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Measurement of the beauty of periodic noises

Vincent M. MANET
Marmonier, 35, rue du dauphiné, 69960 Corbas, France∗

(Dated: August 2, 2012)

In this article indicators to describe the “beauty” of noises are proposed. Rhythmic, tonal and
harmonic suavity are introduced. They give a characterization of a noise in terms of rhythmic
regularity (rhythmic suavity), of auditory pleasure of the “chords” constituting the signal (tonal
suavity) and of the transition between the chords (harmonic suavity). These indicators have been
developed for periodic noises typically issued from rotating machines such as engines, compressors...
and are now used by our industrial customers since two years.

I. INTRODUCTION

In the industry, we often have to improve a noisy en-
vironment. The first way, after having identified the
sources, consists of lowering the noise level arriving to
the user. Hovewer nowadays, this is not sufficient. Con-
forming to acoustic standards, even drastic ones, does
not imply customer’s satisfaction. Indeed, to endure a
noise during hours, even with a moderate intensity, is
only possible if this noise has a certain quality, a certain
“beauty”.

Moreover, we face more and more emergency situa-
tions, which means that solutions have to be developed
and installed very quickly. We cannot use sequential tri-
als nor ask customers about their feelings. We have to
directly furnish the “right” solution in terms of noise level
as well as sound comfort (sound beauty). This is why it
is necessary to be able to characterize this beauty in some
sense.

In this article, we present several indicators, each one
describing the sound beauty according to a point of view.
These indicators, defined as values between 0 (bad) and
1 (perfect), can then be combined into a global indicator
of the considered noise.

To approach the subject of the beauty of a noise is
fundamentally different from that for example the music.
This is why no reference is made to works of classical
psychoacoustics. We want to emphasize that we only deal
with noises, and more precisely with “neutral” noises: a
neutral noise is a noise to which no cultural nor emotional
component is attached. For example, the noise of a car
engine is not neutral, because its perception is clearly
related to cultural and emotional factors. But noises of
an air conditioner, of an industrial compressor or of the
engine of a mechanical tool are neutral.

∗ vincent.manet@marmonier.com

II. STAGE 1 (OPTIONAL): DETERMINATION
OF “CYCLES” IN THE ACOUSTIC SIGNAL

In music (played by musicians, not generated by com-
puters), time between two successive pulses cannot gen-
erally be less than 20 ms (even if smaller values can
be found in more contemporary musical forms). But
Green[1] and Roads[2] showed that events separated by
only 1 ms can be detected by human ears.
Therefore, we do not impose any minimum duration

of cycles that we study. This is especially true for peri-
odic signals, where even a very small part of the signal is
important because it is repeated again and again.

Since we study periodic signals, we must be able to
isolate a signal cycle to examine it in detail.
Fig. 1 presents a typical temporal signal of a periodic

phenomenon. Studied signals (cyclic noise emitted by ro-
tating machines) have the distinction of having an emerg-
ing component at each cycle. The algorithm exploits this
property: a first approximation of the cycle time is ob-
tained by studying the lowest frequencies of the spec-
trum. This approximation is then refined by the study
of the temporal signal. This gives excellent results, as
illustrated by industrial examples presented at the end
of the article.
If this algorithm is not adapted to the kind of studied

signal, we suppose that a cycle is extracted using an-
other method (or manually), and in following stages, we
consider only one cycle of the signal.

III. STAGE 2: RHYTHMIC SUAVITY

This indicator represents the rhythmic regularity of an
acoustic signal, and is based on a temporal analysis of
the signal. For example, an engine can rotate in a uni-
form way or not (without taking into account the sound
it produces). This feeling of regularity or of irregularity is
already a part (a component) of the beauty of the acous-
tic signal. In order to define it, we propose to find the
pulses within the considered acoustic signal, i.e. to find
where acoustic events occur. The rhythmic suavity will
be defined as the number of acoustic events divided by
the total number of pulsations within the whole acoustic
signal.
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FIG. 1. Typical temporal recording of a periodic signal

Software having a “beat finder” function often use a
dynamical approach (in a musical sense) in order to rep-
resent the notion of beginning (or ending) of a note.
Pulses are located where voices come into play: a slope
greater than a given threshold is hunted in the temporal
signal, as for example in Audacity[3] software. This no-
tion can also be studied in a spectral way, as for example,
in AudioSculpt[4] software.

For short periodic signals (which are our concern),
methods based on the spectrum derivative or variation
are not adapted because notions such as beginning or
ending of notes do not exist: the signal is too smooth
(compared to music), and to lower the threshold leads to
very unstable results. Smoothing methods (as windowed
average) applied to the signal leads to the same kind of
threshold problems.

Implemented algorithm, illustrated in Fig. 2, is based
on the following ideas: The studied signal (one cycle) is
divided into n equal ranges. The variation direction of
mean values other each range is studied to detect when it
changes from decreasing or constant to increasing (which
corresponds to the notion of beginning of note); The ex-
act inflexion point is determined as the minimum in the
temporal signal corresponding to the inflexion range and
on the two adjacent ranges.

Knowing these instants when acoustic events occur
(called pulses), it is obvious to find the minimal pulsa-
tion, so that each pulse and the total duration of a cycle
are a multiple of this pulsation, and hence to reach the
rhythmic suavity. With such a definition, the rhythmic
suavity is a real number lying between 0 and 1.

IV. STAGE 3: TONAL SUAVITY

We call “chord” the frequency content of the part of
the signal contained between two successive pulses. A
chord is constituted by a certain number of “notes” cor-
responding to frequencies present in the chord.
A method derived from Euler’s work will be used to

compute the ”beauty” of each chord relatively to the
tonal centre of the signal.
The tonal suavity for the whole acoustic signal will

be obtained by balancing the beauty of each chord with
respect to its duration.

A. Determination of the tonal centre

When considering music, it is easy to determine the
tonal centre (i.e. the tonic) with the score.
But, when considering a noise, this task is not so sim-

ple. Nevertheless, there are many ways to determine an
“equivalent note” or a tonal centre of an acoustic signal.
It is possible to use prominent frequency methods:

both “Tone to noise ratio” as defined by standards[5, 6],
and “Prominence ratio”defined by standard[6] can be
used. For these methods, a tone is said to be prominent
if it fulfills some criteria within the critical band centered
at the frequency of the tone. When multiples tones are
in the same critical band, prominence ratio is more effec-
tive; and when multiple tones exist in adjacent critical
bands (strong harmonics), tone-to-noise ratio should be
preferred. From these frequencies, the most emerging one
can be chosen as the tonal centre.
In this work, we define the tonal centre as the fun-

damental frequency of the signal, since it is generally a
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FIG. 2. Implemented “beat finder” algorithm: 1) one cy-
cle (temporal signal), 2) mean values of signal within the 16
ranges, 3) variation of averages, 4) ranges (horizontal arrows)
in which the minimum (encircled) represents a pulse.

value of interest when considering a periodic signal (at
least from a mechanical and energetic point of view). It
means that we retain the lowest frequency peak in the
signal. For this purpose, a Bartlett function is used in
the FFT in order to favor lower frequencies.

In the following, f0 will denote the frequency corre-
sponding to the tonal centre of the signal.

B. Tonal suavity

Tonal suavity will be calculated using a modified ver-
sion of Euler’s works[7–9]. This approach[10] is primarily
a physicist’s approach, and is close to Helmholtz’s work.
Besides, the classification of beauty of chords constituted
by only two notes are exactly the same for Euler[7] and
Helmholtz[11].

This modified version of Euler’s work has a major ad-
vantage: once the classification scale of the beauties of
chords constituted by two notes is determined, then it
can be extended to chords constituted by any number of
notes spread over any number of octaves.
A chord (previously defined as the frequency content

between two successive pulses) is constituted by n notes.
We shall denote f1, f2, ..., fn the n frequencies corre-
sponding of these n notes of the chord (f0 denoting the
frequency of the tonal centre of the signal as defined pre-
viously).

C. Euler’s work

Euler defines a “degree of sweetness”, a kind of “easi-
ness”, which is his indicator: the less this indicator, easier
to perceive the order between notes, or equivalently more
beautiful the sound.

Euler’s theory can be summarized as follows:

• A note is replaced by a number lying between 0
(unisson) and 12 (octave) and corresponding to its
interval to the tonal centre.

• The “exponent” of a chord is defined as the LCM
(least common multiple) of the ratios of frequencies
related to the tonal centre of the signal: exponent =
LCM(f1/f0, ..., fn/f0). In order to calculate LCM,
we have to manage only integers. Hence, if ratios
fi/f0 are not all integers, they are all multipled by
an adequate coefficient.

• The exponent is then decomposed in product of
primes:

exponentchord =
∏

k

pjkk (1)

where k is the number of primes pk necessary to
perform this decomposition and jk their exponent.
This prime decomposition is given in table I. Some
examples are proposed in table II.

• The easiness of a chord is computed from the pre-
vious prime decomposition as:

easinesschord = 1 +
∑

k

jk(pk − 1) (2)

The result is written using roman numbers in ta-
ble II.
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TABLE I. Euler’s music scale and easiness

interval i Prime decomposition easiness
unison 0 1 1

minor 2nd 1 24.3−1.5−1 11
Major 2nd 2 2−3.32 8
minor 3rd 3 2.3.5−1 8
Major 3rd 4 2−2.5 7

4th 5 22.3−1 5
aug. 4th 6 2−5.32.5 14

5th 7 2−1.3 4
minor 6th 8 23.5−1 8
Major 6th 9 3−1.5 7
minor 7th 10 24.3−2 9
Major 7th 11 2−3.3.5 10
octave 12 2 2

TABLE II. Numbering of some chords according to Euler

chord G ˇˇ G ˇˇ G ˇˇˇ
ratio 2 4/3 5/4 and 3/2
coefficient 1 3 4

tonal centre G ˇ
I ˇ I

ˇ
unchanged modified modified

exponent LCM(1;2)=2 LCM(3;4)=12 LCM(4;5;6)
= 21 = 22.3 = 22.3.5

easiness 1+1 = II 1+2+2 =IV 1+2+2+4
=IX

To illustrate the methods in this article, we use music,
and more precisely, we use C Major (no key signature).
Hence a chord whose bass is C will be represented by the
number 1 (because it is also the tonal centre). A note
C one octave higher will be represented by the number 2
(because its frequency is the double of the one of tonal
centre). A note F a fourth higher than the tonal centre
will be represented by 4/3 which represents the ratio of
its frequency to the tonal centre. These ratios between
notes heights are given in table I. Some examples of
numbering of intervals are given in table II.

D. Modification, extension

Concerning Euler’s work, we can make the following
remarks:

• In order to have only natural numbers, it is neces-
sary to multiply the approximations of fi/f0 ratios
according to table I by a coefficient. Doing this

TABLE III. Proposed scale and easiness

interval i Prime decomposition easiness
unison 0 1 1

minor 2nd 1 2−12.3.5.7.41 65
Major 2nd 2 2−7.11.13 30
minor 3rd 3 2−4.19 23
Major 3rd 4 2−6.3.5 17

4th 5 2−8.73 27
aug. 4th 6 2−10.31.47 87

5th 7 2−5.32.5 14
minor 6th 8 2−8.11.37 55
Major 6th 9 2−9.3.172 44
minor 7th 10 2−12.32.5.7.23 49
Major 7th 11 2−9.3.11.29 50
octave 12 2 2

corresponds to change the tonal centre used to per-
form the numbering. For example, in second chord
of table II, we have to multiply by 3 to have inte-
gers. This corresponds to change the C tonal centre
by a F tonal centre two octaves lower.

• Nevertheless, insofar as the same coefficient is used
to number all the chords of the signal, this has only
a relative importance because the numbering is still
done with respect to the same note even if it is no
more the tonal centre.

Because the fundamental frequency is a value on in-
terest in the industrial cases we face, we do not want to
change the tonal centre f0 used in the numbering process.
It is therefore necessary to modify the approximations of
intervals. We have to find a set of primes so that i) it is
possible to correctly approximate the powers of twelfth
root of 2, ii) having only powers of 2 as denominators and
iii) so that easiness obtained for the intervals are classi-
fied in the same order of the ones obtained by Euler.
Such an approximation is presented in table III.

Contrary to Euler, who only used powers of 2, 3 and 5 for
the decompositions, we use 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41 and 47. Nevertheless, it does not make the
computation algorithm more complicated (since prime
decomposition is not computed but directly obtained by
construction).
Easiness of intervals corresponding to this new decom-

position have higher values than Euler’s ones, but glob-
ally respect the same order. Some differences can be
seen which permit to include Euler’s latest work[8], and
to better take into account some consonances. Spreading
values of easiness over a large range yields more distinc-
tion in suavity marks.

E. Implemented algorithm

The algorithm is as follows:
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1. Determination of the notes constituting a chord:

From the spectrum of the frequency content
corresponding to a chord (signal contained be-
tween two acoustic events), we take the n low-
est frequency peaks. In developed program,
n ≤ 10, and we stop looking for peaks at
min(8000 Hz,Nyquist frequency). We then have n
frequencies fn describing the chord.

2. Approximation of the notes of the chord:

Each frequency fn si approximated by fn ≈
f0.2

kn .( 12
√
2)in , where kn is the number of octaves

between fn and f0 and in the halftone which is
the closest to fn in the considered octave. ( 12

√
2)in

is then replaced by its approximation according to
tables I or III.

3. Calculation of the chord’s exponent using equation
(1).

4. Calculation of the chord easiness using equation
(2).

5. Normalization:

The lower the easiness, the more the chord is tune-
ful. On the contrary, we want that the higher the
suavity, the more the chord is tuneful. We also
want the suavity to lie between 0 and 1.

We can notice that, for a given chord of n notes:
1 ≤ easiness ≤ b with:

b = on + an (3)

where on is the upper bound of the number of oc-
taves between the tonal centre and the notes, and
an is the upper bound of the easiness of a chord
constituted by n notes.

an is the upper bound of equation (2), which is
calculated by taken the maximum of each term of
the sum:

an = 1 +
∑

k

(

max12i=1
ji −min12

i=1(0, ji)
)

(pk − 1)

= 28 if using table I
= 318 if using table III

(4)

If we only consider frequencies between 1 and
10 kHz, then we have a maximum of 14 octaves,
which means that on = 14 can be used as upper
bound.

6. Calculation of the chord suavity:

Finally, the suavity is defined by:

suavitychord = 1− easiness− 1

b− 1
(5)

which lies between 0 and 1 (1 being the better).

7. We finally compute the tonal suavity of the signal
as the balanced average of the chords suavity with
the duration of the chords:

suavity
tonal

=
∑

i

suavity
chordi

.durationchordi

total duration of the signal
(6)

From its definition, the tonal suavity lies between
0 and 1.

V. STAGE 4: HARMONIC SUAVITY

Harmonic suavity represents the beauty of the transi-
tion between two successive chords constituting the sig-
nal (plus the last chord followed by the first one for pe-
riodic signals). More precisely, harmonic suavity quan-
tifies the beauty of the part of the second chord which
does not come from a transformation (belonging to the
dihedral group) of the first chord. In this sense, har-
monic suavity is related to the rate of change between
two acoustic events.

A. Existing works

In his work, Euler extends his method in order to deter-
mine the beauty of a set of chords or to a whole musical
work.
The main idea is the following: the transition between

two chords is harmonious if the chord composed of all
notes composing the two chords is itself harmonious. By
extension, this method could be applied to any number
of chords, and hence to a whole musical work.
Two mains objections can be done:

1. Such a method yields a bad mark for transposed
chords, as in sequences. Fig 3 exhibits a perfect
chord C–E–G, i.e. the C major triad in root posi-
tion, as the starting chord of a ascending sequence
by successive halftones steps. Such a sequence of
chords is absolutely not chocking to the ears, be-
cause a motif is immediately recognized, which is
repeated and transposed. With Euler’s method,
we have to take into consideration the chord C–
C#–D–D#–E–F–F#–G–G#–A–A#–B, i.e. con-
stituted by all the halftones: this chord has a high
easiness or a bad tonal suavity, which perfectly
agree with what we hear.

2. Euler does not calculate the beauty of the transi-
tion between two chords, but the overall beauty of
two (or more) chords considered as a single entity.

Another possible way consists to use musicology rules
related to the beauty of transition of chords (which is
sometimes referred to as “chords in movement”). In this
approach, chords are qualified (stables or attractive) and
the movement of the bass is analyzed with respect to
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G ˇˇˇ 4ˇˇ4ˇ ˇ4ˇˇ 4ˇˇ4ˇ ˇ4ˇˇ G ˇ4ˇˇˇ4ˇˇ4̌̌̌4̌̌4̌
FIG. 3. An ascending sequence
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FIG. 4. Dodecagone of the 12 halftones

the degree of the chord (i.e. the position of the bass
relatively to the tonal centre). Rules are numerous and
delicates. They need an analysis, which can be qualified
as syntactic. It is quite impossible to program such rules,
especially if we want to number chords having more than
6 notes (which cannot be taken into account)...

B. Developed approach

To expose our approach, we continue to explain it using
musical example, even if our goal remains the study of
industrial noises.

We propose to simplify Euler’s work and combine it
with some rule of musical harmony. From musical har-
mony we keep numbering a chord relatively to its bass,
without taking into account octaves. From Euler’s work,
we keep the idea according to which the transition be-
tween two chords is beautiful if the chord made of all
notes of both chords is beautiful. But the method is only
applied to the transition between two chords. We only
consider a chord relatively to the bass of the previous
one (and no more relatively to the tonal centre). Finally,
we solve the problem described previously concerning se-
quences by “suppressing” from the second chord the part
that “comes from the first one” (in a sense of transfor-
mations belonging to the dihedral group).

As aforementioned, considering a note independently
from its octave and relatively to a reference note is equiv-
alent to consider its interval to the reference note. Hence
a note can be represented by an elements of the cyclic
group Z/12Z. This cyclic group can be viewed as a regu-
lar polygon with 12 sides, i.e. a dodecagon: the 12 apexes
represent the 12 possible halftones for a note (relatively
to the bass of the chord). It is depicted in figure Fig. 4.

In the following, notes will be considered indepen-
dently from octaves: hence C–E–G–C–E is equivalent to
C–E–G, i.e. the chord is presented in a “compact” form,
as illustrated in figure Fig 5.

G ˇˇˇˇ
ˇ G ˇˇˇ

FIG. 5. Representations of a chord (Considered chord / com-
pact chord / corresponding polygon)

Considering a chord made of p notes, it can be repre-
sented by a p sided polygon whose apexes belong to the
dodecagon. A set T of p values in Z/nZ, which is equiv-
alent to a p sided polygon whose apexes belong to an n
sided polygon, is hence equivalent to a chord constituted
by p notes.
For example T = (0, 4, 7) represents in Z/12Z the

chord and the polygon depicted in figure Fig 5. Chord
T = (0, 4, 7) correspond to any chord whose second note
is located 4 halftones from the first one, and whose third
note is located 7 halftones from the first one, the first one
being its bass. Such a chord can be C–E–G, as in figure
Fig. 5, but also any chord being a transposition of it (see
figure Fig. 3).

The dihedral group Dn is a group of order 2n of plane
isometries letting the regular n sided polygon unchanged.
Dn is made of n rotations and n symmetries. It is gener-
ated by two elements: the rotation of one vertice to the
next R1, and the symmetry with respect to abscissa axe
S0. The dihedral group Dn can hence be written in the
form Dn = {R0 = Id,R1, ..., R

n−1

1
, S0, R1 ◦S0, ..., R

n−1

1
◦

S0}. From a computation point of view, it means that it
is sufficient to dispose of R1 and S0 transformations to
be able to browse the entire dihedral group.

From a musical (and a frequential) point a view, we
can notice that:

• R0 = Id corresponds to a transposition of chord T
(as in a sequence);

• Ri, with i ≥ 1, corresponds to an inversion of chord
T (same notes in a different order) with eventually
a transposition;

• S0 corresponds to a retrograde of chord T (chord
made of the same intervals in the opposite direc-
tion) with eventually a transposition;

• Ri ◦ S0, with i ≥ 1, corresponds to the retrograde
of an inversion of chord T with eventually a trans-
position;

Although each transformation of the dihedral group is
different from all others, it does not imply that it ex-
ists an unique decomposition of the transformation of a
polygon T into a polygon V when p < n.
Consider for example chord T = (0, 5, 10) correspond-

ing to chord C–F–A# and chord V = (0, 2, 7) corre-
sponding to chord D–E–A. Then V = R2(T ), but also
V = S0(T ).
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Compact
writing

In Z/12Z Graph Transformation

G ˇˇˇ T = (0, 4, 7)

↓ V = DV (T ) + RV (T )

G ˇˇ4ˇ ˇ V = (0, 4, 8, 9)
DV (T ) = R4 ◦ S0,
RV (T ) = +{8}

FIG. 6. Comparison between chords

When several transformations exist, then we choose
the one which comes first in the order of transforma-
tions, when classified as previously: Dn = {R0 =
Id,R1, ..., R

n−1

1
, S0, R1 ◦S0, ..., R

n−1

1
◦S0}. It just means

that it is easier to hear a transposition, then an inversion,
then a retrograde chord, and finally the retrograde chord
of an inversion.

Finally, if such a transformation exists, then it is pos-
sible to give a “beauty mark” to the transformation. We
chose the following marks: 1 for R0 = Id, 0.9 for Ri

(i ≥ 1), 0.8 for S0 and 0.7 for Ri ◦ S0 (i ≥ 1).

C. Transformation from a chord to another –
dihedral component D and non congruous

component R

Consider chord T = (0, 4, 7), which may represent the
perfect chord C–E–G already presented in figure Fig. 5.
Let V = (0, 4, 8, 9) be the chord F–A–C#–D, as illus-
trated in figure Fig. 6.
It is easy to see that R4(S0(T )) = (0, 4, 9) = V − {8}.
We call dihedral component, the element of Dn allow-

ing to transform T into V . It is denoted DV (T ). In this
case, the dihedral component is equal to DV (T ) = R4◦S0.
We also define the non congruous component of V rela-

tively to T , and we denote it RV , as the remainder when
“subtracting” from V its dihedral component DV (T ): it
corresponds to the notes belonging to V which are not
issued from the transformation of T . This definition is
quite natural, and we reach: RV (T ) = +{8}.
When no transformation exists between two chords,

then the dihedral component D = ∅ and the non congru-
ous component R is equal to the second chord.

D. Arithmetic of transformations

Consider a chord T and its successor V . As explained,
a way to write that V issued from a transformation of T

G ˇˇˇ
V = DV (T ) + RV (T ) with:

DV (T ) = R4 ◦ S0

and RV (T ) = +{8}
−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−
T = DT (V ) + RT (V ) with:

DT (V ) = S0 ◦R8

and RT (V ) = −{8}

G ˇˇ4ˇ ˇ

T = (0, 4, 7) V = (0, 4, 8, 9)

FIG. 7. Arithmetic between chords

is:

V = DV (T ) + RV (T ) (7)

Equation (7) can be seen as a decomposition or a di-
vision of V by T : V represents the dividend, T the divi-
sor, DV (T ) the quotient and RV (T ) the remainder. This
equation could also be written in a modular arithmetic
form as: V ≡ RV (T ) mod [DV (T )].

Equation (7) can be written in inverse form:

T = DT (V ) + RT (V ) (8)

with:
{

DT = D
−1

V

RT = −D
−1

V .RV = −DT (RV )
(9)

Since any representative of the dihedral group can only
be written as Ri or Ri ◦ S0, then (indexes belong to
Z/nZ):

{

if DV = Ri, DT = R
−i

if DV = Ri ◦ S0, DT = S0 ◦R−i

(10)

From equation (10), we can notice that the “beauty
mark” of the transformation is the same for the direct
and the reverse transformation.

We study again transformation from T into V and
from V into T defined by T = (0, 4, 7) C–E–G and
V = (0, 4, 8, 9) F–A–C#–D and illustrated in figure Fig 6.
Dihedral and non congruous components can be calcu-
lated directly as in previous section, or using equations
(9) and (10). Results are reported in figure Fig 7.
In this case we have:

• Direct calculation from T to V gives DV (T ) = R4 ◦
S0 and RV (T ) = {8},

• Direct calculation from V to T gives DT (V ) = R4 ◦
S0 and RT (V ) = −{8}.

• Equations (9) and (10) give DT (V ) = S0 ◦
R

−4 = S0 ◦ R8 and RT (V ) = −(S0 ◦ R8)({8}) =
−S0({4}) = −{8}.

The writing of DT (V ) is not unique, but [R4 ◦ S0](T ) =
[S0 ◦ R8](T ). The most important point remains that
the beauty mark of the dihedral component remains the
same, and that both decompositions lead to the same
non congruous component RT (V ).
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E. Harmonic suavity of the transition between two
chords

The harmonic suavity, corresponding to the beauty of
the transition from chord T to chord V , will be calculated
as follows:

• If it exists a transformation from T to V then:

– if the number of notes of V is less or equal to
the number of notes of T (i.e. the non con-
gruous component is less or equal to zero),
then the harmonic suavity is equal to the mark
of the transformation: 1 for R0, 0.9 for Ri

(i ≥ 1), 0.8 for S0 and 0.7 forRi ◦ S0 (i ≥ 1);

– if the number of notes of V is strictly greater
than the number of notes of T (i.e. the non
congruous component is strictly greater than
zero), then we calculate the tonal suavity of
chord RV (T ) with respect to the bass of T (i.e.
we replace f0 by f1(T ) in stage 3 algorithm);

• If there is no transformation from T to V then: we
calculate the tonal suavity of chord V (we recall
that in this case RV (T ) = V ) with respect to the
bass of T (i.e. we replace f0 by f1(T ) in stage 3
algorithm).

In cases where stage 3 (tonal suavity) is involved (i.e.
when the non congrusous component si strictly greater
than zero), the normalization of the tonal suavity is done
using equation (??) with on = 0 (because using a com-
pact notation, we only consider one octave), and an is
unchanged.

La figure 8 reprend l’exemple de la figure 7 et donne
les accords résultant de la transition dans le cas où la
méthode d’Euler aurait été conservée et dans la méthode
proposé.
Figure Fig. 8 use the same example as in figure 7 and

gives the resulting chords to the studied transition ob-
tained using Euler’s work as explained in section VA
and using the exposed method for comparison.

F. harmonic suavity of a signal

The harmonic suavity of a signal is defined as the aver-
age of harmonic suavity of all transitions of chords con-
stituting the signal.
For periodic signal, we also have to take into account

the transition between the last chord and the first chord
of the signal.

VI. STAGE 5: GLOBAL SUAVITY

The global suavity synthesizes the three previous indi-
cators to give a global mark of the beauty of the studied
acoustic signal.

G ˇˇˇ ˇˇ4ˇ
ˇ

Euler’s method: Proposed method:
tonal suavity of the sum
of the chords is calcu-
lated. No difference is
made between beauty of
the chords and of their
transition. Calculation of
the tonal suavity of chord:

Tonal suavity of each chord
has been calculated in pre-
vious stage. Harmonic
suavity of the transition
is calculated as the tonal
suavity of the resulting
chord:

G 6ˇˇˇ4ˇ ˇˇ
ˇ G ˇ2ˇ

FIG. 8. Resulting chords

rhythmic: 50%

tonal: 30% harmonic: 40%

Global suavity = 15.67% (ratio of areas)

FIG. 9. Representation of global suavity

In order not to mix temporal information and fre-
quency ones, a radar representation is used (instead of
the simple multiplication of suavity components). The
ratio of the area of the triangle made by suavities di-
vided by the maximum triangle area is used as the global
suavity, as illustrated in figure Fig. 9.

VII. INDUSTRIAL EXAMPLES

In this section, we present some results obtained on
industrial noises.
We use the first example in section VII A to detail the

calculation stages in order to numerically illustrate pre-
sented algorithms.
Only results are presented concerning the second ex-

ample.

To perform analysis, a prototype software has been
developed in fortran 77[12], with a graphical interface
in japi[13]. This software has been developed only for
research purpose, without any commercial goal.

A. Asymmetrical two-stroke engine

The signal is the noise emitted by an asymmetrical
two-stroke engine. One explosion happens at 1/4 of the
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FIG. 10. One cycle extracted from the signal (2 cranckshaft
rotations)

FIG. 11. Detected pulses

first crankshaft rotation, while the second explosion oc-
curs at 3/4 of the first crankshaft rotation. No explosion
happens during the second rotation of the crankshaft.
The recorded signal is shown in figure Fig. 1.

The software permits to identify the cycles.It is found
that the mean duration of cycles is 0.109 s with a stan-
dard deviation of 2.149.10−3 s. A “cycle”, as detected by
the program, correspond to a period of the signal, which
is, in this case, equal to 2 crankshaft rotations. It corre-
spond to an engine rotation speed equal to 1100 rpm.

We only retain one single cycle (see figure Fig. 10) to
continue the analysis.

Pulse analysis performed on one cycle (one period of
the signal, 2 crankshaft rotations) leads to pulses marked
by vertical lines in figure Fig. 11. It is found that 3
acoustic events occur at points 1, 420 and 862 during
a cycle containing a total of 1718 points. Algorithmic
details are illustrated in figure Fig.2. It corresponds to
acoustic events occurring at pulses 0, 1 and 2 during a
cycle containing 4 pulses. The rhythmic suavity of the
signal is equal to 3/4 = 0.75.

The periodicity of explosions suggests that the arrhyth-
mia of the signal should be greater. Due to only 2 ex-
plosions in one period (2 explosions separated by half a
rotation of the crankshaft, then no explosion during 1.5
rotation), we thought that the rhythmic suavity would
be equal to 2/4 = 0.5 (2 acoustic events for a total of 4
pulses).

But from figure Fig. 10, signal analysis clearly shows
3 areas: 1) a first area containing 3 decreasing peaks;

TABLE IV. Chord 1

frequencies (Hz) kn in Euler Proposed
table I table III

f1 = 187.5 1 5 233−1 2−773

f2 = 562.5 3 0 23 23

f3 = 937.5 3 9 233−151 2−631172

f4 = 1406.25 4 4 2251 2−23151

f5 = 1593.75 4 6 2−13251 2−6311471

f6 = 1875.0 4 9 243−151 2−531172

f7 = 2250.0 5 0 25 25

f8 = 2718.75 5 3 26315−1 21191

f9 = 3000.0 5 5 273−1 2−373

f10 = 3468.75 5 7 2431 3251

easiness 25 169
coefficient 30 128

suavity 41.46% 49.24%

2) an ascent followed by 3 decreasing peaks; 3) a last
ascent followed by several peaks without special emer-
gence. Thus having found 3 acoustic events is correct.
In fact, mechanical noises are emitted at 1/4 of the sec-
ond crankshaft rotation without any explosion. The level
of this third pulse is anyway less than the one of the 2
previous pulses, but its emergence is clearly present in
the signal.
The analysis of durations between acoustic events

agrees with the fact that a cycle is made of 4 pulses. The
calculated rhythmic suavity (equal to 3/4) is the correct
one.

Tonal centre is chosen as the fundamental frequency
f0 = 70.3 Hz.

Table IV shows the frequency content of chord 1 (first
column), kn and in factors corresponding to stage 3 algo-
rithm, and the prime decomposition according to Euler
and proposed methods. Doing the same computation for
the second chord yields a coefficient in Euler’s method
equals to 120 to obtain only integers. For the third chord,
this coefficient in Euler’s method remains equal to 120.
In order to calculate the tonal suavity of the whole cy-
cle, we have to consider only one value of this coefficient
(which correspond to a shift of the tonal centre), which
is obviously the greater value (in order to have only inte-
gers). Updating this coefficient to 120 in the calculation
of the first chord leads to a tonal suavity of chord 1 equal
to 36.58%. This updated value will be used in the com-
putation of the averall tonal suavity.
Finally, tonal suavity (for the signal, i.e. for all chords)

based on the proposed prime decomposition is equal to
36.02% and to 34.10% based on Euler’s decomposition.

The signal is composed of 3 chords. Frequencies of
first chord have been presented in table IV. Frequency
contents of chords 2 and 3 are given in table V. From
chords written in Z/12Z in compact form, as given in
table VI, it appears that there is no transformation from
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TABLE V. Frequency content of chords 2 and 3 (Hz)

Chord 2 Chord 3
f1 = 281.25 f1 = 140.625
f2 = 937.5 f2 = 234.375
f3 = 1687.5 f3 = 468.75
f4 = 2343.75 f4 = 562.5
f5 = 3093.75 f5 = 890.625
f6 = 3656.25 f6 = 1171.875
f7 = 4406.25 f7 = 1546.875
f8 = 5062.5 f8 = 1828.125
f9 = 5812.5 f9 = 1921.825
f10 = 6468.75 f10 = 2203.125

TABLE VI. Chords in compact form in Z/12Z

Chord1 Chord 2 Chord 3
0 0 0
1 1 1
3 2 6
4 4 8
7 6 9
10 7
11 8

9

chord 1 to chord 2, nor from chord 3 to chord 1 (periodic
signal), and chord 3 = Id(chord 2) -{2, 4, 7}.
In this case, analysis of chords transitions leads to:

• chord 1 to chord 2: harmonic suavity = tonal
suavity of chord 2 with respect to the bass of chord
1 (i.e. replacing f0 by 187.5);

• chord 2 to chord 3: harmonic suavity = 1 (trans-
formation mark corresponding to Id = R0);

• chord 3 to chord 1: harmonic suavity = tonal
suavity of chord Rchord 3 = chord 1 with respect to
the bass of chord 3 (i.e. replacing f0 by 140.625).

It is important not to forget, as aforementionned, that
on = 0 when calculating harmonic suavity using tonal
suavity.
Harmonic suavity of the signal is equal to 69.92% with

Euler’s decomposition, and to 89.43% with the proposed
one.

Finally, the noise emitted by this asymmetrical two-
stroke engine as a rhythmic suavity equals to 75%, a tonal
suavity equals to 36.02% and an harmonic suavity equals
to 89.43%. Global suavity is equals to 42.10%.

B. Symmetrical two-stroke engine

In this second example, the signal is the noise emit-
ted by a symmetrical two-stroke engine. One explosion
happens at each crankshaft rotation.

FIG. 12. Detected pulses

The analysis of cycles yields a mean duration equal to
0.0551 s with a standard deviation of 1.10.10−3 s. One
cycle (which means 1 period, and also 1 crankshaft rota-
tion this time) corresponds to an engine rotation speed
equals to 1089 rpm.
Pulse analysis on this cycle leads to acoustic events

as depicted by vertical lines in figure Fig. 12. Only 2
acoustic events are detected at points 1 and 871 in a cycle
containing 2433 points. This correspond to 2 acoustic
events at pulses 0 and 2 within a cycle containing a total
of 5 pulses. The rhythmic suavity is equal to 2/5 = 0.40.

Tonal centre is chosen as the fundamental frequency
f0 = 11.7 Hz, and the tonal suavity is equal to 37.85%
with the proposed decomposition.

The analysis of chords transitions is reduced to transi-
tions from chord 1 to chord 2 and from chord 2 to chord 1.
In both cases, we have D = R10 ◦ S0. Harmonic suavity
is equal to 70.00% in both cases.

Finaly, global suavity is equals to 23.21%.

Comparison between asymmetrical and symmetrical
two-stroke engines yields that:

• Contrary to intuition, the asymmetrical engine has
a better rhythmic suavity than the symmetrical en-
gine. This point is confirmed by a jury.

• tonal suavities are almost the same for both en-
gines. This means that chords of both engines has
the same overall beauty.

• The difference is more pronounced on the harmonic
suavity. This means that the transition from a
chord to the other is smoother for the asymmet-
rical engine.

A way to improve the noise of the symmetrical engine
(compared to the asymmetrical engine) could be to add
one frequency to the second acoustical event (in order
to improve the harmonic suavity, but without lowering
the tonal suavity), and to work on the rythmicity of the
engine (for example by adding a third acoustic event).

VIII. CONCLUSION

The purpose of the present study was to develop a tool
able to give a measure of the beauty, or the acoustical
quality, of (periodic) noises.
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To perform this task, we decomposed this beauty
into three components: rhythmic, tonal and harmonic
suavity, each of them giving an indication of beauty ac-
cording to a different point of view.

From an algorithmic point of view, suavity computa-
tions are performed by manipulating only array of inte-
gers, which consumes little memory and requires very low
computation time.

It may be interesting to notice that harmonic suavity
is a way of coding a chord from the previous one by only

the dihedral and the non congruous components.

Although we have so far used a Z/12Z decomposition,
it is quite possible to use any other decomposition the
moment an easyness was formalized (i.e. as in tables I
and III): for example the thäı-khmer musical scale uses
Z/7Z, and the slendro scale used in Java uses Z/5Z[14].

Finally the presented method shows excellent agree-
ment with the feeling of a human jury (8 internal mem-
bers plus customers teams) on all industrial cases treated
untill now.
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