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Abstract—this paper proposes a MIMO linear quadratic 
regulator (LQR) controller designed for a horizontal variable 
speed wind turbine with focus on the operating range referring 
to the above rated wind speeds. The operating conditions of 
wind turbines make them subject to fluctuating loads that 
create fatigue and lead to damage. Alleviating these loads would 
reduce the needed materials, and increase the lifespan and the 
quality of the produced energy. The optimality of the entire 
system is defined in relation with the trade-off between the 
wind energy conversion maximization and the minimization of 
the fatigue in the mechanical structure. The solution of a 
control using an LQR regulator is presented. The performances 
of the optimal control are assessed and discussed by means of a 
set of simulations.   

I. INTRODUCTION 

 Classical control system design is generally a trial and 
error process in which various methods of analysis are 
iteratively used to determine the design parameters of a 
system. Acceptable performance is generally defined in 
terms of time and frequency domain criteria such as rise 
time, settling time, overshoot, gain and phase margin and 
bandwidth. 

Radically different performance criteria must be satisfied, 
however, by the complex, multiple inputs, and multiple 
outputs systems required to meet the demands of modern 
technology. 

The objective of optimal control theory is to determine the 
control signals that will cause a process to satisfy the 
physical constraints and at the same time to minimize or 
maximize some performance criterion. [1] 

The wind industry offers many challenges in designing 
effective wind turbines that will harness wind energy and 
will transform it into electricity. Wind turbines are large, 
complex dynamically flexible structures that operate in 
turbulent and unpredictable environmental conditions where 
efficiency and reliability are highly dependent upon a well 
designed control strategy. 

From a control point of view, the importance lies not only 
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on ensuring an optimal operation, but also on load reduction 
and grid integration. Another important challenge is to 
provide good quality energy delivery from a profoundly 
irregular primary source, the wind.  

The characteristics of the wind energy source are 
important in different aspects regarding wind energy 
exploitation. The energy available in the wind varies with the 
cube of the wind speed. The wind is variable both in space 
and in time [2]. 

Based on the value of the wind speed, there were two 
essential functioning regimes identified for the wind 
turbines. The first one corresponds to low wind operation, 
and here the main control goal is to maximize the energy 
capture.  

This region ends when the wind’s speed reaches the “rated 
value”, above which, the turbine enters the second regime. 
This value is usually around 14m/s.  

In the above rated region, the pitch angle and the 
electromagnetic torque are the control variables that are used 
to reduce the structural loads and to maintain the output 
power around a constant nominal value, also called the rated 
power of the turbine (Fig. 1). 

 
Fig.1 Tipical wind turbine power curve 

 

Therefore, in this regime, the system is multivariable and 
multi-objective. Many applications used classical controls to 
address more than one control objective, by adding multiple 
control loops.  

These added complexity to the control design and 
system’s behavior but, nevertheless, it was difficult to 
properly address control-structure interaction issues because 
the controller used only a single measured turbine output as 
the basis of its control and did not have direct knowledge of 
the dynamics of the turbine.  Modern control designs using 
state space methods, can handle these issues in a better way, 
since the controllers in these cases use a model to determine 
the system’s states. Controllers can be designed not only to 
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maximize power or to regulate the turbine’s speed, but also 
to add damping to its flexible modes, through state feedback 
[3]. In the same context, the LQR regulator, proved to be a 
good solution due to the fact that it facilitates multivariable 
and multi-objective control design.  

The paper is organized as follows: after a short 
introduction and the presentation of the context in which the 
LQR controller was chosen, one continues with Section II in 
which the mathematical model of the turbine is presented in 
detail. Section III provides a description of the LQR control 
method and Section IV presents the analysis of the results 
and the concluding remarks of this study. In the end of the 
paper, an APPENDIX with the numerical values of the wind 
turbine’s parameters used is provided. 

II.  MATHEMATICAL  MODEL 

 
At present, there are several variable speed wind turbine 

configurations that are being widely used. For this study, a 
horizontal variable speed wind turbine was chosen. The 
variable speed wind turbine is currently the most used 
technology and it has proven its advantages over the years 
[4]. The major advantage is that by allowing the rotor to 
operate at various speeds, one can obtain a more efficient 
capture of the wind energy with less stress in the turbine 
drive train during wind gusts. The reader can find different 
wind turbine modeling techniques in [2] and also detailed 
explanations regarding the use of each type of model.  

Generally, a model for an entire wind energy conversion 
system can be structured as several interconnected subsystem 
models: an aerodynamic, a mechanical, electrical and 
actuator subsystems. But since the dominant dynamics lie in 
the mechanical subsystem, special attention will be paid in 
this direction. The mechanical structure that we chose to 
study is seen as being arranged into several rigid bodies 
linked by flexible joints. The amount of these joints or 
degrees of freedom, determines the order of the model.  

In [5] [6] and [3] one can observe the way in which the 
number of degrees of freedom of the system can increase the 
order of the non linear models of the turbine. Therefore, it is 
important to consider on the model just those degrees of 
freedom that are directly coupled to the control [4]. 

By this reason, the model presented here, will include just 
the first mode of the drive train, the first mode of tower 
bending dynamics, and the first mode of the flapping of the 
blades. These degrees of freedom will suffice for the 
controller design that will be presented (Fig. 2). The drive 
train is modeled as a two rigid bodies linked by a flexible 
shaft (Fig. 3). Also it was supposed that the two blades move 
in unison and support the same forces. 

In order to compute the model, we have started from a 
theory that states that a mechanical system of arbitrary 
complexity can be described by the equation of motion: 

 
Fig. 2 The mechanical structure of the wind turbine 
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where M, C and K,  are the mass, damping and the stiffness 
matrices, Q is the vector of forces acting on the system, and 
qi is the generalized coordinate. For our model, the 
generalized coordinates are: ),,,,( 21 TGT yq ζζωω==== , where 

ωT is the angular speed of the rotor, ωG stands for the angular 
speed of the generator, ζ1 and ζ2 are the flaps of the blades, 
while yT represents the horizontal movement of the tower 
(Fig. 2). 

 
Fig. 3 The two mass model representation of the drive train 

 
Since the thrust forces acting on the blades are equal, it is 

naturally to consider ζ1 = ζ2= ζ and Faero1 = Faero2 = Faero, 
which transforms q into ),,,( TGT yq ζωω==== . In the same 

time, one can find Q as being:  
)2,,,( aeroaeroemaero FFCCQ ⋅⋅⋅⋅−−−−====                                        (2) 

The considered forces that are acting on the system are: 
Caero, the aerodynamic torque, Cem, the electromagnetic 
torque, and Faero, representing the thrust. The aerodynamic 
torque and the force acting on the entire rotor are expressed 
in terms of non-dimensional power coefficient CP and thrust 
coefficient CT respectively, as follows 
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where ρ represents the air density, R is the blade radius, and 



  

v is the average speed of the wind.  
The power coefficient is one of the most important 

parameters of the wind turbine because it offers information 
upon the efficiency of the turbine, it helps defining the 
control objectives in the below rated regime and also it 
characterizes the aerodynamic torque that moves the 
turbine’s rotor. The power and the thrust coefficients can be 
expressed in a polynomial form, and depend on two 
parameters which are the tip speed ratio λ and the pitch angle 
β of the blades. 

In order to derive the mathematical model, one has used 
the Lagrange equation that offers a systematic procedure to 
calculate such models 
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Here, Ec, Ed, and Ep denote the kinetic, dissipated and 
potential energies. After a few calculations, applied for our 
system, one obtains 
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These energies were calculated under the supposition that 
the generalized force that acts on the rotor is applied on a 
point situated at the distance rP on each blade from the hub 
of the rotor (Fig. 2). In the above equations, JT and JG 
represent the rotor and the generator moments of inertia, MT 
and MP are the masses of the tower and of the blade, dP, dA 
and dT represent the damping coefficients for the blade, drive 
shaft and tower. Similarly, kP, kA and kT stand for the spring 
coefficients of the blade, drive shaft and tower. ΘT and ΘG 
are the angular positions of the rotor and generator. 

The interconnection of the models of different plant 
subsystems, leads to a global highly non linear system, 
mainly because of the expressions of the aerodynamic torque 
and of the thrust force, both given in (3). 

For control design purposes, we linearized the model 
around an operating point Sop 
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Besides these equations, in order to interconnect the 
models of the individual subsystems, one must include into 

the model, the pitch controller. This was modeled here as a 
first degree order system [7]: 

sTref ⋅+
=

ββ
β

1

1
, where βref is the desired pitch angle 

and β is the actual pitch angle of the blades. 
We have taken into consideration the fact that the pitch 

servomotor has some physical limitations, and we have 
modeled them by including into our model one saturation in 
the position and one in the speed. For this study we have 
supposed that the saturation values in position are -45˚ and 
45˚, and that the servomotor does not exceed the speed of 
10˚ /s. In Fig. 4 one can observe the way the pitch 
servomotor’s dynamics were modeled. 

 
Fig. 4 The pitch servomotor dynamics modeling 

After combining all these equations, one can put (4) into 
the into the classical state-space representation 
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in which   mv represents a perturbation acting on the system, 
and from a physical point of view it models the eventual 
wind gusts that appear. 
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The system is multivariable; there have been identified 
three inputs and four outputs (Fig. 5). As shown in this 
control scheme, the input variables of the system are 
considered: vm the average value of the wind speed, and the 
two control variables: the pitch angle, β, and the 
electromagnetic torque Cem.  

Here, we have considered the state vector 
T

TGTTGT
T vyyx ),,,,,,,,( βζωωζθθ �−−−−==== , the output of 

the system y = (P_el, ωT, ζ, yT), and the command signal u = 
(β, Cem). The first component of the output vector represents 
the electrical power generated by the turbine. It can be 



  

computed as emG C P_el ⋅⋅⋅⋅====ω  but in this paper, its 

normalized value was used. 

 
Fig.5 The block scheme of the controlled system 

The other output variables that we are interested in are ωT 
because the goal is to try to maintain it constant to its 
nominal value, no matter the changes that appear in the 
environment, the flap mode of the blades ζ  and of the tower 
yT respectively, because, it is desired that these variables be 
as much as possible.  

The two available control variables are the pitch angle and 
the electromagnetic torque. The numeric values of the wind 
turbine’s parameters can be found in the APPENDIX, at the 
end of the paper. 

 
III. GENERAL PROCEDURE OF THE LINEAR 

QUADRATIC CONTROLLER DESIGN 
 
As previously said, there is a large variety of control 

techniques that were applied to wind turbines in a permanent 
attempt to improve their functioning and to benefit as much 
as possible from the energy that they can produce. In 
literature, one can find proposed solutions for mono-variable 
systems as well as for multi-variable ones.  

In [8], for instance, one can find a compared study made 
upon the simulation results obtained with three controllers: a 
classical PID regulator, a full state feedback and a fuzzy 
controller. The author’s conclusion is that the PID controller 
ensures good performances with power regulation but not 
with reducing the structure’s mechanical loads. In the same 
time, the full-state feedback controller manages to reduce 
these loads even under turbulent conditions.  

The idea of conveniently sizing a trade-off between energy 
efficiency and increasing the lifetime of the wind turbines by 
alleviating fatigue loads is continuously being paid special 
attention, even when employing controllers like PI or PID. 
However, these approaches do not allow a rigorous control 
design in order to perform a fine tuning of the trade-off 
between the energy performance and the reliability demands 
[9].  

These aspects, together with its design simplicity and the 
advantages it could bring, lead us to the idea of choosing a 
state feedback linear quadratic controller (LQR) for this 
study. 

For its design, one imposes a quadratic cost function 
defined as 
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The feedback control law that minimizes the value of this 

cost is given by: 
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while Kr is being defined by: 
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This matrix ensures the reference input is scaled in order 
to become equal to the feedback signal provided by the LQR 
regulator. This algorithm guaranties that no matter, any two 
symmetric and positive definite matrixes Q and R that we 
chose in order to minimize the quadratic criteria, there is 
always a matrix Pc, also symmetric and positive definite, that 
represents the solution of the Ricatti equation (10). 

Through this criterion, by replacing the variables y and u 
by the corresponding vectors presented in Section 2, one 
tries to minimize the flap mode of the blades and the tower 
oscillation respectively, maintain the electrical power level 
and the angular speed of the rotor at the desired levels while 
computing the appropriate command. 

The typical rule for choosing the weighting matrixes R 
and Q is the Bryson’s rule, which states that these matrixes 
should be selected as diagonal with the non-zero elements 
scaled so that the variables that appear in the optimization 
criterion have a maximum value of one [10] [11] [12]. 

 This is important especially for the situations when the 
units used for the different components of the command and 
state vectors are numerically very different from each other. 
This is also our case, in the command vector, for instance, 
the pitch angle and the electromagnetic torque have different 
order of degree units.  

Although Bryson’s rule gives good results, often it is just a 
starting point of a trial and error procedure of choosing these 
matrixes, in order to obtain the desirable properties for the 
closed loop system.  Weights reflect the relative importance 
given to the state with respect to the control effort.  

Therefore, for our system, if one chooses large values for 
Q compared to the values in R, one gives a higher 
importance on the minimization of the mechanical weights 
and a lower importance to the command effort [13] [14].  

IV.  RESULTS 

The simulations were done using MATLAB/SIMULINK 
software and the results proved good performances. The 
chosen operating point for the linearization of the system 
corresponds to the average value of the wind speed of 18m/s. 

In Fig. 6 one can see the scheme that was used for the 
simulation.  

The two reference variables, for the normalized electrical 
power P_el_ref and for the angular rotor speed ωT_ref 

respectively, were chosen as constants with the appropriate 
values because the goal is to minimize the variations of the 
electrical power extracted around the nominal value of the 



  

generator and we also want to keep the rotor speed constant. 
 

 
Fig. 6 The simulation of the system with LQR regulator 

The weighting matrices mentioned in (9) and used for 
these simulations are 

R = I, 
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These values were chosen using the methods mentioned 
above and also based on the fact that they provided very 
good performance of the system in terms of achieving good 
responses and not very strong control actions. 

The cost function was written in the following form: 

∫∫∫∫
∞∞∞∞

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅++++⋅⋅⋅⋅⋅⋅⋅⋅++++⋅⋅⋅⋅⋅⋅⋅⋅====
0

11 )2( uSxuRuxQxJ TTT , where 

111 CQCQ T ⋅⋅⋅⋅⋅⋅⋅⋅==== , 111 DQDRR T ⋅⋅⋅⋅⋅⋅⋅⋅++++==== , 11 DQCS T ⋅⋅⋅⋅⋅⋅⋅⋅==== , 

and the matrices C1 and D1 being the truncated blocks from 
the system matrices C and D. These matrices contain the 
lines and columns from C and D corresponding to the control 
variables Cem and β.  

The system is controllable and it does not contain 
unobservable modes. One important property of LQ 
regulators is that provided these conditions, they guarantee 
nominally stable closed loop systems. 

In Fig. 7-10, one can see the results obtained in 
simulation.  

 

Fig. 7 The normalized electrical output power of the turbine 

 
Fig. 8 The variation of the angular speed of the rotor 

 
Fig. 9 The tower bending movement in the direction of the nacelle 

 
Fig. 10 The variation of the first flap mode of the blades 

It can be observed that the electrical output power and the 
angular speed of the rotor manage to follow the reference 
and to maintain their nominal imposed values. 

In the same time, the variables that were meant to be 
minimized, namely the first flap mode of the blades and the 
bending of the tower, have extremely small values. The 
blades have a deviation of about 5mm while the tower has an 
insignificant movement on the horizontal direction. 

APPENDIX 

THE NUMERICAL VALUES OF THE WIND TURBINE 

PARAMETERS 

Symbol Physical measure Value 

Jt Turbine inertia 214 000 Kg 
* m2 



  

Jg Generator inertia 41 Kg * m2 
MT Tower and nacelle mass 35000 kg 
Mp Blade mass 3000 kg 
kP Blade Stiffness Coefficient 1000 Kg * 

m2/s2 
kT Tower Stiffness Coefficient 8500 Kg * 

m/s2 
kA Drive Shaft Stiffness 

Coefficient 
11000 Kg * 

m2/s2 
dP Blade Damping coefficient 10 000 Kg * 

m2/s 
dT Tower Damping coefficient 50 000 Kg * 

m/s 
dA Drive shaft damping 

coefficient 
60 000 Kg * 

m2/s 

rP Distance from the rotor hub 8 m 
N Number of blades 2 
D The rotor diameter 34 m 
Pn Nominal Power 400 kW 
�nom Nominal rotor speed 4 rad/s 

h Tower height  47 m 
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