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Abstract 
Improving our ability to detect conscious processing in non communicating 
patients remains a major goal of clinical cognitive neurosciences. In this 
perspective, several functional brain imaging tools are currently under 
development. Bedside cognitive event-related potentials (ERPs) derived from 
the EEG signal are a good candidate to explore consciousness in these patients 
because: 1) they have an optimal time resolution within the millisecond range 
able to monitor the stream of consciousness, 2) they are fully non-invasive and 
relatively cheap, 3) they can be recorded continuously on dedicated individual 
systems to monitor consciousness and to communicate with patients, 4) and they 
can be used to enrich patients’ autonomy through brain-computer interfaces. We 
recently designed an original auditory rule extraction ERP test that evaluates 
cerebral responses to violations of temporal regularities that are either local in 
time, or global across several seconds. Local violations led to an early response 
in auditory cortex, independent of attention or the presence of a concurrent 
visual task, while global violations led to a late and spatially distributed 
response that was only present when subjects were attentive and aware of the 
violations. In the present work, we report the results of this test in 65 successive 
recordings obtained at bedside from 49 non-communicating patients affected 
with various acute or chronic neurological disorders. At the individual level, we 
confirm the high specificity of the ‘global effect’: only conscious patients 
presented this proposed neural signature of conscious processing. Here, we also 
describe in details the respective neural responses elicited by violations of local 
and global auditory regularities, and we report two additional ERP effects 
related to stimuli expectancy and to task learning, and we discuss their relations 
to consciousness. 
 
 
KEY-WORDS: CONSCIOUSNESS / AUDITION / ERP / PATIENTS / VEGETATIVE 
STATE
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1. Introduction 
 
“ Is he/she conscious?” Far from being a purely philosophical abyssal issue, this question is a 

daily interrogation for the caregivers and health professionals of acute or chronic non-

communicating patients. Answers to this question are crucial to optimize the medical 

management of those patients, to specify the amount of efforts devoted to communicate with 

them, and to provide robust objective landmarks to the caregivers and close relatives of the 

patients in these extremely difficult situations where irrepressible emotions, subjective 

feelings and interpretative beliefs may be misleading and insufficient to guide medical 

strategy. 

For many years, clinical examination and behavioural observation constituted the single 

approach to diagnose consciousness (Plum & Posner, 1972). Consciousness is clinically 

defined in relation to the diverse neurological conditions where it is impaired or absent. Major 

principles can be derived from clinical neurology: 

 

1.1 Clinical markers of consciousness 

Consciousness requires wakefulness: the case of comatose states 

First, a necessary but insufficient physiological condition to consciousness is wakefulness, 

that is to say the presence of waking periods during which the patient keeps his eyes open 

independently of external stimulations. Wakefulness is impaired in comatose states, in general 

anesthesia or in deep sleep stages in which patients are not conscious (Laureys, Owen, & 

Schiff, 2004). The neural bases of wakefulness mostly involve complex brainstem and 

thalamic networks often regouped under the generic term of ascending reticular activating 

system (ARAS), (see (Moruzzi & Magoun, 1949), and (Parvizi & Damasio, 2001) for a recent 

review). 

 

Consciousness is not wakefulness: the case of vegetative states 

A more subtle alteration of consciousness is the vegetative state (VS), which is characterized 

by preserved wakefulness ((Jennett & Plum, 1972), - even if circadian rhythms may not be 

strictly normal (Bekinschtein, Golombek, Simonetta, Coleman, & Manes, 2009) -, in the 

absence of any purposeful behavior and of any sign of intentional reactions to the external 

environment. Note that VS is, by definition, a clinical syndrome and not a specific condition. 

For this reason, and in order to avoid too radical interpretations of patient’s cognitive state 
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only based on behavioural observations, a group of experts recently proposed the 

‘Unresponsive Wakefulness Syndrome’ expression to describe VS  (Laureys et al., 2010). 

 

The mere existence of VS demonstrates that wakefulness and consciousness can be 

dissociated, and therefore that they cannot be identified one with another (Bernat, 2006). 

While VS can have a highly variable duration, from several days to a whole lifetime, other 

neurological situations can be described as ‘transient VS’: during complex partial epileptic 

seizures or during “petit mal absence” seizures for instance, a comparable dissociation 

between consciousness and wakefulness occurs, but on a much shorter time-scale, usually 

from a few seconds to several minutes (Blumenfeld & Taylor, 2003).  

 

Transitions between VS and consciousness: the case of minimally conscious states (MCS) 

Neurological observations revealed that many patients presented fluctuating states which 

could be identified neither as VS or conscious states. These transitional states have recently 

been regrouped under the concept of minimally conscious states (MCS, (Giacino et al., 

2002)). The behavioural distinction between VS and MCS requires an expertise in clinical 

assessment and can be based on the use of a dedicated scale: the revised version of the Coma 

Recovery Scale (CRS-R, see (Kalmar & Giacino, 2005), adapted in many languages including 

French (Schnakers, Majerus et al., 2008)). For instance, while VS patients can show fast and 

transient saccadic responses to moving visual targets, the presence of sustained and 

reproducible visual pursuit is an index of MCS. Note that a recent work showed that the use 

of EMG signal in active motor paradigms is more sensitive than mere clinical examination of 

overt movements (Bekinschtein, Coleman, Niklison, Pickard, & Manes, 2008). 

 

Motor neurological examination is a prerequisite: pitfalls of locked-in syndromes 

Prior to consciousness assessment, a detailed clinical checking of the functionality of motor 

pathways is absolutely necessary, as demonstrated by various clinical conditions in which a 

paralyzed but conscious patient can be misclassified as unconscious. “Locked in syndrome” 

usually secondary to brainstem strokes in the paramedian protuberance (Laureys et al., 2005), 

but also related conditions such as severe Guillain-Barré polyradiculoneuritis or severe 

amyotrophic lateral sclerosis are typical illustrations of this point. 

 

Covert cognitive impairments may underestimate consciousness 
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Note also that the presence of massive cognitive impairments may be difficult to detect and 

may lead to an underestimation of consciousness. For instance, a non-communicating patient 

affected by a global aphasia (e.g.: massive left hemispheric lesion) will probably not 

demonstrate any adapted behavior even to basic verbal instructions. Similarly, massive 

impairments in anterograde memory, in working memory or executive functions can lead to 

an underestimation of the consciousness status. 

 

In the light of these fundamental neurological principles, it is clear that purely behavioral 

observations have limited sensitivity, and only constitute indirect evidence of conscious 

processes. In some cases, the categorization of a patient as vegetative or minimally conscious 

is far from obvious. Thus, in many daily clinical situations, the inaugural question of this 

article is left unanswered: “Is he/she conscious?”  

 

1.2 Markers of consciousness derived from cognitive neuroscience  

A complementary approach to clinical neurology originates from cognitive neurosciences of 

consciousness. Although the issue remains debated, two decades of experimental and 

theoretical works have led to the characterization of psychological and neurophysiological 

attributes that may be unique to conscious processing (Seth, Dienes, Cleeremans, Overgaard, 

& Pessoa, 2008). Many cognitive processes may occur unconsciously both in conscious 

subjects (Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006 ; Kouider & Dehaene, 

2007), in visual neglect patients or related patients (Driver & Mattingley, 1998  ; Naccache, 

2008), and in non conscious patients  (Laureys, 2005 ; Owen et al., 2005), reaching such 

complex levels as abstract semantics, phonological or emotional processing. Still, three 

properties seem to be exclusively associated with conscious processing of reportable mental 

contents (Dehaene & Naccache, 2001): (i) active maintenance of mental representations in 

working memory; (ii) strategical processing; and (iii) spontaneous intentional behavior (8). 

Similarly, while unconscious processing may engage multiple isolated cortical areas, neural 

signatures of conscious processing are defined by late and long-lasting brain activations that 

mobilize long-distance coherent thalamo-cortical networks, particularly involving bilateral 

prefrontal, cingulate and parietal areas (Dehaene, Changeux, Naccache, Sackur, & Sergent, 

2006 ; Gaillard et al., 2009).  

On the basis of these studies, original experimental paradigms can therefore be designed in 

order to improve our ability to diagnose consciousness in non-communicating patients, 

beyond clinical evaluations. For instance, at the behavioral level, Bekinschtein and colleagues 
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(Bekinschtein, Shalom et al., 2009) capitalized on the working memory property mentioned 

above, and used an eyeblink conditioning paradigm in which a tone stimulus can be paired 

with an air-puff delivered on the cornea. Delay conditioning, - where the conditioned stimulus 

and the unconditioned air-puff overlap in time – does not require conscious processing of the 

stimuli. In contrast, trace conditioning where a temporal gap is inserted between the two 

stimuli seems to require conscious processing in working memory (Clark & Squire, 1998). 

Interestingly, they showed that some clinically defined VS patients were able to demonstrate 

both conditioning and trace conditionings. Functional brain-imaging approaches are also 

emerging (Coleman et al., 2009). For instance, Owen, Laureys and their colleagues (2006) 

probed with fMRI the active maintenance of task-instructed cognitive tasks, such the ability to 

perform motor or spatial imagery tasks for a extended duration of 30 seconds. Using this 

approach on 54 patients, they could identify 5 patients able to willfully modulate their brain 

activity (Monti et al., 2010). Among these 5 patients, two were clinically classified as VS. In 

one clinically MCS patient, fMRI could be used to define an arbitrary code and communicate 

a single bit of information (a yes/no answer), while such a communication was not possible 

behaviorally.  

In parallel to such fMRI experiments, EEG paradigms may constitute a highly promising 

research direction for at least two reasons. First, EEG is a time-resolved tool able to sample 

brain activity at the millisecond scale. This offers a unique opportunity to monitor the flow of 

consciousness and eventually to interact with the patient in real-time. Second, given that EEG 

is a non-invasive technique, has a relatively low-cost and can be recorded at bedside, one may 

ultimately design dedicated systems for recurrent and even continuous daily recording of 

brain activity in patients. In that respect, EEG monitoring seems more likely to truthfully 

reflect VS and MCS patients’ complex fluctuating states than a single fMRI scan lasting a few 

tens of minutes. Schnakers and her colleagues showed the utility of using active EEG 

paradigms to probe voluntary brain responses to stimuli. They could confirm the presence of 

conscious processing in a locked-in syndrome patient (Schnakers, Perrin et al., 2009), and in 

clinically defined MCS patients (Schnakers, Perrin et al., 2008). 

 

The ‘local global’ test of consciousness  

We recently designed an auditory paradigm that evaluates the cerebral responses to violations 

of temporal regularities (Bekinschtein, Dehaene et al., 2009). Local violations due to the 

unexpected occurrence of a single deviant sound amongst a repeated train of standard sounds 

led to an early response in auditory cortex, the mismatch negativity (MMN) ERP component, 
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independent of attention and of the presence of a concurrent visual task. On the other hand, 

global violations, defined as the presentation of a rare and unexpected series of five sounds, 

led to a late and spatially distributed response that was only present when subjects were 

attentive and aware of the violations (P3b ERP component). We could detect the global effect 

in individual subjects using functional MRI and both scalp and intracerebral event-related 

potentials. The original publication (Bekinschtein, Dehaene et al., 2009) reported the results 

from 8 non communicating patients with disorders of consciousness (4 MCS and 4 VS) and 

confirmed that only conscious individuals presented a global effect (3 MCS patients). In a 

more recent work focusing on a larger sample of clinically defined VS patients, we confirmed 

the absence of global effect in the vast majority of patients, and identified 2 patients showing 

this neural signature of consciousness (Faugeras et al., 2011). Interestingly, these 2 patients 

showed unequivocal clinical signs of consciousness within the 3-4 days following ERP 

recording, strongly suggesting they were misclassified as VS due to limitations of clinical 

examination. Taken together, these observations were highly suggestive that the global effect 

might be a signature of conscious processing, although it can be absent in conscious subjects 

who are not aware of the global auditory regularities. 

 

1.3 Objectives of the present study 

In the present work, we prospectively explored the first 100 consecutive recordings obtained 

in 65 non-communicating patients (November 2008 to February 2010) with the ‘local global’ 

paradigm while recording their EEG activity with a high-density EEG system (see Figure 1), 

subsequently to a detailed neurological examination, and to a behavioral scoring of 

consciousness with the CRS-R. Our objectives were fourfold: (i) probe the diagnostic 

reliability of our test at the individual-level on a large sample of well characterized non-

communicating patients with various degrees of consciousness impairments, (ii) estimate its 

utility in extreme situations such as “locked in syndrome” and related conditions, and (iii) 

explore in details the distinct ERP correlates of the violations of local and global regularities, 

both at the group-level and at the individual level, (iv) report the ERP correlates of task 

learning and stimuli expectancy. Note that the main objective of this study being the 

validation of the specificity of the ERP “global effect” at the individual level, we deliberately 

included all ERP datasets originating from various etiologies, recorded either at acute or 

chronic stages, and we included repeated recordings of the same patients (11 patients with 2-4 

recordings) to avoid arbitrary data selection. This study does not aim at reporting specific 

knowledge about a given disease, of about a specific group of patients, but rather aims at 
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testing the value of our ERP test at individual level in regards to the clinical evaluation of 

consciousness.
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2. Materials & Methods 

 
2.1 Subjects 
 
Normal controls 
Experiments were approved by the Ethical Committee of the Salpêtrière hospital. The 10 

normal controls (mean age = 20.3 ±0.7; sex-ratio (M/F) = 2.3) gave written informed consent. 

Data from two control subjects were discarded from the analysis due to excessive movement 

artefacts. 

 
Patients 
The clinical motivation for recording patients was to better assess their level of consciousness 

(Bekinschtein, Dehaene et al., 2009), and to probe potential residual unconscious processing 

of the auditory environment (e.g. : MMN) which predicts consciousness recovery from 

comatose state (Fischer, Luaute, Adeleine, & Morlet, 2004 ; Naccache, Puybasset, Gaillard, 

Serve, & Willer, 2005). Patients were recorded without sedation since at least 24 hours in 

order to maximize their arousal and their level of cognitive performance during the auditory 

task. Among the 100 recordings performed on non-communicating patients, 33 were 

discarded from the analysis after evaluation of EEG signal quality (see below). This high rate 

of rejection (33%) reveals one of the intrinsic limits of this approach. Two other recordings 

were discarded because they were performed under sedation. The 65 valid datasets included 

49 patients (32 males and 17 females, sex-ratio = 1.88), aged from 16 to 83 years (mean = 

47.5±17.4 years). Patients could be recorded from one to 4 times. They were affected by the 

following usual conditions (see Table for detail): anoxia (35%), intracranial haemorrhage 

(28%), traumatic brain injury (18%), and other etiologies (18%). Our dataset included both 

early and late recordings (mean = 203 days; median = 35 days; SD = 591 days; earliest = 6 

days; latest = 2555 days). 

 
 
2.2 Behavioural assessment of consciousness 

Clinical evaluation of consciousness was based on the French version of the CRS-R scale 

(Schnakers, Majerus et al., 2008), after careful neurological examination by trained 

neurologists (FF, LN). This scale consists of 23 items that comprise six subscales addressing 

auditory, visual, motor, oromotor, communication and arousal functions. CRS-R subscales are 

comprised of hierarchically arranged items. The lowest item on each subscale represents 

reflexive activity while the highest items represent cognitively-mediated behaviors. This 
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scoring enables a distinction to be drawn between conscious (CS), minimally conscious 

(MCS) and vegetative (VS) states (Schnakers, Vanhaudenhuyse et al., 2009). Clinical 

examination and behavioural assessment were systematically performed the same day and 

before EEG recording.  

 
2.3 Auditory stimulation 
We used the local-global protocol described in our previous publication (Bekinschtein, 

Dehaene et al., 2009). Series of five complex 50ms-duration sounds were presented via 

headphones with an intensity of 70dB and 150 ms SOA between sounds. Each sound was 

composed of three superimposed sinusoidal tones (either a low-pitched sound with 350 700 

and 1400 Hz tones, hereafter sound A; or a high-pitched sound with 500 Hz 1000 Hz and 

2000 Hz tones, hereafter sound B). Tones were prepared with 7 ms rise and 7 ms fall times.  

Four different series of sounds were used, the first two using the same five sounds (AAAAA 

or BBBBB); and the other two with the final sound swapped (either AAAAB or BBBBA). 

Series of sounds were separated by a variable interval of 1350ms to 1650ms (50ms steps). 

The blocks were designed to contain the sound series with a deviant sound in the end, either 

as an infrequent stimulus (block type a: 80% AAAAA / 20% AAAAB; block type b: 80% 

BBBBB / 20% BBBBA); or as a frequent stimulus (block type c: 80% AAAAB / 20% 

AAAAA; block type d: 80% BBBBA / 20% BBBBB). All block types presented a local 

regularity (the fifth sound could be deviant or identical to previous sounds) and a global 

regularity (one of the series of sounds was less frequent than the other). Each block started 

with 20-30 series of sounds of the frequent type in order to establish the global regularity with 

100% regular stimuli, before switching to the block with 80% frequent and 20% rare stimuli. 

ERPs elicited by these training trials were used to analyze the learning effect (see below). In 

each block the number of infrequent trials varied between 22 and 30. All stimuli were 

presented using Eprime v1.1 (Psychology Software Tools Inc., Pittsburgh, PA). Instructions 

were delivered auditorily to all patients at the beginning of each block: “You will now listen to 

repetitive series of 5 sounds. At the beginning of each sequence, you will listen to the very 

same series which will repeat unchanged. For instance,  you will be listening to repetitive 

series like ‘bip bip bip bip bip’ or ‘bip bip bip bip boop’. Then, after a few tens of seconds you 

will listen to different series, which will differ from the previous ones. Such new series will 

remain rare and intermixed with frequent series identical to the initial repetitive series. Each 

time you will listen to such a different and rare series, we ask you to pay attention to it very 

carefully, and to count it in your head. Be careful, the sounds will begin in a few seconds”. 
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All subjects heard eight blocks (3-4 minutes duration) in a fixed order (two runs of AAAAA, 

BBBBB, AAAAB, BBBBA global standards). 

 
 
2.4 High-density scalp ERPs 
ERPs were sampled at 250 Hz with a 256-electrode geodesic sensor net (EGI, Oregon, USA) 

referenced to the vertex. Trials were then segmented from -200 ms to +1300 ms relative to the 

onset of the first sound. We rejected voltages exceeding ±150µV, eye-movements activity 

exceeding ±80µV and eye-blinks exceeding ±150µV. Channels with a rejection rate superior 

to 20% across trials were rejected. Bad channels were interpolated. Trials with more than 20 

bad channels were rejected. The remaining trials were averaged in synchrony with stimulus 

onset, digitally transformed to an average reference, band-pass filtered (0.5–20 Hz) and 

corrected for baseline over the 800-ms window before fifth sound onset. All these processing 

stages were performed in the EGI Waveform Tools Package. Analyses of local, global and 

expectancy effects were done exclusively on the test trials, while the analysis of learning 

effect included training trials. 

 

Criteria of data quality 
Recording high-density scalp ERPs in ICU, or similar environments, in non-communicating 

patients is very challenging for technical reasons. First, the electro-magnetic environment is 

noisy, and patients cannot be recorded in a Faraday cage but necessarily at bedside. Second, 

many patients present physiological artifacts such as EMG, eye-movements and blinks, or 

other involuntary movements. Therefore, it is particularly important to systematically evaluate 

the technical quality of data before statistical analysis. Recordings including at least one block 

with more than 50% of rejected trials were discarded from further analyses in order to avoid 

possible biases across experimental conditions.  

 
 
2.5 Statistics 
 
Group analysis 

The significance of group-level ERP effects was estimated through the 3 following 

approaches: 

(i) Triple-threshold t-test based statistics 

Matlab 7.0 (Natick, MA, USA) scripts were used to compute sample-by-sample paired t-tests 

across subjects. Significance threshold was defined by a triple criterion of: p≤.01 for at least 
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10 consecutive samples on a minimum of 20 electrodes. Grand-average ERPs, and voltage 

topographical maps were performed with Cartool software programmed by Denis Brunet 

(http://brainmapping.unige.ch/Cartool.htm). 

 

(ii) Regions of interests (ROI) analyses  

MMN (early local effect), P3a and P3b (global effect) effects were also probed by using a 

ROI approach in which voltages were averaged across a group of contiguous electrodes 

located in the region where the corresponding ERP effect is known to peak in control 

subjects. In order to avoid circularity we used an independent dataset, - corresponding to a 

recently published study using a close auditory oddball paradigm (Pegado et al.)-, and 

selected contiguous electrodes were MMN, P3a and P3b were best observed (adaptation from 

128 electrodes to 256 electrodes EGI scalp nets). Using the EGI (Eugene, Oregon, USA) 

numbering system, these ROI corresponded to the following groups of contiguous electrodes : 

MMN (Fz centered : 6 7 8 14 15 16 21 22 23) ; P3a (Cz centered : 8 9 45 80 90 131 132 186 

257) ; P3b (Pz centered : 100 101 110 118 119 126 128 129). Sample-by-sample t-tests were 

then performed with a p-value threshold at 0.01 for a minimal duration of 10 successive 

samples (40 ms). These ROI were also used to perform ANOVAs between groups of patients, 

by averaging ROI values in time within a relevant time-window (MMN: 140-180 ms ;  P3b: 

400-600ms). 

 

(iii) Linear regression approach of scalp topographies 

In order to take advantage of the high-spatial resolution (256 electrodes) of our recordings to 

detect ERP effects in patients, we complemented the electrode-by-electrode and ROI voltages 

analyses with a multiple-linear spatial regression approach able to exploit scalp topographies 

of voltages (Pegado et al.). Each major ERP effect (e.g.: MMN, P3a, P3b) was defined by a 

257-values vector corresponding to the averaging of voltages during the relevant time-

window in controls subjects (140-180ms for MMN; 232-368ms for P3a; 400-600ms for P3b). 

Then for each recording dataset, voltage time series (local effect and global effect) were 

regressed with a model including the effect of interest and a constant regressor. For each 

group of patients, distributions of β coefficients of interest (e.g.: MMN for local effect, P3b 

for global effect) were tested against the null hypothesis with a t-test (p<0.05).  
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ERP latencies 

Latencies of each effect were estimated by identifying the earliest significant time sample 

showing an effect (Luck, 2005), both in the triple-threshold t-test based statistics and in the 

ROI analyses. 

 

Inter-group analyses  

Concerning the inter-group analyses, we are aware of the potential bias related to the fact that 

our 65 ERP recordings do not correspond to 65 different patients but only to 49 patients, some 

of whom having been recorded several times in same or different groups. We addressed this 

issue by performing two analyses. First, we performed ANOVAs on a subset of 49 recordings, 

by keeping only one recording per patient, corresponding to the best clinical status (see SOM 

for additional figures on the subset of 49 subjects). Second, we also performed a general 

linear model analysis able to accommodate with the unbalanced design of the whole dataset, 

using 2 regressors (subjects group (4 levels), and subjects identity (49 levels)). This analysis 

took into account the presence of some repeated recordings of the same subjects. Both 

analyses are complementary and allow avoiding arbitrary data selection. 

 

Individual subject analysis  

For individual subject statistics, unpaired t-tests across trials were calculated for each time 

sample. Significance threshold was defined by a triple criterion: p≤ .01 on a minimum of 5 

consecutive samples, on a minimum of 10 electrodes. In order to further assess the power of 

observed effects, we categorized the significance of the local and global effects for each time-

sample using a 5-levels p-value scale: <.01, <.005, <.001, <.0005, <.0001. A last correction 

was then used on each recording in order to increase the specificity of our analyses. Given 

that local effects begin in controls around 100ms after the onset of the fifth tone, all p-values 

of interest (100ms to 736ms after fifth tone onset) superior to the lowest p-values observed in 

this recording within the baseline time-window (-800 to 0 ms) were discarded. Finally when 

p-values of interest were equal to this minimal p-value, the effect was considered significant 

only if its duration exceeded the longest duration observed at this p-value level within the 

baseline time-window. A similar correction was applied for the global effect, with a different 

time-window of interest (200-736ms). Learning effects time windows were respectively 108-
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244 ms after first sound onset  (early effect), and 200-736 ms after fifth sound onset (late 

effect). 

 

Permutation statistics 

We further checked the statistical significance of our t-test based triple threshold statistics 

through Monte-Carlo permutations, both for group-level and individual-level analyses. This 

procedure is particularly relevant to estimate the statistical significance of effects observed 

with a signal of unknown distribution (Manly, 1997). For group-level statistics, we calculated 

the shorter duration of observed effects satisfying our paired t-test thresholds, and then 

computed random permutations in two surrogate groups with the same dataset, and counted 

the number of surrogate effects satisfying our criterion (a minimum of 10 consecutive samples 

with paired t-test P ≤ 0.01 on a minimum of 20 electrodes) anywhere in the relevant ERP time 

window (100-735 ms). The number of permutations was set to 2,000 for most analyses: note 

that only 255 permutations were computed for the analyses performed on the group 8 

controls, in which only 28=256 distinct permutations exist. We then computed the observed 

probability of this criterion (number of surrogate effects per 2,000), and used this proportion 

as an estimate of the first-order α risk. For individual analyses, the same procedure was used 

with unpaired t-tests, with 2000 permutations. For each analysis, both at the group-level and 

at the individual-level, a criterion of P ≤ 0.05 on permutation tests was required to consider 

the effect as significant (see (Naccache et al., 2005) for a recent use of this methodology in an 

intra-cranial ERP study) . 
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3. Results 

 
3.1 Behavioural assessment of consciousness 

Among the 100 recordings, 65 were considered as valid on the basis of our procedure of EEG 

quality evaluation (see M&M). These 65 correct recordings corresponded to 49 patients, some 

of whom were recorded several times (from 1 to 4). This heterogeneous collection of 

recordings included various levels of clinically assessed conscious states ranging from VS, 

MCS to overtly conscious, and conscious but paralyzed patients. More precisely, these 65 

recordings corresponded to: 24 recordings within VS (37% of recordings), 28 recordings 

within MCS (43% of recordings), and 13 recordings within CS (20% of recordings). Detailed 

descriptions of clinical characteristics are reported in the Table. Note that 4 patients presented 

with severe central or peripheral motor impairments which limited the sensitivity of 

behavioral evaluations: patient #37 suffered from a brainstem cystic tumor complicated by a 

brainstem hemorrhage (MCS, CRS-R = 17), and patient #44 was in a locked-in syndrome 

caused by a pontic compression secondary to a right cerebellar hemorrhage associated to a 

right vertebral dissection (CS, CRS-R = 16). Patients #43 and #45 were affected by a severe 

polyradiculoneuropathy (Guillain-Barré polyradiculoneuritis). However, careful examination 

was sufficient to reveal behavioural signs of consciousness in these two patients (CRS-R = 16 

for the two patients). 

 
3.2 Event-related potentials 
 

We analyzed ERP data by focusing on 4 electrophysiological effects. We first describe the 

two effects we previously reported (Bekinschtein, Dehaene et al., 2009 ; Faugeras et al., 

2011): the (1) “local” and (2) “global” effects. We also report here two new ERP effects: (3) 

the early cortical processing of sounds, and (4) a learning effect.  

For each of these 4 ERP effects, results are reported both at the group level and at the 

individual level. 

 

‘Local Effect’: responses to violations of short time-scale regularities 

Group analyses 

We first examined brain responses to violations of local (intra-trial) regularity at the group 

level, by comparing local-deviant (LD) trials ERPs with local-standard (LS) trials ERPs in 
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each of the 4 groups (see Figure 2 bottom panel, and SOM figure for detailed scalp 

topographies of local and global effects). 

In the controls group, we replicated our previous findings (Bekinschtein, Dehaene et al., 

2009) by observing 4 main results: 1) the absence of local effect up to 100 ms after fifth tone 

onset, 2) a first effect ranging from 124 to 184 ms with a voltage topography corresponding to 

a typical MMN, 3) a vertex-centered positivity immediately following this MMN ranging 

from 232 to 368 ms, and 4) the absence of any later effects. These two effects were found 

significant both with the triple-threshold t-test based statistics and with the ROI analyses (see 

M&M). 

In the conscious patients group, the MMN was present and significant (see Figure 2). A linear 

regression analysis confirmed the scalp topography of this MMN effect (see M&M ; mean β = 

0.24 ; p = 0.001 ; see Figure 2, lower right column). The vertex-centered positivity was visible 

on scalp topographies and confirmed with the linear regression analysis, but did not reach 

significance in our 2 other statistical approaches (triple-threshold t-test based statistics, and 

ROI analyses). No late local effects were observed in this group. 

In the MCS patients group, both the MMN, and the following positivity (236-340 ms) were 

found significant with our 3 statistical approaches (for the linear regression analysis of MMN: 

mean β=0.17; p = 0.0015), and a late local effect was observed as an anterior centered 

negativity occurring between 688-736 ms. 

In the VS patients group the MMN was not significant according to the triple-threshold 

statistics, but was confirmed with our 2 additional estimations (for the linear regression 

analysis: β=0.15; and p = 0.005). The vertex-centered positivity was significant with our 3 

measures and spanned from 260-372 ms. Finally, the late anterior negativity observed in the 

MCS group was present in VS patients group, from 576-692 ms. 

When comparing these four groups, MMN amplitude and significance seemed to be strongly 

related to the level of consciousness (see Figure 2, right bottom panel): the better the patients 

were in terms of consciousness status, the larger and the stronger their MMNs were. We first 

tested the amplitude effect by running a one-way ANOVA, restricted to controls and to the 

subset of 49 patients with only one recording per patient (see Materials & Methods), with the 

group (4) factor on the voltage averaged in space across a ROI centered around Fz and in time 

across a [140-180ms] temporal window. This analysis revealed a main effect of the group 

factor (F(3,54) = 4.8 ; p = 0.005), and a linear contrast confirmed that MMN amplitudes 

increased with higher levels of consciousness (F(1,54) = 13.9 ; p= 0.0005 for the linear 
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contrast testing the following order in MMN amplitude: Controls > Conscious patients > 

MCS patients > VS patients).  We also tested the same amplitude effect on the whole dataset 

of recordings by running a general linear model analysis with two regressors, including group 

factor and subject identity factor (see Materials & Methods). This analysis replicated the 

modulation of MMN amplitude across groups (F(3, 68)=3.2 ;  p=0.03). 

We also estimated and compared MMN latencies across groups. When first analyzing the 

triple-threshold data, MMN latency was measured at 124 ms after fifth tone onset in controls, 

and it was delayed to 140 ms both in conscious and in MCS patients. Given that MMN was 

not significant at the group-level for the VS patients in our triple-threshold t-test based 

statistics, we also estimated latencies through the ROI analysis. In this more sensitive 

analysis, MMN latencies were estimated at 104 ms, 144 ms, 152 ms and 152 ms respectively 

for controls, CS patients, MCS patients and VS patients. Note however that a one-way 

ANOVA performed on individual MMN latencies did not reveal any significant differences 

across the 4 groups (p>0.5 both for the main effect, and for a linear contrast respecting 

clinical progression). 

 

Individual analyses 

MMN was observed in 7/8 controls (87.5%), in 8/13 recordings of CS patients (61.6%), in 

9/28 recordings of MCS patients (32.1%), and in 6/24 recordings of VS patients (25%) (see 

Figure 3). MMN presence was therefore affected by consciousness status (logistic regression 

test with the 4 groups declared as a predictor of MMN presence: p = 0.0005). This effect was 

still present but more modest when restricting the analysis to the 3 patients groups (p = 0.04). 

A trend of a relation was observed between the CRS score and the presence of a MMN (mean 

CRS for MMN+ = 12.3 and mean CRS for MMN- = 9.5; Student t-test unilateral p value = 

0.04). While MMN presence was not different between MCS and VS patients groups (p=0.6 

in a χ2 test), MMN was statistically more significant in MCS patients than in VS patients (see 

Figure 3). Indeed, an ANOVA with two orthogonal factors: Group (4) X Local_regularity (2) 

performed on the voltage averaged in space across a ROI centered around Fz and in time 

across a [140-180ms] temporal window revealed that MMN amplitude increased with higher 

levels of consciousness (F(1,138) = 4.9 ; p= 0.03 for the linear contrast testing the following 

order in MMN amplitude: Controls > Conscious patients > MCS patients > VS patients). 

 

The ‘Global Effect’: responses to violations of long time-scale regularities 

Group analyses 
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In the controls, a large global effect was visible on the global field power (GFP) plots, on 

averaged ERP curves and on scalp topographies (see SOM Figure), and was confirmed with 

our statistical criterion (see Figure 2, top panels). This global effect spanned from 284 to 

660ms after the onset of fifth tone, in close agreement with our previous findings. This effect 

presented a clear P3 topography, beginning with a vertex-centered positivity (P3a) and 

followed by a more posterior Pz-centered positivity (P3b). Note that before this large and late 

P3 complex, an earlier and shorter global effect was observed within the MMN window of the 

local effect, with a similar topography. On the basis of our previous findings which related the 

large and sustained P3b response to consciousness of the global rule, we focused on this ERP 

component, and performed a ROI analysis. Voltages were averaged for each control subject 

across a set of electrodes surrounding Pz (see upper left panel on Figure 2), and a sample-by-

sample t-test was performed (see M&M). P3b latency in controls was estimated at 448 ms 

after the fifth sound with the ROI analysis. Note that the triple-threshold statistics revealed an 

earlier effect (284 ms) corresponding to a P3a effect as mentioned above. A dedicated Cz-

centered similar ROI analysis estimated P3a latency at 320 ms in controls. 

In conscious patients, neither the triple-threshold statistics nor the ROI analysis could identify 

a P3b global effect. Nor could the earlier global effect be observed in this group. We then ran 

the regression analysis to capture a significant P3b effect in this group on the basis of scalp 

topography information (see above). While visual inspection revealed a scalp topography 

reminiscent of the P3b on grand-average data (see Figure 2, lower right topographies), the 

statistical distribution of individual β values of the P3b regressor did not differ from 0 

(p>0.4). For the two other groups (MCS and VS patients) none of these 3 analyses could 

isolate a significant global effect at the group level. 

We could then test for the inter-group differences by running an ANOVA, - restricted to 

controls and to the subset of 49 patients -, with a group (4) factor, on the global effect 

voltages averaged across the Pz ROI during the P3b time-window. This analysis confirmed 

the existence of a strong modulation of P3b with conscious status (F(3,54)=14.7, p<10-5). This 

modulation followed the order of consciousness: Conscious controls > Conscious patients > 

MCS patients >VS patients (linear contrast: F(1,54)=40.9, p<10-5). A general linear model 

analysis performed on the whole dataset of recordings replicated this effect (F(3, 68)=6.5 ; 

p=0.0006).  

 

Individual analyses 
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We observed a significant global effect in each of the 8 controls (100%) within the 300-700 

ms temporal window after 5th sound onset (see Figure 4), replicating our previous findings 

(see our control group #1 in (Bekinschtein, Dehaene et al., 2009)). In the patients groups, the 

proportions of individuals showing a significant global effect fell respectively to 7/13 (53.8%) 

recordings of CS patients, 4/28 (14.3%) recordings of MCS patients, and 2/24 (8%) 

recordings of VS patients. These differences were highly significant across groups, - as in 

above the group level analysis -, (p < 10-7 in a logistic regression test). An additional analysis 

confirmed the strong relation prevailing between the CRS score and the presence of a global 

effect (mean CRS for GE+ = 14.7, and mean CRS for GE- = 9.5; p = 0.002 in a two-sample t-

test). 

 

Of particular interest are the VS patients results, we previously reported in a dedicated 

publication (Faugeras et al., 2011). First, the vast majority of VS patients did not show global 

effect (2/22). Most notably, only two VS patients showed a global effect, and for both of them 

the immediate clinical evolution was marked by the recovery of behavioral signs of 

consciousness within 3 and 4 days after EEG recordings, respectively (see Patient #1 and 

Patient #4’s second recording in Table). These two cases are reminiscent of recent reports of 

the few patients clinically assessed as VS, - on the basis of a detailed clinical examination and 

CRS scoring -, who showed evidence of consciousness in active fMRI paradigms (Monti et 

al., 2010; Owen et al., 2006 ). Similarly, our two observations may correspond to such a 

situation in which neurophysiological probing of consciousness may go beyond clinical 

evaluation.  In favor of such an interpretation note that by contrast, in the 20 remaining VS 

patients without an ERP global effect, early recovery of consciousness was observed in only 2 

cases within the first week following ERP recording (χ2 = 9.90, p= 0.002; Exact Fischer test: 

p=0.026 ; see (Faugeras et al., 2011) for a detailed report of the VS patients group). 

 

Thus, the global effect proved to be an almost 100% specific test of consciousness. Even if 

the 2 VS patients showing a global effect and who recovered behavioral signs of 

consciousness are classified as “false negative” subjects we obtain the following values: 

specificity (correct rejections/(false positives+correct rejections)= 91.7%; positive predictive 

value (hits/(hits+false positives) = 84.6%; sensitivity (hits/(hits+false negatives) = 26.8%; and 

negative predictive value (correct rejections/(correct rejections + false negatives)= 42.3%. 

Alternatively, if we classify these 2 VS patients as conscious subjects, then we obtain a 

specificity and a positive predictive value of 100%. 
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Early cortical processing of sounds 

We then explored ERPs prior to the processing of local and global regularities. Given the 

strong differences in both local and global effects in relation to conscious status of patients, 

we wondered if even earlier differences could be observed. 

 

Group analyses 

We inspected responses to auditory sounds across a region of interest defined by the 23 

electrodes surrounding the vertex electrode (Cz), where early cortical responses to sounds are 

best observed (see Figure 5). For each recording of the subset of 49 patients, we averaged 

ERPs around Cz across all global standard trials, applied a 200ms baseline correction, and 

submitted these values to a sample-by-sample one-way ANOVA with the group (4) factor. A 

cortical response to each of the first four sounds was visible in the 4 groups (see Figure 5, top 

panel). Interestingly, early cortical processing of the sounds was not affected by clinical status 

up to ~250 ms after the onset of the first of the five sounds defining each trial. This finding is 

highly consistent with the large group of studies reporting spared early non-conscious 

processing in comatose or VS patients, and consequently confirms the need to disentangle 

between neural markers of conscious versus non-conscious processing. From ~250 ms up to 

~1100 ms after the onset of the first sound, significant differences were observed across 

groups (p values < 0.05 ; a very same pattern of significance was observed when analyzing 

the whole recordings dataset using a general linear model analysis taking into account subject 

identity). These inter-group differences corresponded mostly to a difference in the strength of 

a negative drift ending during the processing of the fifth sound which is the event defining the 

nature of the trial (local and global regularities). While this negative drift was visually 

obvious for controls, and to a lesser degree for conscious patients, it seemed less present for 

the two other groups of patients. For each group, and also for each individual recording, we 

computed the linear regression of these averaged ERPs within the [0-600 ms] time-window 

running from the onset of the first sound up to the onset of the fifth sound. This analysis 

confirmed the existence of a significant negative slope for controls (R² = 0.64; all individual 

slopes were negative; t-test p value < 10-4 when comparing slopes distribution to a zero-

centered distribution) and for conscious patients (R²= 0.45, all individual slopes were 

negative; t-test p value < 10-4), while this effect was absent for the two other groups (R²=0.10 

p=0.1 for MCS patients; and R2=0.26 p=0.06 for VS patients). An ANOVA performed on 

controls data and on the subset of 49 patients confirmed the significance of slope differences 
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across the 4 groups (F(3,54)=5.0, p = 0.004). The general linear model analysis ran on the 

whole dataset showed a similar, but weaker, effect (F(3, 68)=2.7 ;  p=0.05). 

This slow ERP effect is suggestive of the classical ‘Contingent Negative Variation’ (see 

(Walter, Cooper, Aldridge, McCallum, & Winter, 1964) and discussion section) on the basis 

of 3 arguments: 1) it is an early effect beginning with the early perceptual processing of the 

first sound, - which is probably reflecting an expectancy of the delivery of the fifth sound, the 

sound that conveys the critical information about local and global regularities of the trial -, 

and ending when this last sound is processed ; 2) it presents an anterior negativity scalp 

topography reminiscent of the CNV ; and 3) it is observed exclusively in the groups of clearly 

conscious subjects (controls and CS groups), more prone to deploy expectative cognitive 

processes than the two other groups. Therefore, we will now refer to this early negative drift 

effect as a CNV. 

  

Individual analyses 

At the individual level, a linear regression was calculated for each individual trial on the 

vertex centered ROI during the [0-600 ms] time-window of interest. Then the distribution of 

these individual trials slopes was compared to zero with a one-sample Student t-test. A 

significant CNV was observed in each of the 8 controls (100%), in 8/13 (61%) recordings of 

of conscious patients, in 12/28 (43%) recordings of of MCS patients, and in 9/24 (37%) 

recordings of VS patients (see Figure 5, middle panel). In patients, CNV was not more present 

in MCS or conscious state recordings than in VS recordings (p=0.4 in a χ2 test). Most of 

recordings showing a global effect had a CNV (61%).  However, the presence of a CNV was 

not strongly associated with global effect (p = 0.2 in a χ2 test). Recordings with a CNV were 

slightly more prone to present a MMN (p = 0.06 in a χ2 test). In order to determine the impact 

of CNV presence on local and global effects at the group level, we then categorized each 

recording either as CNV+ or as CNV-, and computed local and global effects in these two 

groups. If the CNV does index cognitive expectations of stimuli regularities, one should 

predict that CNV presence should increase the likelihood of observing other markers of the 

processing of auditory regularities. In particular, under such a hypothesis both global effect 

and late local effect should be more important in CNV+ recordings than in CNV- recordings.  

Local effects did not differ between CNV+ and CNV- groups (see Figure 5, bottom panel). In 

particular, MMN, P3a and late local effect were present and comparable (all p values > 0.5 on 

t-tests performed on Fz ROI during MMN time window, on Cz ROI during the positivity 
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immediately following the MMN, and during the late local effect).  In sharp contrast, global 

effect was observed only in the CNV+ group, while it was absent in the CNV- group. 

 

Learning effect 

Finally, we looked for learning effect by taking advantage of recording the EEG signal both 

during the training and testing periods. Each block began with the delivery of verbal 

instructions followed by 20-30 series of frequent type in order to establish the global 

regularity with 100% regular stimuli. Then, the testing period followed without interruption, 

with 80% series of the frequent type (“global standards”), and 20% of the rare type (“global 

deviants”). While all previous analyses focused on the testing period, we compared here the 

processing of the very same physical stimuli (“global standards”), according to the period 

during which they were processed (learning versus testing periods). 

 

Group analyses 

In controls, this comparison revealed two learning effects visible on the anterior, Fz-centered, 

region: first, an anterior positivity (testing trials minus training trials) occurring around 108-

244 ms after first sound onset, followed by a delay effect presenting like an anterior negativity 

occurring around 312-620 ms after fifth sound onset (see Figure 6). This second effect was 

statistically weaker. 

In the conscious patients group only the second effect was observed, while none of these 2 

effects was present in MCS and VS patients groups. 

The first effect was also observed when contrasting global standard trials from the learning 

period with global deviant trials from the testing phase. Indeed, the time-window of this effect 

is located before the onset of the fifth sound. Obviously, such an analysis is not relevant for 

the late effect which overlapped with the global effect. 

 

Individual analyses 

In controls, 4/8 showed the first effect, while 2/8 showed the late effect. Taken together 5/8 

conscious controls showed a learning effect. In conscious patients, 2/13 recordings showed 

the early effect, and 5/13 showed a significant late effect. Among MCS patients, 5/28 

recordings showed the early effect, and 2/28 the late effect. Finally within VS patients, only 

one recording showed the early effect, and another patient had a late effect. Interestingly, the 

clinically ‘VS’ patient with the early learning effect was one of the two who presented a 
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global effect and who were probably misclassified and conscious during the recording (see 

above and discussion, and (Faugeras et al., 2011)).      

 

4. Discussion  

In this work we prospectively recorded high-density scalp ERP in patients suffering from 

various disorders of consciousness, while they were instructed to perform an active version of 

the ‘local global test’. This test was recently designed to diagnose consciousness without 

relying on behavioral responses. Among these 100 recordings, 65 satisfied criteria of data 

quality, due to the large amount of motor and environment EEG artifacts. Both the clinical 

condition of patients who were recorded in the absence of any sedative drugs, - enabling 

therefore motion artifacts -, and the noisy electrical environment inherent to intensive care 

units most probably contribute to explain this high-rate of data rejection. The acceptable  

recordings correspond to 49 patients, some of whom were recorded several times.  

 

4.1 Strength of the global effect for probing consciousness: a positive predictive value 

close to 100% 

The presence of an ERP global effect proved to be an extremely specific measure of 

consciousness: among the 13 recordings showing a global effect, 11 corresponded to 

conscious patients (MCS or conscious states) and only 2 were observed in clinically 

diagnosed VS patients. Crucially, in these 2 patients recorded during the acute phase of their 

consciousness disorder (see Table, patient #1 and second recording of patient #4 on line 14), 

univocal behavioral signs of consciousness were present respectively 3 and 4 days after 

recording (see (Faugeras et al., 2011)). In other terms, these two observations most probably 

illustrate situations in which neurophysiological data can go beyond the sensitivity of 

behavioral measures to probe consciousness, as it was recently reported with an active mental 

imagery task in fMRI ((Monti et al., 2010; Owen et al., 2006)). In addition to these two 

extreme cases, we could also demonstrate the usefulness of this test in 2 conscious patients 

affected with a severe acute polyradiculoneuropathy (Guillain-Barré syndrome) who showed 

a clear global effect confirming the clinical diagnosis (see Table, patient #45 and patient #43) 

of consciousness. In these two patients, behavioral signs of consciousness were subtle and 

called for careful inspection. For instance, in one of these patients, the only voluntary 

movements were limited to discrete lateral flexions of the neck initially discovered by an 

expert ICU neurologist (FB). As a provisional conclusion the ‘local global’ test demonstrated 
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its clinical robustness and its positive predictive value to probe consciousness in non-

communicating patients. Of major interest, this test seems powerful enough to provide 

reliable measures at the individual level. 

Our finding that the global effect is observed exclusively in conscious patients is equally 

important for theories of consciousness. The ‘local global’ test is based on the global 

workspace theory of conscious processing which postulates that consciousness is required to 

actively maintain perceptual information over time in working memory, and to engage 

strategical processes necessary to detect and count the global deviance occurrences 

(Bekinschtein, Dehaene et al., 2009; Dehaene & Naccache, 2001 ). We previously showed 

that in conscious controls the global effect is abolished when attention is captured by a 

concurrent visual task. In this experimental condition (see Experiment 3 of (Bekinschtein, 

Dehaene et al., 2009)), subjects could not consciously report the presence of a global 

regularity after the recording. However, one could have imagined that the limiting factor in 

this case was not consciousness per se, but rather the availability of cognitive resources 

engaged by top-down conscious processing in another task. In other terms, an important 

complementary condition is to demonstrate that the global effect does not occur in non 

conscious patients in whom residual cognitive abilities are not engaged in an active distracting 

task. The present study strengthens the causal relation prevailing between consciousness and 

the cognitive processes at work in the ‘local global’ paradigm. Our work therefore confirms 

that active maintenance of perceptual information during an arbitrary task requires 

consciousness. Additionally our results also reinforce the set of recent studies proposing that 

late P3b-like ERP scalp topographies may constitute a specific neural signature of conscious 

access (Gaillard et al., 2009; Sergent, Baillet, & Dehaene, 2005 ).   

 

4.2 Limits of the global effect: a low negative predictive value 

In spite of its high specificity and positive predictive value, the global effect presents a much 

less satisfactory sensitivity (~27%) and negative predictive value (~42%), indicating that 

many patients easily classified as conscious by clinical criteria do not show a significant 

global effect in ERPs. Several factors may concur to explain this lack of sensitivity. First, 

auditory processing prior to cortical stages has to be preserved to allow the presence of a 

global effect (obviously, a deaf conscious patient would not show any global effect). Careful 

clinical examination (sound localization responses, auditory startle response) and inspection 

of preserved P1/N1 to auditory stimuli are strong arguments to discard such an explanation. 

Note that in the presence of any doubt of deafness, brainstem auditory evoked potentials 
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(BAEP) are to be recorded. Second, the presence of a global effect not only requires the 

patient to be awake and conscious during the recording, but also that he/she would understand 

the instructions, be able to keep perceptual representations in working memory, memorize 

task instructions and continuously perform the task. In other terms, a conscious patient 

affected with cognitive impairments in any of the listed processes may perfectly well miss the 

task. Our group analyses suggest that in such cases, a conscious patient unable to perform the 

global task may well process consciously the local regularity, as shown by the presence of late 

local effects in the MCS and VS groups, while both conscious controls and conscious patients 

presenting a global effect did not show any late local effect. On the other side, the presence of 

an ERP global effect may well be considered as the sign of a rich conscious cognition, and 

could prove to be a useful index of cognitive outcome. Future outcome studies should 

elucidate this point. The limits exposed here are inherent to many active cognitive paradigms 

(Naccache, 2006; Owen et al., 2006 ). In the same vein, fluctuations of attention or arousal 

may impair task performance. Some of these limitations could be overcome by sorting 

individual trials on the basis of additional EEG measures more related to arousal or attention 

(e.g. : proportion of slow waves, measures of coherence and/or EEG complexity indexes such 

as EEG entropy or EEG dimensional activation (Velly et al., 2007)). The current emergence 

of brain-computer interfaces allowing such analyses to be performed in real-time on a single-

trial basis may well significantly increase the sensitivity of our test (Delorme & Makeig, 

2004; Thulasidas, Guan, & Wu, 2006). Note that in spite of its low sensitivity, this test is of 

medical interest because clinical consensus on patients’ consciousness status is often 

erroneous, as recently reported by Schnakers and colleagues (2009): “Of the 44 patients 

diagnosed with VS based on the clinical consensus of the medical team, 18 (41%) were found 

to be in MCS following standardized assessment with the CRS-R.” In other terms, when 

focusing on the VS and MCS patients who are difficult to classify reliably on standard clinical 

measures, - without fine behavioral measures such as the CRS-R -, it is not absolutely useless 

to find 6 positive recordings out of 52. ERPs added some confidence for the MCS patients, 

and corrected the functional diagnosis in two clinically VS patients.  

 

4.3 ERP responses to violations of local regularities 

Violations of local regularities elicited three successive ERP effects, the occurrence of which 

differed across groups. First, a classical MMN response was observed within 140-180 ms 

after fifth tone onset. Interestingly, MMN was affected by clinical status: it was larger, better 

delineated (scalp topography), and more significant in the groups of conscious controls and 
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conscious patients than in MCS and VS patients groups. This result is in agreement with a 

recent study reporting a progressive increase of MMN quality during the VS to MCS 

transition in a few individual patients (Wijnen, van Boxtel, Eilander, & de Gelder, 2007). 

Given that early MMN (90-160 ms) is a pre-attentional automatic ERP component 

impermeable to conscious top-down processes (Naatanen, Tervaniemi, Sussman, Paavilainen, 

& Winkler, 2001 ; Pegado et al.; Tiitinen, May, Reinikainen, & Naatanen, 1994 ), and given 

that it has been reliably observed in comatose and VS patients (Bekinschtein, Dehaene et al., 

2009; Fischer, Luaute, Adeleine, & Morlet, 2004; Fischer et al., 1999 ; Kane, Curry, Butler, & 

Cummins, 1993 ; Naccache, Puybasset, Gaillard, Serve, & Willer, 2005 ), the finding that 

even early MMN is impaired in MCS and VS patients indicate that these patients are not 

characterized by ‘pure’ impairments of consciousness, but that they most probably combine 

arousal and perceptual deficits to disorders of consciousness. This highly plausible 

interpretation is supported by recent works questioning the definition of VS as a pure 

dissociation between a preserved arousal function, and an impaired consciousness. For 

instance, Bekinschtein and colleagues (2009) showed that while VS patient are able to keep 

their eyes open spontaneously, they do not show normal circadian rhythms of body 

temperature or other physiological markers. Therefore, the combination of neurophysiological 

markers exploring both conscious processing (e.g.: P3b global effect response) and 

unconscious perceptual abilities (e.g.: early local effects) may help to better estimate the range 

of preserved cognitive faculties. In this perspective, the design and use of multifaceted ERP 

batteries exploring distinct cognitive processes in the same patient would be promising. For 

instance, the combination of paradigms probing verbal semantic processing (N400 word 

priming experiments (Rama et al.)), verbal syntactic decoding (P600 sentence paradigms 

(Kotchoubey, 2005)), and emotional processing of meaningful stimuli (e.g.: processing of 

known voices or own name (Holeckova, Fischer, Giard, Delpuech, & Morlet, 2006)), in 

addition to MMN and markers of conscious access may prove useful both for diagnostic and 

cognitive prognosis issues. The present study reinforces the relevance of this approach. 

Second, immediately following the MMN response we observed an anterior positivity 

response which may well correspond to a P3a response indexing a central stage of processing 

of local deviance. Indeed, the finding that this component was less significant both in the 

groups of control subjects and in conscious patients than in the two other patients groups may 

be interpreted in terms of limited central capacity: when subjects do perform the global 

deviance detection task they have to process this attribute without responding to the local 

deviance, which is in opposition to global deviance in half of the trials. Therefore, given the 
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limited serial property of conscious content, they would be able to consciously process only a 

single dimension (global deviance). As a consequence, the ERP component following the 

MMN would be predicted to be smaller in such conscious subjects performing the task, than 

both in non-conscious patients in whom only automatic responses to local deviance would be 

observed, and in conscious but cognitively impaired patients whom central resources would 

be captured by the processing of local deviance. This hypothesis is strengthened by two 

elements: the anterior positivity following the MMN in the local effect contrast (local deviant 

versus local standard trials) overlap in time with the beginning of the P3 complex observed in 

the global effect contrast (global deviant versus global standard trials). Moreover, we recently 

provided evidence in support of a two-stage model of accumulation of evidence during 

auditory oddball paradigms (Pegado et al.). According to this model and experimental data, 

late portion of the MMN (160-220 ms) and subsequent components (including the following 

positivity) are interpreted as central stages of processing. Assuming that this interpretation is 

valid, and that the absence of a P3a response to local deviance in conscious subjects reflect 

their conscious engagement in the processing of an orthogonal dimension of the stimuli 

(global deviance), one may well understand the presence of this ERP component in the MCS 

group (conscious processing of local deviance due to cognitive impairments), but may wonder 

why this ERP component would be observed in the VS patients group? While speculative, we 

may propose that this ERP component could reflect a form of unconscious exogenous 

attention which may be preserved in some non conscious patients, and which would not be an 

index of reportable conscious contents. Indeed, in conscious controls an increasing set of 

evidence point to the existence of such unconscious deployment of attentional resources, for 

instance in response to salient stimuli (Koch & Tsuchiya, 2007; Mulckhuyse & Theeuwes, 

2010 ). 

Lastly, a clear difference across the four groups was the presence of a late anterior negativity 

in the MCS and VS patients groups, while no late effect was observed in the two conscious 

subjects groups (controls and conscious patients). Interestingly, we previously observed such 

a late effect both in one MCS patient, and in several conscious controls under an attentional 

manipulation preventing them from being conscious of the global regularity (see groups 2 and 

3 of (Bekinschtein, Dehaene et al., 2009), and patient MCS#4 in the same study). We 

proposed that such a late local effect could reflect that these individuals: “processed 

consciously the local deviant trials, yet without being able to detect the existence of a global 

regularity”. In other terms, we hypothesized that given the limited capacities of conscious 

access (Dehaene & Naccache, 2001), a subject who is representing consciously 
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representations of stimuli in terms of global deviance (e.g.: conscious control subject) would 

not represent consciously local deviance of stimuli, and therefore would not show late local 

effects. In contrast, a conscious subject unable to represent global deviance could show such 

late local effects. This line of interpretation of this effect would make use of the very same 

logic as for the P3a response (see above). This component may therefore reflect deeper 

cognitive integration of the local deviance than MMN. Further studies may use this late local 

effect to better discriminate across VS patients those with deeper perceptual integration of the 

environment. 

   

 

4.4 An early ERP marker of cognitive expectations 

While this work was driven by the exploration of ERP responses to both global and local 

deviances of the stimuli, we discovered an unexpected ERP response. We observed that prior 

to the delivery of the fifth sound, - which was conveying simultaneously informations of local 

and global deviance of the current trial -, conscious controls showed a clear slow negative 

drift beginning with the onset of the first tone of the series, and closing with the early (~200 

ms) processing of the fifth tone. As we noted above (see Results section) this ERP effect is 

extremely suggestive of the classical ‘Contingent Negative Variation’ (Walter, Cooper, 

Aldridge, McCallum, & Winter, 1964) which has been initially described in a paradigm where 

the subjects are instructed that a warning stimulus followed by a target stimulus will be 

delivered on each trial, with a random or fixed stimulus onset asynchrony (SOA). Processing 

of the warning stimulus elicits a CNV which terminates when the target stimulus is delivered 

and processed. CNV has been reported in various motor and cognitive tasks, and has been 

reported to correspond to the activation of a large network implicating in particular frontal 

cortices (Gomez, Flores, & Ledesma, 2007 ; Niedermeyer, 2003 ; Rosahl & Knight, 1995). 

CNV is affected by manipulations of attention and motivation (Rockstroh, Elbert, Birbaumer, 

& Lutzenberger, 1982). In the present study, the negative drift showed an anterior negativity 

scalp topography reminiscent of the CNV, and the regular structure of our stimuli encouraged 

expectative processes of the fifth sound once the first sound was perceived. As in classical 

‘S1-S2’ CNV paradigms, a first stimulus announced the occurrence of the second and crucial 

stimulus on which a task had be performed (Walter, Cooper, Aldridge, McCallum, & Winter, 

1964). Moreover, we could identify this CNV component only in groups of conscious subjects 

(controls and patients), further corroborating the cognitive nature of this ERP component. At 

the individual level, we could isolate a CNV in all conscious controls, and in the majority 
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(61%) of conscious patients’ recordings. Capitalizing on these premises, we then sorted all 

patients’ recordings according to the presence of this CNV (29 CNV+ and 36 CNV- 

recordings). We then recomputed the local and global effects in each of these two groups. 

While both groups showed early and late local effects, we observed a clear global effect in the 

CNV+ group only. Note that this is not a trivial result given that no global effect could be 

observed at the group level in any of the 3 groups of patients. As discussed about the late local 

effect, this CNV component may help to distinguish among MCS and VS patients those who 

display a richer mental life. At a theoretical level, relations prevailing between CNV and 

consciousness are not very well documented. As far as we could review the literature, a single 

observation on two comatose patients reported the presence of a component resembling CNV 

(Dolce & Sannita, 1973). By reporting here experimental data showing that multiple VS 

patients displayed a clear CNV in the absence of any clinical and electrophysiological 

markers of consciousness, we provide strong evidence in favor of the existence of non-

conscious expectative processes. As for the exogenous deployment of attention by salient 

stimuli, it seems that expectative processes, driven by auditory regularities delivered within a 

short time-window compatible with unconscious echoic memory system, exist. One limitation 

of our study relies in the fact that both local and global deviance informations were conveyed 

by the same event. Therefore, it is not easy to distinguish between local and global regularities 

expectations, and in consequence between conscious and unconscious forms of expectation. 

Future works may use this CNV approach to distinguish between conscious and non-

conscious forms of expectations, and to test for their independence. 

 

4.5 Learning effects 

This paradigm also offered us the opportunity to look for learning effects by contrasting ERPs 

elicited by the very same stimuli, according to the period during which they were delivered. 

Interestingly, these effects could reflect attentional and/or strategical learning effects. Indeed, 

they are not confounded with time given that the learning periods were distributed over the 8 

experimental blocks. Note also that the first learning effect occurring well before the onset of 

the fifth sound cannot be explained simply by a difference in probabilities of the first sounds 

which were identical across both conditions. Moreover, the observation that only conscious 

and MCS subjects showed this early learning effect is coherent with an attentional/strategical 

interpretation. Indeed, the single VS patient showing this early effect was probably conscious 

during recording: she presented both a learning and a global effects, and recovered univocal 

signs of consciousness 3 days after the recording session (see (Faugeras et al., 2011)). It is 
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noteworthy that when considering the presence of either the global effect or the early learning 

effects, one can discriminate conscious patients (conscious and MCS patients) from VS 

patients with a similar and almost perfect specificity (see above), and with a stronger 

sensitivity (39% versus 27%) than when using the global effect alone. It is possible that 

spectral analyses enrich the detection of these learning effects which may correspond to 

sustained cognitive states rather than to events locked in time with stimuli or responses. 

Future analyses may confirm this hypothesis.  

 

4.5 Conclusion 

The ERP ‘global effect’ can be used as a highly specific marker of consciousness in non-

communicating patients with a specificity close to 100%. In the presence of a global effect in 

an individual clinically diagnosed as non-conscious (e.g.: VS), one has to question the clinical 

diagnosis and to carefully observe the patient. Future works taking advantage of real-time 

analysis of EEG signal, and combining several electrophysiological measures of brain activity 

may increase the sensitivity of this index of consciousness and may go beyond diagnostic-

oriented measures of brain activity, to enable communication in conscious but impaired 

patients through real-time brain computer interfaces. 
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Figures legends 
 
Figure 1: Test design and illustration of bedside recording in intensive care-unit 
Top: 
(a) On each trial five complex sounds of 50 ms duration each were presented with a fixed 
stimulus onset asynchrony of 150 ms between sounds. Four different types of series of sounds 
were used, the first two were prepared using the same five sounds (AAAAA or BBBBB), and 
the second two series of sounds were either AAAAB or BBBBA. 
(b) Each block started with 20-30 frequent series of sounds to establish the global regularity 
before delivering the first infrequent global deviant stimulus. 
Bottom: 
Photography of a high-density EEG recording setting of a patient in intensive care-unit (with 
the authorization of patient family). Installation of the net and EEG calibration requires about 
15 minutes. Earphones are then applied, task instruction delivered, and EEG recording starts. 
 
Figure 2: Local and global effects at the group level 
Left: Dynamics of Global Field Power (GFP) for the global regularity conditions (top panel), 
and for the local regularity conditions (bottom panel). Global and local standard (blue curves) 
and deviant (red curves) GFPs are plotted, and each significant difference between standard 
and deviant voltages is indicated by a black marker on the X-axis (see M&M for details).  
Middle: Dynamics of ERPs on two regions of interests. Global effect is plotted around Pz (top 
panel), where a significant P3b component is observed exclusively for the conscious controls 
group. Local effect is plotted around Fz (bottom panel), where a large MMN is present for 
conscious controls, and decreases progressively in relation to the severity of consciousness 
impairment. 
Right: ERP scalp topographies of the P3b global effect (top) averaged across the grey 
shadowed time-window (400-600 ms). Bottom topographies indicate the MMN local effect 
across the corresponding time-window (140-180 ms). 
 
Figure 3: Local effect at the individual level 
Each horizontal line corresponds to one ERP recording. On the left, clinical characteristics are 
indicated, including patient conscious state, and CRS-R scoring. Recordings are sorted from 
VS patients to conscious patients, and in each category from low to high CRS-R scores. For 
each recording, the presence of any significant ERP local effect, - tested with the triple-
threshold t-test based statistics confirmed with Monte-Carlo permutation analyses detailed in 
M&M -, is indicated by a color-code. A similar plotting is showed for each of the 8 controls 
where a MMN could be detected for each subject. The graph located at the bottom represents 
the mean of individual statistics for each group.   
 
Figure 4: Global effect at the individual level 
This figure was created using the very same design as in Figure 3. Note that a global effect 
could be detected in each of the 8 control subjects. In patients, global effects were observed 
only in conscious or MCS patients. The only 2 VS patients with a global effect showed clear 
behavioral signs of consciousness within the 3-4 days after recording, suggesting that they 
were conscious during ERP recording (see text).  
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Figure 5: CNV predicts global effect in patients 
Top: 
In controls, scalp topography of voltage averaged from 0 to 600 ms after the onset of the first 
sound reveals an anterior negativity maximum around Cz and corresponding to an expectation 
CNV (Left). 
Voltage averaged around Cz is plotted for each group of subjects, and linear regressions show 
a progressive decrease of CNV slope from controls to VS patients (Right).  
 
Middle: 
CNV slope is shown for each individual recording. Each recording was categorized as CNV+ 
(blue bars) or CNV- (red bars) after comparing individual distributions of single-trials slopes 
with zero.  
 
Bottom: 
Global (top) and local (bottom) dynamics of GFP are plotted separately for the CNV+ (left) 
and CNV- (right) patients groups. Global and local standard (blue curves) and deviant (red 
curves) GFPs are plotted, and each significant difference between standard and deviant 
voltages is indicated by a black marker on the X-axis. A global effect is observed in the 
CNV+ group. 
 
 
Figure 6: Learning effect in controls 
Left: Scalp topography of test minus training ERPs of global standards trials averaged across 
110-244 ms after first sound onset, in controls.  
Right: Dynamics of Fz centered ERPs of training (red) and test (blue) averaged ERPs reveal 
two effects, one occurring before the fifth sound, and a second one occurring later and 
statistically weaker. 
 
 
SOM Figure S1: Scalp topographies of local and global effects 
Scalp topographies of local effects (top) and global effects (bottom) are shown for each group 
of patients and for conscious controls. For local effects, note the progressive improvement of 
MMN and P3a topographies across groups. For global effects, conscious controls showed a 
strong P3b effect. While no global effect could be observed in MCS and VS patients groups, 
conscious patients presented a clear sustained P3b topography with a much less intense 
voltage than controls.  
 
 
SOM Figure S2: Local and global effects at the group level (subset of 49 patients) 
Left: Dynamics of Global Field Power (GFP) for the global regularity conditions (top panel), 
and for the local regularity conditions (bottom panel). Global and local standard (blue curves) 
and deviant (red curves) GFPs are plotted, and each significant difference between standard 
and deviant voltages is indicated by a black marker on the X-axis (see M&M for details).  
Middle: Dynamics of ERPs on two regions of interests. Global effect is plotted around Pz (top 
panel), where a significant P3b component is observed exclusively for the conscious controls 
group. Local effect is plotted around Fz (bottom panel), where a large MMN is present for 
conscious controls, and decreases progressively in relation to the severity of consciousness 
impairment. 
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Right: ERP scalp topographies of the P3b global effect (top) averaged across the grey 
shadowed time-window (400-600 ms). Bottom topographies indicate the MMN local effect 
across the corresponding time-window (140-180 ms).  
 
SOM Figure S3: CNV predicts global effect in patients (subset of 49 patients) 
Global (top) and local (bottom) dynamics of GFP are plotted separately for the CNV+ (left) 
and CNV- (right) patients groups, within the restricted dataset of 49 patients with a single 
recording per patient. Global and local standard (blue curves) and deviant (red curves) GFPs 
are plotted, and each significant difference between standard and deviant voltages is indicated 
by a black marker on the X-axis. A global effect is observed in the CNV+ group.  
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