986). Subsequent developments led to masking 

techniques based on linear models that were capable of maintaining linear 

relationships between all variables such as multiple imputation (Rubin 1993), 

general additive data perturbation (Muralidhar et al. 1999), and information 

preserving statistical obfuscation (Burridge 2003). The linear models were not 

capable of maintaining the marginal distribution and non-linear relationships. This 

led to the development of copula based perturbation (Sarathy et al. 2002, Trottini 
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et al. 2008) and skew t perturbation (Lee et al. 2010) that allowed a flexible 

modeling of the marginal distributions and multivariate dependence. The copula 

based approach provides masked data that maintain all monotonic relationships 

between variables but preserves marginals only asymptotically when the marginal 

distributions are known prior to the masking. Skew t perturbation, on the other 

hand, relies on a parametric family much more flexible than the multivariate 

normal but still preserves linear and non-linear relationships and marginals only 

when the multivariate skew t distribution is a suitable model for the original data 

(and only asymptotically for the marginals). 
 

Recently, Muralidhar and Sarathy (2006) proposed a Data Shuffling procedure for 

masking sensitive numerical data (from now on G-DS procedure) that enhanced 

the copula based perturbation approach. In G-DS, the original sensitive data 

values are “shuffled” among the records so as to preserve the marginal 

distribution of the sensitive variables as well as monotonic relationships between 

all (both sensitive and non-sensitive) variables. In terms of security, since the 

shuffled data are generated as a function only of the values of the original non-

sensitive variables, the masked data do not provide any additional information to 

the intruder. For a comprehensive discussion of G-DS, please refer to Muralidhar 

and Sarathy (2006).  
 

In keeping with this trend, in this paper, we propose an extension to the G-DS 

method that is capable of preserving tail dependence in addition to the other 

benefits derived from the original G-DS approach. The paper is organized as 

follows. In the next section, we briefly describe the G-DS procedure. Section 3 

introduces the notion of tail dependence and explains limitation of G-DS in 

dealing with it.  In section 4 an alternative approach based on t-copula is 

presented. Advantages and limitations of the new t-copula based data shuffling 

procedure compared to the standard G-DS are discussed in section 5.  Finally in 

section 6 we summarize the main results of the paper and outline ideas of future 

work. 

 
 

2. The G-DS procedure 
 

Consider a data set comprising a set of numerical confidential data X of 

dimension M (variables) and N (records) and a set of numerical nonconfidential 

data S of dimension L and N (the nonconfidential variables in S are for the same 

records as in X) 
2
. We assume that: (i) the empirical cumulative distribution 

function for the jth variable in X can be well approximated by a strictly increasing 

cumulative distribution function (cdf) Fj (j=1, …, M); (ii) the empirical 

distribution function for the kth variable in S can be well approximated by a 

strictly increasing cdf Gk (k= 1, …, L); and (iii) the empirical joint cumulative 

distribution function for the (M+L) variables in the data can be well approximated 

by a multivariate continuous cdf FX,S. Let ,i jx and 
( ),i jx  represent the ith 

(unordered) and the ith ordered observation for the jth confidential variable (i.e
 

( ),( )i jrank x i ) and let ix and is represent  1 M  and  1 L single-observation 

vectors from X and S respectively. The data shuffling procedure of Muralidhar 

                                                 
2
  In order to simplify notation, in the rest of the paper we use X (S) to denote both the confidential 

(nonconfidential) data and the set of confidential (nonconfidential) variables.  In each case, the 

correct interpretation of X (S) should be clear from the context. 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 

and Sarathy (from now on DS procedure) can be described as follows (see 

Muralidhar and Sarathy 2006 page 661): 

 Step 1. For i=1,…,N, generate perturbed vectors 
p
iy from the conditional distribution  

of  X given iS = s . Let Y
p   

be the corresponding  N M matrix of perturbed values 

and let ( ),
p
i jy represent the ith ordered observation of the jth perturbed variable (jth 

column of Y
p
). 

 

 Step 2. For i=1,…,N, and  j=1,…,M replace ( ),
p
i jy with ( ),i jx . Let  represent the 

corresponding  N M matrix of shuffled values. 

 Step 3. Release the reordered (or shuffled) data set (S, Y). 
 

   Table 1: DS - procedure 
 

In the DS procedure perturbed values for the sensitive variables are generated 

according to the conditional distribution of X given S (step 1). The perturbed 

values are then used to make a “smart” shuffling of the original sensitive variables 

that are finally released (steps 2 and 3). The shuffling is “smart” since it is made 

according to the ranks of values for the sensitive variables generated from the 

conditional distribution of X given S. As such the shuffling preserve not only the 

marginal distributions of (X,S) but also the joint distribution of the original data 

achieving the maximum data utility. 
 

Unfortunately in many real applications, the conditional distribution of X given S 

cannot be derived and the DS procedure, as described in table 1 cannot be 

implemented.  The heuristic solution proposed by Muralidhar and Sarathy (2006), 

that we will refer to as the G-DS procedure, consists of generating the perturbed 

values for the sensitive variables in step 1 from a conditional distribution which is 

not the “true” conditional of X given S but is obtained from the joint distribution 

of a random vector that has the same univariate margins and the same Kendall‟s 

tau (or Spearman‟s rho) correlation matrix of the “true” joint distribution for (X, 

S). Thus, to the extent to which Kendall‟s tau (or Spearman‟s rho) is an 

appropriate measure of dependence for the original data, the G-DS procedure 

provides a shuffled data set that preserves both the marginals and the relevant 

features of dependence structure of the original data.  
 

Since both Kendall‟s tau and Spearman‟s rho are copula based measures of 

dependence, i.e. they only depend on the copula underlying the joint distribution 

of (X,S), regardless of the margins (see Joe, 1997 p.32),  copulas provide a natural 

tool for the required implementation. Assuming a Gaussian copula model for 

(X,S), the cdf of (X,S) can be represented as follows: 

 

 1 1 1 1

, 1 1 1 1 1 1( ,..., , ,..., ) ( ( )),..., ( ( )), ( ( )),..., ( ( ))M M M M L LF x x s s F x F x G s G s      X S



                                                                                                                               (1) 
 

where   represents the cdf of a (M+L)-variate normal  distribution with mean 0, 

and product moment correlation matrix  and 1   is the quantile function of a 

univariate  standard normal distribution.  The copula parameter , is related to the 

Spearman‟s rho and Kendall‟s tau correlation matrix of (X,S), that we denote 

respectively by   , 1,...,

S

i j M LS i j   ,  and   , , 1,...i j i j M L


   
 
by the formulas: 

                                
 , ,sin /6 ,      , 1,... ;S

i j i j i j M L                                  (2) 



Y
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 , ,sin / 2 ,           ,  1,... .i j i j i j M L                                 (3) 

Thus can be estimated evaluating either the Spearman‟s or the Kendall‟s tau 

correlation matrix of the original data and then using (2) or (3). Denoting by ̂  

the estimate of the estimated copula model becomes: 
 

 ˆ 1 1 1 1

, 1 1 1 1 1 1
ˆ ( ,..., , ,..., ) ( ( )),..., ( ( )), ( ( )),..., ( ( ))M M M M L LF x x s s F x F x G s G s      X S



                                                                                                                               (4) 

Note that, regardless of the true distribution of (X,S), by construction the model in 

(4) exactly preserves the univariate margins and the Kendall‟s tau (or Spearman‟s 

rho) correlation matrix of the “true” distribution  (depending on whether (2) or (3) 

is  used for estimating  Let 
X  and  


S   be random vectors defined as follows,  

         
   

   

1 1

1 1

,..., ;         ,..., ;

( ) ,       =1,..., ;              ( ) ,      =1,..., .

M L

j j j k k k

X X S S

X F X j M S G S k L 

     

   

 

 

X S
                (5) 

Under (4) ) 
(X ,S   follows a multivariate standard normal distribution with 

covariance (and correlation) matrix ̂ .  From basic properties of the multivariate 

normal distribution the conditional distribution of |  X S s is also multivariate 

normal , 

                                       

 . .
| ~ ,MN     

  
X S X X S

X S s                                            (6) 

 

with vector mean 
. X S

  and covariance matrix 
.  

X X S
  given by:  

          

   
1 1

. .
ˆ ˆ ˆ ˆ ˆ ˆ                

 
 

X S X S S S X X S X X X S S S S X
s                            (7) 

 

where in (7) we used the partition  
 

                    

ˆ ˆ    
ˆ

ˆ ˆ    

   

   

 
 
 
 

X X X S

S X S S

 


 
 

with dimension 
   

.
     

M M M L

L M L L

  
 
                      

(8) 

The G-DS procedure can be then described as follows: 

 Step 1.a For each 1 , . . . ,i N   generate   ,1 ,, ,i i i My y  
y  from the conditional 

distribution of | i
  X S s   in (6) to result in 

Y . 
 

  Step 1.b: For each 1 , . . . ,i N  
 
and for each j=1,…,M  perform the reverse mapping, 

 1
, ,( )

j

p
i j X i jy F y  
   to result in Y

p
. 

  Steps 2 and 3: the same as in the DS procedure in table 1. 

   Table 2: G-DS-procedure  
 

As observed by Muralidhar and Sarathy (2006) the algorithm in table 2 can be 

generalized to the case in which the marginal distributions of (X,S) are unknown.  

First of all, since the data shuffling procedure only uses the ranks of the perturbed 

values, Step 1.b in table 2 is, in fact, unnecessary (and thus the knowledge of the 

marginal distribution for the sensitive variables is not longer required) . Under the 

assumption of strictly increasing marginal cdf for the jth sensitive variables Xj, 

rank( ,
p
i jy )=rank( ,i jy ),  so that in the above procedure in Step 1.b we could set 
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directly 
p Y Y . In addition if the marginal distributions of the nonconfidential 

variables are unknown, Muralidhar and Sarathy (2006) suggest to replace the 

matrix of the transformed nonconfidential variables S
* 

in (5) with an estimate ˆ S  
by approximating the (i, k) element of S

*
 with: 

                           
  1

,
ˆ ( ) 0.5 / ,         1,..., ;    1,...,i ks i n i N k L    

                  
(9) 

where (i) represents the rank order of
 ,i ks , and ,î ks  the (i,k) element of ˆ S .  

 The G-DS algorithm in table 2 (with the simplification and generalizations that 

we discussed above) guarantees that although the shuffling of the original data is 

done according to a joint distribution possibly different from the true joint 

distribution of (X,S),  the shuffling preserves important features of such 

distribution, namely the marginal distributions and the dependence structure (as 

measured by Spearman‟s rho or Kendall‟s tau correlation matrix of the original 

data). This might seem to be a reasonable objective for most practitioners. 

Quoting Joe (1997, p.16),  
 

“My view of multivariate modeling, based on experience with multivariate 

data is that models should try to capture important characteristics, such as 

density shapes for univariate margins and the appropriate dependence 

structure and otherwise be simple as possible”. 
 

In many applications, however, the Spearman‟s rho or Kendall‟s tau correlation 

matrix, constitute only a specific aspect and a partial representation of the 

dependence structure of the original data (both are measures of “concordance”, 

see, for example, Joe 1997, chapter 2).  The nature of dependence can take a 

variety of other forms that the Gaussian copula model is not able to recover and 

that might be of great importance in applications. One of such notion of 

dependence is tail dependence that we discuss next.  

 

3. Tail Dependence 

The following definition formalizes the notion of lower and upper tail dependence 

(see Nelsen 2006, p. 214). Let X and Y be continuous random variables with 

distributions functions F and G respectively. The upper tail dependence 

parameter λU is the limit (if it exists) of the conditional probability that Y is 

greater than the 100α percentile of G given that X is greater than the 100α 

percentile of F as α approaches 1, i.e., 
 

                             λU = limα→1−P(Y >G
−1

(α)|X >F
−1

(α)).                                    (10)                                                                     
 

Similarly the lower tail dependence parameter λL is defined as 
 

                              λL = limα→0+P(Y ≤ G
−1

(α)|X ≤ F
−1

(α)).                                  (11)                                                                      
 

Positive values of λL  (λU ) indicate that the joint distribution of (X,Y) tends to 

generate  joint extreme events in the lower (upper) tails of the marginal 

distributions of X and Y.  The concept of tail dependence has important 

implications in many applications and has been shown to be prevalent in 

economic and actuarial data (see for example, Demarta and McNeil 2004 and 

Frees and Valdez 1998).  
 

It is important to notice that the measures of tail dependence in (10) and (11) are 

copula based, i.e. they only depend on the copula that defines the joint distribution 
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of the data regardless of the margins (see Joe, 1997 p. 33). Not surprisingly 

copulas have been often used to model data in the presence of tail dependence. 

Caillault and Guegan (2005), for example, show that the daily closing level at the 

Thai SET index, Malaysian KLCI index, and the Indonesian JCI index exhibit tail 

dependence which is modeled using t copulas. Patton (2006) shows similar results 

for daily Deutsche mark to U.S. dollar and Japanese Yen to U.S. dollar exchange 

rates. Frees and Valdez (1998) discuss the use of copulas for modeling tail 

dependence for insurance company data on losses and expenses. For imperfect 

correlated variables the Gaussian Copula implies tail independence (i.e. λL=λU=0). 

Thus, any Gaussian copula model, as the model in (4), implicitly assumes that no 

tail dependence is present in the data. This suggests that the G-DS procedure of 

Muralidhar and Sarathy (2006) should be expected to perform poorly and an 

alternative approach should be used in the presence of tail dependence. In the next 

section we present such an alternative based on the t-copula. 

 

4.  Data Shuffling using t Copula 

In this section, we describe the use of the t copula for performing data shuffling to 

maintain tail dependence. Assuming a t-copula model for (X,S) , the cdf of (X,S) 

can be represented as follows: 
 

 1 1 1 1
, 1 1 , 1 1 1 1( ,..., , ,..., ) ( ( )),..., ( ( )), ( ( )),..., ( ( ))M M M M L LF x x s s t t F x t F x t G s t G s    

   X S 

                                                                                                                             (12) 

where ,t   represents the joint cdf of a k-variate Student t distribution with mean 

0, product moment correlation matrix ρ, and ν degrees of freedom and  is the 

quantile function of a univariate t-distribution with  degrees of freedom. The 

Gaussian-copula model in (1), that was used in the G-DS, procedure can be 

obtained as limiting of the t copula model in (12) as     and shares many 

common characteristics with the t copula model. However, they differ on one 

important characteristic, namely, that while the multivariate normal copula model 

is not able to capture the phenomenon of dependence in extreme values, the t 

copula model provides this important ability through the use of the parameter υ. 

For the t-copula model in (12), in fact,  the lower and upper tail dependence 

coefficients (λL and λU) for an arbitrary pair of random variables in  (X,S) are 

given by (see Demarta and McNeil, 2005, p.114): 
 

                
 12 1 1 / 1 ,L U vt           

                        
(13)  

where  is the element of corresponding to the particular pair of random 

variables  considered .  As shown in (13), for a given υ, tail dependence increases 

with ρ; and for a given ρ tail dependence decreases with υ (i.e. smaller values of υ 

indicate higher tail dependence).  As for the Gaussian copula, the scale parameter 

of the t-copula is related to the Kendall‟s tau correlation matrix of (X,S) through 

formula  (3). Thus, also in this case, can be estimated evaluating the Kendall‟s 

tau correlation matrix of the original data and then using (3). The remaining 

parameter υ can be estimated by maximum likelihood with the matrix ρ held fixed 

(see Demarta and McNeil 2005, section 4.2). Denoting by ̂  and ̂  such 

estimates the estimated copula model becomes: 
 



t
1
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 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ, 1 1 , 1 1 1 1

ˆ ( ,..., , ,..., ) ( ( )),..., ( ( )), ( ( )),..., ( ( ))M M M M L LF x x s s t t F x t F x t G s t G s    
   X S 

                                                                                                                             (14) 

Let 
X  and  

S   be random vectors defined as follows,  
 

            

   

   

1 1

1 1
ˆ ˆ

,..., ;         ,..., ;

( ) ,          =1,..., ;           ( ) ,           =1,..., .

M L

j j j k k k

X X S S

X t F X j M S t G S k L 

     

   

 

 

X S
                (15) 

 

Under (14)  the distribution of  is a multivariate Student‟s t with mean 

vector 0, scale matrix ̂ , and ̂  degrees of freedom. In addition, the conditional 

distribution of X
*
 given S

*
= s

*
 is also multivariate Student‟s t with location 

parameter 
. X S

 , scale matrix 
.  

X X S
  and 

.
  X S  

degrees 
 
of freedom,  

 

                                      

 . . .
| ~ , ,t       

  
X S X X S X S

X S s  

                                  

(16) 
 

where (see, for example, Arslan, 2004, proposition 4): 

                          

 
1

. .
ˆ ˆ ˆ;                     ;L        


  

X S X S S S X S
s                               (17)                                                                                                                                   

           
1 11

.
ˆ ˆ ˆ ˆ ˆ ˆ ˆTL             

      
   

      X X S S S X X X S S S S X
s s                 (18) 

and in (18) we used the same partition of ̂  as in (8).  The heuristic 

implementation of the DS procedure that we propose (and that we will refer to as 

t-DS procedure) can be then described as follows: 
 

 

 Step 1.a For each   generate  ,1 ,, ,i i i My y  
y  from the conditional 

distribution of | i
  X S s  in (16) to result in 

Y . 
 

  Step 1.b: For each  
 
and for each j=1,…,M  perform the reverse mapping, 

 1
, ,( )

j

p
i j X i jy t F y

 
 to result in Y

p
. 

  Steps 2 and 3: the same as in the DS procedure in table 1. 

    Table 3 : t-DS-procedure  
 

Following Muralidhar and Sarathy (2006) the algorithm in table 3 can be 

generalized to the case in which the marginal distributions of (X,S) are unknown 

by setting p *Y Y  (thus eliminating Step 1.b) and by replacing  the matrix of the 

transformed nonconfidential variables S
* 

in (15) with an estimate ˆ S  by 

approximating the (i, k) element of S
*
 with:     

                                                                                                                                            

                             1
ˆ,

ˆ ( ) 0.5 / ,            1,..., ;   1,...,i ks t i n i N k L
                       (19) 

where  (i) represents the rank order of
 ,i ks , and ,î ks  the (i,k) element of ˆ S .  

The t-DS procedure discussed above can be thought as an extension of the G-DS 

procedure discussed by Muralidhar and Sarathy (2006). The two, in fact, coincide 

if no tail dependence is present. Both procedures preserve the marginal 

distributions of the original data exactly, and the Kendall‟s tau correlation matrix 

of the original data, asymptotically (as the number of observations tends to 

infinity). The data shuffled using the t copula model provides the additional 

advantage that it allows to model tail dependence as well. In terms of privacy 

protection, the proposed t-DS procedure relies on the same definition of 

disclosure, and the same disclosure scenario as the original G-DS procedure and 



(X,S)

1,...,i N

1,...,i N
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provides the same privacy protection as the original G-DS procedure (for details 

see Muralidhar and Sarathy 2006 and the references therein).  This disclosure risk 

scenario assures that, given S, X and Y are independent. Hence, releasing the 

masked microdata in place of the original data does not result in increased risk of 

disclosure over and above the information available from S and summary 

information. 

 

5.  An Empirical Comparison of Multivariate Normal 
and t copula Shuffling 

In this section, we present the results of a simulation study to compare the 

performance of the proposed t-DS procedure with the performance of the standard 

G-DS procedure discussed by Muralidhar and Sarathy (2006).  In the simulation 

study we consider a bivariate random vector V=(X,S) with standard normal 

marginals. It is assumed that variable X is confidential and variable S is not 

confidential. For the random vector V, twelve distributions are considered.  The 

first six refer to a bivariate t-copula model as in (12) with different values of the t-

copula parameters and   to allow for different degrees of concordance (as 

measured as Kendall‟s tau) and tail dependence. The remaining six distributions 

refer to a bivariate random variable with standard normal margins and a mixture 

copula  , ,w
mixC   given by: 

                         , ,
1 2 1 2 1 2( , ) (1 ) ( , ) ( , )w

mix Ga AC u u w C u u w C u u                                (20) 

 

where  
2

1 2( , )u u  0,1 ,  0<w<1; GaC is a Gaussian copula with correlation 

parameter see Joe, 1997 p.140); and AC  is the (4.2.12)-Archimedean Copula 

discussed in Nelsen 2006 (p. 116), 

                                  
1/

1 1

1 2 1 2( , ) 1/ 1 1 1 .AC u u u u
 

            
                               (21) 

The resulting joint CDF for (X,S) is, 
 

                                     
 , ,

X,S( , ) ( ), ( ) .w
mixF x s C x s                                   (22) 

 

It can be shown that for the model in (22) we have (see p. 215 in Nelsen 2006): 

 1/ 1/2 ;   2 2 .L Uw w        The reason for considering the mixture copula 

model in (22) is that it allows to understand how well the proposed t-DS method 

perform compared to the G-DS method when the copula underlying the actual 

data distribution is not the t copula under which the t-DS procedure is built.  

Different choices of the mixture copula parameters (w) are considered to 

allow for different degree of concordance between X and S, asymmetry in tail 

dependence, and departure from the t-copula model. The parameter vectors for 

each of the twelve distributions in the study with the corresponding lower and 

upper tail dependence coefficients, and the Kendall‟s tau () correlation are 

shown in table 4. For each of the twelve distributions in table 4 we generated 1000 

data sets consisting of N=5000 i.i.d realizations of the underlying random vector 

(X,S).  To each data set both the G-DS and t-DS procedures are then applied. 

Since tail dependence is an asymptotic concept, we compare the performance of 

the two procedures in terms of bias and standard deviation of bias with respect to 

answers to specific queries concerning joint extreme events (joint exceedance 

probabilities). 
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Distribution 
Underlying 

Copula 
Copula parameters L  U  

Kendall’s 

tau3 

1 t-copula 0.05,    =100   168 10  
168 10  0.03 

2 t-copula 0.5,      =100   87 10  87 10  0.33 

3 t-copula 0.05,    =10   0.009 0.009 0.03 

4 t-copula 0.5,      =10   0.082 0.082 0.33 

5 t-copula 0.05,    =1   0.311 0.311 0.03 

6 t-copula 0.4,      =2   0.339 0.339 0.26 

7 , ,w
mixC  0.84,   =1.8,   =0.5     0.340 0.265 

0.01 

8 , ,w
mixC  0.4,       =1.8,   =0.5    0.340 0.265 

0.43 

9 , ,w
mixC  0.84,   =1.3,   =0.6     0.352 0.177 

0.05 

10 , ,w
mixC  0.4,       =1.3,   =0.6    0.352 0.177 

0.39 

11 , ,w
mixC

 0.8,     =1,      =0.7     0.35 0 
0.07 

12 , ,w
mixC

 0.7,     =1,      =0.7    0.35 0 
0.38 

Table 4: Distributions used in the simulations with the corresponding dependence 

measures. 
 

The queries considered were of the type: 
 

Q1,: Find the probability that both variables take values below the    quantile of their 

margins. 
 

Q2,: Find the probability that both variables take values above the(1-  quantile of their 

margins. 
 

with = 0.005, 0.01. Tables 5 summarizes the results of the simulation study. For 

each of the twelve models, in table 5 we report: (i) the average joint exceedance 

probability (AEP) corresponding to the quantile queries Q1,  and Q2,  evaluated 

using the original data; (ii) the ratio between the AEP above and the 

corresponding average probabilities under G-DS and t-DS procedures (ratios that 

we denote by RG-DS and Rt-DS  respectively).  A ratio of 1 indicates that the AEP of 

the masked data is the same as that of original data.  Ratios smaller (larger)  than 1 

indicate over (under) estimation; (iii) the average bias (AB) for  the joint 

exceedance probabilities  under the G-DS and t-DS procedures; and  (iv) the 

standard deviation of the bias (SDB). Since the original exceedance probabilities 

are very small, in order to make the comparisons more meaningful, we have 

provided the value of the actual probabilities × 10
6
 (thus, the true probabilities are 

the values provided in the table multiplied by 10
-6

).  We did the same for the 

average bias and the bias standard deviation. 

From table 5 we observe that, as expected, the t-DS procedure and G-DS 

procedure produce comparable results when no tail dependence is present 

(distributions 1 and 2). On the other hand, in the presence of tail dependence the t-

DS procedure outperforms the G-DS procedure not only when the copula 

underlying the distribution of the original data is the t copula under which the t-

DS procedure is built (distributions 3-6)  but also when the model underlying the 

original data is different from the t-copula model but preserves, at least 

                                                 
3
 The value of Kendall‟s tau for distributions 7-12 in table 4 have been obtained as the average 

Kendall‟s tau over the 1000 simulated data sets.  For distributions 7-12 the simulation was done 

using the simulation algorithm described in exercise 4.15, on p. 134  of Nelsen (2006). 
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approximately, some symmetry in the tail dependence (as it is the case for 

distributions 7-8 for which  the difference between L and U is not “too large”).   

 

Distribution Query AEP RG-DS Rt-DS 
AB 

G-DS 

AB 

t-DS 

SDB 

G-DS 

SDB 

t-DS 

1 
168 10

0.03

L U



 



   
   

 

Q1,  56 1,35 1,31 14 13 140 141 

Q2,  45 1,16 0,97 6 -1 130 134 

Q1,  168 1,2 1,06 28 10 242 248 

Q2, 164 1,22 1,04 30 6 247 243 

2 
87 10

0.33

L U



 



   
   

 

Q1,  531 1,08 1 38 2 392 423 

Q2,  529 1,08 1 37 -2 407 432 

Q1,  1340 1,03 0,98 39 -29 633 646 

Q2, 1369 1,07 1 95 2 648 669 

3 
0.009

0.03

L U



 



  
 

 
 

Q1,  187 4,85 1,04 149 7 208 265 

Q2,  183 5,14 1,03 147 6 202 254 

Q1,  467 3,32 1 327 2 347 409 

Q2, 451 3,27 1 313 0 335 399 

4 
0.082

0.33

L U



 



  
 

 
 

Q1,  888 1,8 1,04 394 31 448 493 

Q2,  861 1,82 0,99 389 -6 454 489 

Q1,  1987 1,57 1,02 725 39 686 699 

Q2, 1946 1,53 0,98 677 -39 688 699 

5 
0.311

0.03

L U



 



  
 

 
 

Q1,  1531 47,24 0,99 1498 -12 431 593 

Q2,  1512 40,65 0,99 1475 -16 438 573 

Q1,  3096 24,42 0,99 2969 -19 630 829 

Q2, 3059 22,8 0,98 2925 -47 631 832 

6 
0.339

0.26

L U



 



  
 

 
 

Q1,  1679 5,88 0,99 1393 -21 493 584 

Q2,  1678 6,04 0,99 1400 -9 493 600 

Q1,  3414 4,34 0,99 2628 -21 731 850 

Q2, 3406 4,37 0,99 2627 -21 724 826 

7 
0.34, 0.26

0.01

L U



 



  
 

 
 

Q1,  1650 71,14 1,15 1627 214 426 575 

Q2,  1292 54,27 0,9 1268 -150 410 567 

Q1,  3365 34,26 1,17 3266 485 627 808 

Q2, 2652 28,03 0,91 2557 -255 602 815 

8 
0.34, 0.26

0.43

L U



 



  
 

 
 

Q1,  1801 2,23 1,1 993 168 514 578 

Q2,  1484 1,86 0,9 688 -160 523 575 

Q1,  3794 1,9 1,11 1802 365 781 841 

Q2, 3109 1,58 0,9 1139 -331 747 835 

9 
0.35, 0.18

0.05

L U



 



  
 

 
 

Q1,  1752 36,49 1,1 1704 159 447 593 

Q2,  911 21,79 0,57 869 -681 377 536 

Q1,  3540 20,44 1,11 3366 341 629 827 

Q2, 1881 10,97 0,58 1709 -1338 558 780 

10 
0.35, 0.18

0.39

L U



 



  
 

 
 

Q1,  1862 2,74 1,64 1183 728 528 562 

Q2,  1020 1,54 0,88 358 -141 502 505 

Q1,  3861 2,29 1,54 2174 1362 788 790 

Q2, 2184 1,29 0,86 487 -361 711 745 

11 
0.35, 0

0.07

L U



 



  
 

 

 

Q1,  1761 35,64 1,61 1711 667 447 578 

Q2,  36 0,64 0,03 -20 -1059 128 385 

Q1,  3517 18,35 1,59 3325 1304 640 777 

Q2, 144 0,76 0,07 -45 -2067 252 550 

12 
0.35, 0

0.38

L U



 



  
 

 

 

Q1,  2078 3,29 2,1 1447 1089 530 563 

Q2,  384 0,6 0,39 -260 -602 395 437 

Q1,  4304 2,67 1,94 2694 2085 769 783 

Q2, 925 0,57 0,42 -688 -1297 593 643 

Table 5: Exceedance probabilities for original, G-DS and t-DS shuffled data. 
 

 

In all these cases (distributions 1-8) the joint exceedance probability 

corresponding to the quantile queries Q1,  and Q2,  evaluated using the original 

data and the t-DS data are very similar (i.e.  the ratio Rt-DS in table 5 is very close 

to one) while the G-DS procedure seriously  underestimates the actual exceedance 

probabilities if tail dependence is present (distributions 3-8).   
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The G-DS underestimation is particularly severe when the Kendall‟s tau 

correlation of the original data is small (see distributions 3, 5, 7).  That also should 

be expected, since under the Gaussian copula model, low Kendall‟s tau 

correlation is almost equivalent to independence. Consequently, the G-DS 

procedure shuffles the original variables as if they were independent thereby 

losing the dependence on the tails of the joint distribution. For distributions 5 and 

7, characterized by tail dependence and low Kendall‟s tau correlation, the G-DS 

procedure, on average, underestimates the actual exceedance probabilities by a 

factor that ranges between 22 and 71 (22.8<RG-DS <71.14) while the t-DS 

procedure provides values of the Rt-DS ratio very close to 1.  To better understand 

the consequences of such underestimation suppose that the variables (X,S) in the 

simulation study represent two types of insurance claims  and that the distribution 

of (X,S) is distribution 7 (for a real data example where t copula is a suitable 

model for insurance claims see for example Resti et al. 2010). The estimated 

probability that on any day the two claims would follow above the 99.5%  

percentile of their margins (evaluated as the average of the query Q2 over 1000 

simulations) would be of 0.00129 for the original data, 0.00002 for the G-DS data 

and 0.00143 for the t-DS data. The differences in the responses have important 

practical consequences. The above results can be stated in the form of the query 
 

Find how often in the long run both claims follow above the 99.5% percentile of their 

margins. 
  

According to the original data based on the above results, the response to this 

query would be “once every 2.1 years” , the  response using the t-DS data would 

be “once every 1.90 years” (quite close to the “true” value), while the response 

using the G-DS data would be “once every 115 years”. Thus, with the DS shuffled 

data we would conclude that this event is 54.27 times less likely which would 

have significant consequences in decisions made using this data. 
 

 Also as expected the performance of the t-DS procedure deteriorates when we 

move to the asymmetric tail dependence case (L very different than U). We 

observe, for example, that for distributions 7-8 that show a moderate asymmetry 

in tail dependence, the t-DS procedure performs quite reasonably. However for 

more asymmetric distributions (as 9-12) the t-DS procedure performs poorly. For 

distributions 9-12 which exhibits lower tail dependence but negligible upper tail 

dependence, the t-DS procedure underestimates the probabilities that both 

variables take values below the  quantile of their margins up to a factor of 2.1 

(query Q1) and overestimates the upper tail dependence probabilities that both 

variables take values above the 1-  quantile of their margins (query Q2) up to a 

factor of 33.  The symmetry implied by the t-copula when asymmetry is present 

leads to symmetry in the answers to queries Qiiunder the t-DS procedure. 

The (lower and upper) tail dependence implied by t-DS procedure is “an average” 

of the lower and upper tail dependence in the data. When these two are very 

different the estimated tail dependence under the t-DS model is an incorrect 

representation of both (as it is the case for distributions 9-12).  
 

 

In addition to the exceedance probabilities we also looked at higher order 

moments. In table 6 we report the average of the measures of multivariate 

skewness and kurtosis defined by Mardia et al. (1979, p.21) evaluated using the 

original data (and labeled as Ab1 and Ab2 respectively). The ratio between  Abi 

(i=1,2)  and the corresponding value evaluated using the G-DS and t-DS shuffled 

data (ratios that we denote by Rbi)  are also reported in table 6, together with the 
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average biases (ABb1 and ABb2) and standard deviation of the bias  for the two 

procedures  (SDBb1 and SDBb2).  

 

Distribution 1 2 3 4 5 6 7 8 9 10 11 12 
Ab1 original 0 0 0,01 0,01 0,01 0,01 0,02 0,01 0,05 0,05 0,23 0,28 

Rb1 G-DS 1,01 0,92 1,19 1,23 2,64 2,95 3,47 2,35 9,85 10,29 50,1 52,4 

Rb1 t-DS 0,99 0,91 1,01 0,95 1,57 1,29 2,02 1,26 6 7,59 30,04 44,26 
ABb1   G-DS 0,04 -0,41 0,94 1,19 7,71 9,87 12,05 7,11 42,92 48,15 226,58 272,11 

ABb1   t-DS -0,03 -0,46 0,05 -0,32 4,52 3,36 8,54 2,52 39,8 46,31 223,5 271,14 
SDBb1 G-DS 3,45 4,07 4,27 4,78 10,11 14,79 14,65 8,61 25,29 17,55 42,99 36,73 

SDBb1  t-DS 3,44 3,78 5,03 6,21 11,09 17,54 15,47 11,33 25,84 17,73 43,45 37,02 
Ab2 original 8 8 8,4 8,5 10,9 10,6 10,9 8,9 10,5 8,5 9,6 8,5 

Rb2 G-DS 1,01 1 1,05 1,06 1,36 1,32 1,37 1,12 1,32 1,06 1,21 1,06 
Rb2 t-DS 1 1 1 1 1 1 1,01 0,96 0,97 0,99 0,97 1,01 

ABb2   G-DS 0 0 0,4 0,5 2,9 2,6 3 0,9 2,5 0,5 1,7 0,5 
ABb2   t-DS 0 0 0 0 0 0 0,1 -0,3 -0,4 -0,1 -0,3 0,1 

SDBb2 G-DS 0,1 0,1 0,1 0,1 0,1 0,3 0,1 0,1 0,1 0,1 0,1 0,1 

SDBb2  t-DS 0,1 0,1 0,1 0,2 0,1 0,4 0,1 0,3 0,1 0,2 0,1 0,2 

Table 6:Skewness and Kurtosis for original, G-DS and t-DS shuffled data. 
 

Again we observe that G-DS and t-DS procedure performs equally well when no 

tail dependence is present (distributions 1 and 2); t-DS outperforms G-DS in the 

presence of tail dependence and null or moderate departure from symmetry in the 

tail dependence coefficients (distributions 3-8). However, both t-DS and G-DS 

perform poorly when the distribution underlying the original data (distributions 9-

12)  has very different lower and upper tail dependence  (distributions 9-12). 

 

6. Conclusions 

The objective of this paper is to provide an alternative data shuffling method in 

the presence of tail dependence. The original data shuffling procedure was based 

on multivariate normal copulas and is not capable of maintaining tail dependence. 

The alternative data shuffling procedure (t-DS) presented in this paper that is 

based on t copulas has all the same characteristics as the original DS procedure 

but provides the additional advantage that it allows to model tail dependence as 

well, when the tail dependence has none to moderate asymmetry. The proposed 

new method might have important applications in disclosure limitation problems 

where dissemination of economic or actuarial data (for which tail dependence is a 

characteristic that often plays an important role in decision making) is the primary 

concern.  
 

There are some disadvantages to using the t-DS procedure. First, tail dependence 

in the t-DS method is based on the single parameter ν and consequently all 

relationships are modeled using this single parameter. For some data, the degree 

of tail dependence may vary across the variables. In such cases, alternative 

methods for modeling the data will need to be devised. Second, the t-DS approach 

(or for that matter, all elliptical copulas based approaches) assumes that tail 

dependence is symmetric. In data sets where tail dependence is not symmetric, it 

may be necessary to consider alternative models as well (as we showed in section 

5). These offer avenues for future research. Recent works on asymmetric copulas 

(Leibscher 2008) or grouped t copulas (Demarta and McNeil 2005) may provide a 

direction in this regard. 
 

The general copula family also offers several avenues for future research in this 

area. Our discussion in this paper has been limited to continuous numerical data. 

For categorical data, existing masking methods that preserve margins (especially 
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those related to log-linear models), seem the natural alternative to the copula 

approach (see Fienberg and Slavkovic 2008 for an extensive discussion). For the 

general case of mixed data (binary, ordinal, and continuous) a copula approach 

based on the method of semiparametric inference for copula models via the 

extended rank likelihood (see Hoff  2007) is a promising tool for data masking 

and would be an interesting extension of the t-DS procedure to diverse data types. 
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