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Abstract: The emission of a quantum cascade laser can be synchronized to 

the repetition rate of a femtosecond laser through the use of coherent 

injection seeding. This synchronization defines a sampling coherence 

between the terahertz laser emission and the femtosecond laser which 

enables coherent field detection. In this letter the sampling coherence is 

measured in the time-domain through the use of coherent and incoherent 

detection. For large seed amplitudes the emission is synchronized, while for 

small seed amplitudes the emission is non-synchronized. For intermediate 

seed amplitudes the emission exhibits a partial sampling coherence that is 

time-dependent. 
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1. Introduction  

A femtosecond laser pulse can measure (or sample) the phase-resolved value of a 

terahertz (THz) electric field by using techniques such as photo-conductive sampling [1,2], 

electro-optic detection [3,4], and air-plasma sampling [5]. The sampling of THz fields with 

femtosecond pulses is often referred to as coherent detection in the literature [6], and depends 

on the absence of timing jitter (i.e. prefect synchronization between the THz pulses and the 

femtosecond pulses). If the femtosecond and THz pulses are synchronized with respect to 

each other, a large number of sampling events can be summed coherently without adding 

different phase values. Time-resolved measurements of the THz fields can be achieved by 

changing the delay time between the femtosecond and the THz pulse with an optical delay 

line. By transforming the field into the frequency domain, the spectral amplitude and phase 

can be recovered. As a result THz time-domain spectroscopy (TDS) is a widely used 

technique to investigate phenomena at THz frequencies [7].  

In contrast, if the THz pulses are not synchronized with the femtosecond laser, successive 

femtosecond pulses will sample different parts of the successive THz pulses, and the sum of a 

large number of sampling events will approach zero. The standard deviation of non-

synchronous sampling events can be significant; this can enable frequency information to be 

retrieved [8]. And if the THz field and signal are strong enough, single shot phase-resolved 

measurements can also be made [9]. However, in typical experimental arrangements, a large 

number of sampling events takes place, and this prevents phase-resolved detection of non-

synchronized THz signals. The inability to detect non-synchronized radiation can be an 

advantage when a strong background signal must be removed [10]. For example coherent THz 

detection can be used to probe the gain [11-13] of THz quantum cascade lasers (QCLs) [14] 

without detecting the non-synchronized laser emission of the QCL.   

Sampling coherence can be defined as the correlation (i.e. synchronization) between the 

THz pulse and the sampling femtosecond pulses which permits coherent detection. 



Traditionally THz sources have exhibited either complete sampling coherence (e.g. THz 

femtosecond based sources) or incomplete sampling coherence (e.g. thermal sources). 

However, recently, THz QCLs were synchronized to femtosecond lasers using coherent 

injection seeding [15] and a feedback stabilization/injection locking scheme [16]. This 

enabled coherent detection of the phase-resolved emission from a QCL in the time domain 

and presents the possibility of using QCLs as sources for THz TDS. Although QCLs are 

sources of bright, narrow-band THz radiation, QCLs can also be designed with ultra-large 

gain bandwidths [17] and mode-locked for short pulse formation [16, 18]. However, in 

contrast to other THz sources QCLs may exhibit partial sampling coherence, in addition to 

complete and incomplete sampling coherence. If QCLs are to realize their full potential as 

synchronized THz sources, diagnostic measurements of the sampling coherence must be 

developed preferably in the time-domain.  

In this letter, we measure the degree of sampling coherence between a QCL and a 

femtosecond laser. (The femtosecond laser triggers coherent THz pulses that injection seed 

the QCL.) The sampling coherence is measured by using electro-optic sampling in two 

different configuration geometries to record the synchronized THz field component and the 

envelope of the instantaneous THz intensity (which includes both synchronized and non-

synchronized components). This permits the sampling coherence to be measured on 

picosecond time scales.  

2. Synchronized field measurements in the quarter wave geometry 

The QCL is based on a bound-to-continuum design with a single plasmon waveguide (length 

2.85mm) that shows laser action at 2.5THz. All measurements are taken at 10K. THz seed 

pulses are generated by illuminating an inter-digitated photoconductive antenna [19] with 

femtosecond laser pulses. An RF pulse is produced by illuminating a fast photodetector with a 

portion of the femtosecond laser beam. The RF pulses are subsequently amplified with a GaN 

power amplifier (with a nominal bandwidth of 20MHz-6GHz, and a saturation power of 10W) 

before they are sent to the QCL. The THz seed pulse is coupled into the QCL cavity while an 

RF electrical pulse drives the QCL bias above threshold as shown in fig. 1(a). This places the 

QCL in a transitory state where the gain can be greater than the losses and large amplification 

can occur [20].  Both the QCL spontaneous emission and the injected THz seed pulse are 

amplified until the internal THz field is strong enough to saturate the QCL gain and clamp it 

to the total losses. Since the THz seed is phase-locked to the femtosecond laser, emission 

originating from the THz seed is synchronized and can be detected in the quarter-wave 

geometry. In contrast emission originating from amplified spontaneous emission (ASE) in the 

QCL has a random phase, and cannot be detected in the quarter-wave geometry since it is not 

synchronized to the femtosecond laser. 

     The synchronized field measured in the quarter-wave geometry [4] is shown in fig. 1(c).  

The THz seed pulses undergo multiple passes through the QCL cavity, which correspond to 

reflections of the THz pulse at the ends of the cavity. Initially the pulses are amplified as the 

RF pulse turns on the QCL. After ~150ps the amplitude of the THz output pulses (at the 

cavity round-trip time of ~70ps) are more or less constant, and remains so for ~400ps which 

corresponds to the duration of the RF pulse as shown in fig. 1(b). (Besides the primary seed 

pulse at ~0ps which occur at the round-trip time, secondary seed pulses arises from reflections 

in the photoconductive antenna substrate. Without the secondary seed pulses the QCL 

emission would only consist of the primary pulses separated by the round-trip time [21].)  

     Figure 1d shows the amplitude of the fourth, fifth, sixth and seventh THz pulses as a 

function of the antenna bias voltage, which is proportional to the amplitude of the THz input 

pulse [15]. The amplitude of the THz output pulse saturates as the amplitude of the input THz 

seed pulse increases. This implies that the amplified seed pulse (generated with an antenna 

bias of 4.0V) in fig. 1(c) saturates the QCL gain, and indicates any non-synchronized field 

component in fig. 1(c) is small at the fourth, fifth, sixth, and seventh round-trip times. 



However, at other times between the round trip pulses such as 341.5ps, which is shown in fig. 

1(e), no synchronized field is present. Incoherent measurements of the intensity-envelope in 

the cross-polarizer geometry are then necessary to determine if a non-synchronized field 

component is present.   

Fig. 1 a) RF pulses bias the QCL along with a quasi-DC bias added with a bias tee (BT). THz 

seed pulses (generated from a photoconductive antenna [PC]) are coupled into a facet of the 

QCL. The output from the opposite facet is focused onto a ZnTe crystal for electro-optic 

detection, which takes place in either a quarter-wave geometry with a λ/4 wave-plate and 

Wollaston prism (W), or a cross-polarizer geometry with an analyzer (A). The detection 

geometry can be changed by moving a mirror on a translation stage. b) The RF pulse measured 

with a pick-off tee (PT). The zero position is approximate and cannot be calibrated with the 

zero position of the femtosecond delay line. c) The synchronized THz field of the injection 

seeded QCL measured in the quarter-wave geometry. A quasi-DC bias of (1.91V, 70 A/cm2) is 

applied to the QCL, which is significantly less than the threshold bias (3.21V, 125 A/cm2) and 

the maximum QCL power bias (3.63V, 157 A/cm2). A 6W RF pulse, which experiences a 

significant reflection from the impedance mismatch of the QCL, drives the QCL above 

threshold to roughly the maximum QCL power bias. The photoconductive antenna is biased at 

4V. d) Maximum peak-to-peak (p-p) THz field of the fourth, fifth, sixth, and seventh round-trip 

pulses in c) as a function of the THz antenna bias voltage, which is proportional to the seed 

amplitude). e) A portion of part c, for which the synchronized THz field approaches zero. 

 3. Measurement of the total emission of the QCL in the cross polarizer geometry 

Electro-optic sampling in the cross-polarizer geometry has an intensity response that can be 

used to measure the power emission of a non-synchronized QCL [22, 23]. However detection 
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in the cross-polarizer geometry also contains a strong amplitude response that is typically 

much greater than the intensity response [24]. In this work the coherent response is 

completely removed from the cross polarizer signal by using a fast scan and antenna 

modulation technique described in the Appendix. This allows the instantaneous intensity-

envelope of the QCL emission to be measured even in the presence of a strong synchronized 

THz field which would normally dominate the signal of the cross-polarizer measurement. 

Fig. 2 The mean square (MS) field-envelope of the total emission (synchronized and non-

synchronized) of the QCL measured in the cross-polarizer geometry in the absence of a THz 

seed pulse a) and with a THz seed pulse b). For part b) an antenna bias of 4.0V is used to 

generate the seed. c) The square of the phase-resolved synchronized field measured in the 

quarter-wave geometry, with a 4.0V THz antenna bias. The time scale is too large to discern 

the individual field oscillations. (The MS field envelope is half the maximum value of the 

squared field.) For all graphs the RF power is 6W, and the quasi-DC bias is 1.91V-70 A/cm2. 

When the RF pulse is applied in the absence of the THz seed in fig. 2(a); lasing action is 

initiated by ASE; all phase information is lost; and only the mean square of the envelope of 

the field (MS field-envelope) is constant from pulse to pulse. The shape of the MS field-

envelope when the QCL is seeded, which is shown in fig 2(b), is considerably different from 

when the QCL is not seeded. In fig. 2(b) laser action is initiated by the THz seed pulse, and 

QCL emission begins at a significantly earlier time due to the large amplitude of the initial 

seed pulse. In contrast to the non-seeded emission in fig. 2(a), the seeded emission in fig. 2(b) 

consists of several peaks separated by the round-trip time. The maximum field of the seeded 

emission is 2.6 times larger than that of the non-seeded emission. The peaks of the 

synchronized field in fig. 2(c), which are obtained from the data in fig. 1(c), correspond 

perfectly with peaks of the MS field-envelope in fig. 2(b) which indicates that a significant 

portion of the QCL emission is synchronized to the femtosecond laser.  
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4. Measuring the sampling coherence in the time-domain 

For coherent detection in the quarter-wave geometry the sampled field, Es(τ), can be 

expressed as the cross-correlation between the envelope of the femtosecond laser power, 

P�� �t � τ�,  and the actual THz electric field, ETHz(t) as  

 

LT L
fs

s fs THz

n=0fs fs0

1

J L

P (t-τ)
E (t) P (t-τ)E (t)dt   ;  δ(t-nT).

J

 
= ≈ 
 

∑∫  (1) 

In eq. (1) τ is the time delay introduced by the optical delay line, t is the laboratory time, T is 

the period of the femtosecond pulses, 
fsJ is average integrated energy of each laser pulse, n is 

an integer, and L is the number of femtosecond pulses in the measurement, which is typically 

a very large number. If the duration of the laser pulse is much less than the period of the THz 

wave, the laser pulses can be approximated as a train of dirac delta functions. Eq. (1) assumes 

ideal electro-optic sampling and does not take account of phase matching, absorption, or any 

frequency dependence of the electro-optic coefficient. If the THz field is not correlated with 

the femtosecond pulse the sampled THz field will go to zero as the number of samples (L) 

increases. Coherent detection in the quarter wave geometry is thus not only a measure of the 

THz field strength, but also a measure of the mutual correlation between the QCL and the 

femtosecond laser, which is the sampling coherence. Sampling coherence is a distinct concept 

from temporal coherence, since temporal coherence is determined by the self-correlation 

( )THz THzE (t-τ)E (t)dt∫  of the THz field.  The degree of sampling coherence, γs(τ), can be 

defined as the ratio of the envelope function of the sampled field to the envelope function of 

the actual field. (Note that if the sampling coherence were defined in terms of the fields, γs(τ) 

would oscillate with the phase of the THz frequency.) If γ
�
�τ� 
 1 the femtosecond laser and 

THz radiation are perfectly synchronized, while if γ
�
�τ� 
 0 there is no synchronization 

between the THz emission and the femtosecond laser.  

     The sampling coherence depends on the amplitude of the injected seed pulse as shown in 

fig. 3. For the smallest THz seed pulse, shown in fig. 3(a) and (e), the QCL emission is 

predominantly non-synchronized, γs ~ 0. Here the amplitude of the seed pulse is significantly 

less than the RMS of the spontaneous emission, and the majority of QCL emission arises from 

ASE. The amplified THz pulses are proportional to the input pulse. This linear amplification 

regime corresponds to the lowest seed amplitudes (or THz antenna biases) of the saturation 

curve in fig. 1(d). For larger THz seed pulses, the QCL emission exhibits partial sampling 

coherence, as shown in fig. 3(b) and (c). THz sources are often assumed to be either 

completely synchronized (γs = 1) or non-synchronized (γs = 0) with respect to the femtosecond 

laser, but fig. 3(f) and (g) show that this is not always true. In addition the sampling coherence 

is maximized for delay times that correspond to an integer number of round-trips of the seed 

pulse. This demonstrates that partial sampling coherence cannot be completely characterized 

by integrated time-average measurements of the synchronized and non-synchronized power. 

For the largest THz seed amplitude, shown in fig. 3(d) and (h), the QCL emission is 

predominately synchronized with the femtosecond laser, except for times where the total 

emission is very small. This is the injection seeding regime where the amplitude of the seed 

pulse is significantly greater than the RMS field of the spontaneous emission. In this regime 

the THz seed initiates lasing and saturates the QCL gain. In fig. 3(d), 98% of the integrated 

THz power is synchronized with the femtosecond laser, which indicates the majority of the 

QCL power originates from the amplified seed pulse.  



Fig. 3 a-d) Blue curves are the Mean square (MS) synchronized field-envelope. Red curves are 

the total (synchronized and non-synchronized) MS field-envelope. The green curves are the MS 

non-synchronized field-envelope and are found by subtracting the MS field-envelope (blue 

curve) from the total MS field-envelope (red curve). The THz seed pulses are generated with 

photo-conductive antenna biases of a) 0.05V, b) 0.2V, c) 0.8V, and d) 4.0V. The amplitude of 

a THz seed pulse is proportional to the antenna bias. e-h) The degree of sampling coherence as 

a function of time for the corresponding curves in a-d). For all curves a quasi-DC bias of 1.91V 

(70 A/cm2) is applied to the QCL along with 6W of RF power.  

5. Conclusion 

Techniques are being developed to phase-lock THz QCLs for coherent detection, since such 

phase-locked QCL sources could have a major impact on far-infrared spectroscopy. However 

coherent detection is incapable of detecting non-synchronized radiation and the measured 

synchronized field may not be representative of the actual field. Although the degree of 

synchronization, i.e. the sampling coherence, of QCLs can be characterized with average 

power measurements, this assumes the sampling coherence is constant in time. In the present 

work the sampling coherence of an injection seeded QCL was characterized on picosecond 

time scales. Electro-optic sampling in the cross-polarizer geometry enabled measurements of 

the instantaneous power emitted from the QCL. The sampling coherence was found to be time 

dependent, illustrating the importance of time-resolved measurements. Besides verifying 

whether QCLs exhibit complete sampling coherence for all times, time-resolved 
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measurements of the sampling coherence could be used to investigate phase-locking and 

synchronization processes in QCLs. For example the response of the sampling coherence to an 

incoherent pump which de-synchronizes the QCL could be studied in the time domain. 

Appendix: Coherent and incoherent detection in the quarter-wave and cross-polarizer 

geometries 

The THz field, ETHz(τ), induces a small birefringence, Γ(τ), between the principal axes of the 

electro-optic crystal, which is transferred to the polarization state of the femtosecond sampling 

beam. The birefringence is proportional to the THz field, ETHz(τ) = ηΓ(τ), where η is a 

constant that depends on the crystal’s length, electro-optic coefficient, index, and orientation. 

This neglects absorption, phase-matching effects, and the frequency dependence of the 

electro-optic coefficient. However the ZnTe crystal used in the present study is thin enough 

(200µm) so that these effects can be neglected [25]. The strength of the electro-optic signal, 

EOλ/4(τ), in the quarter-wave geometry is  

 ( ) ( ) ( ) ( )o o o4EO t P sin P  P E . τ τ τ
THzλ η= Γ ∝ Γ =    (2) 

In eq. (2) Po is power of the femtosecond sampling beam, and the small angle approximation 

is used. In the cross-polarizer geometry the strength of the detected electro-optic signal is  

 ( ) ( ) ( ) ( ){ }2 2 2

cross o o o THz o THz
EO P sin P E τ2τEτ .t η η  ∝ Γ= Γ + Γ +  (3) 

   In eq. (3) Γo is the optical bias attributed to a residual birefringence in the ZnTe [24]. Terms 

that do not depend on Γ(τ) are neglected, since the THz field is modulated for lock-in 

detection. In contrast to the quarter-wave geometry, the cross-polarizer signal contains two 

terms; an amplitude response, 2ηΓoETHz(τ), and a square-intensity response, η2
E

2
THz(τ). If 

only non-synchronized radiation is present, the varying phase will cause the amplitude term to 

average to zero. The cross-polarizer signal will then measure the mean square (MS) of the 

THz field-envelope, and can be used to measure the emitted power from a non-synchronized 

QCL [22, 23]. For synchronized radiation the amplitude response will often dominate since 

typically 2Γo >> Γ(τ). As a result electro-optic detection in the cross-polarizer geometry can 

be used as an alternative to the quarter-wave geometry for coherent detection [24]. 

By using the following described techniques, electro-optic sampling in the cross-polarizer 

geometry can function as an incoherent detector which is only sensitive to the total MS field-

envelope. An antenna modulation technique can be applied to remove the amplitude response 

in the cross polarizer geometry. Applying an opposite voltage to the THz generating antenna 

creates an identical THz seed pulse with an opposite sign. The sign of the amplitude 

component can then be modulated without changing the value of the square-intensity 

component in eq. (3). In theory this should enable lock-in detection to remove the amplitude 

response, and only measure the square response. In practice this reduces the amplitude 

response by a factor of ~200. To eliminate the residual amplitude component and the 

oscillation component of the square-intensity response a fast scan technique is employed. The 

optical delay line is scanned at a relatively fast speed of ~1ps/second (delay time/laboratory 

time) while using a long time constant (1 second) with a 24dB/octave roll-off filter. This 

averages out the residual sinusoidal oscillations. The fast-scan technique works since the 

slowly varying envelope approximation is valid for the QCL emission, i.e. changes in the 

pulse-envelope take place on a longer time scale than the field oscillations. Although the fast 

scan technique shifts the signal to later times (the data is shifted by ~4ps), measurements at 

shorter and longer time constants show the shape of the MS-field envelope is not affected. The 

antenna modulation and fast scan techniques permit electro-optic sampling in the cross 

polarizer geometry to only detect the MS field-envelope. 



The signal response of the separate detectors used for the cross-polarizer and quarter-

wave geometry is calibrated using the data in fig. 2(a) and (b). When laser action is initiated 

by spontaneous emission in fig. 2(a), no laser emission occurs before 200ps. Any emission 

before 200ps arises from the THz seed and can be used to calibrate the cross-polarizer and 

quarter-wave geometry detector response.  
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