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ABSTRACT

Multilinear analysis provides a powerful mathematical framework
for analyzing synthetic aperture radar (SAR) images resulting from
the interaction of multiple factors like sky luminosity and viewing
angles, while preserving their original shape. In this paper, we pro-
pose a multilinear principal component analysis (MPCA) algorithm
for target recognition in SAR images. First, we form a high order
tensor with the training image set and we apply the higher-order sin-
gular value decomposition (HOSVD) to reveal patterns and depen-
dencies between images. The HOSVD of this training image ten-
sor is also used for compressing the data and removing background
noise. Then, a multilinear projection algorithm exploiting the cal-
culated HOSVD is used to classify an unknown target in a SAR
image. This multilinear projection that leads to a nonlinear optimiza-
tion problem is carried out in an iterative way by applying the alter-
nate least squares (ALS) algorithm which solves a linear projection
subproblem at each iteration. The estimated feature vector associa-
ted with the mode-class is then used for recognition. Tests with a true
SAR image database illustrate very good classification performance
of the proposed MPCA-based method while providing a very high
compression rate.

1. INTRODUCTION

Supervised subspace-based classification is a classical approach for
pattern recognition. Traditional linear subspace methods like princi-
pal component analysis (PCA) or linear discriminant analysis (LDA)
require to reshape images into high-dimensional vectors. Then, vec-
torized images belonging to the same class of objects to classify are
ranged into a matrix, and PCA or LDA are applied to determine the
basis vectors that span each class. This vectorization breaks the natu-
ral structure and correlation in the original image set. Moreover, with
linear approaches only single-factor variations are permitted in the
image database. During the last decade, several multilinear subspace
methods have been proposed for generalizing linear methods, as it is
the case of multilinear principal component analysis (MPCA), multi-
linear independent component analysis (MICA) and multilinear dis-
criminant analysis (MDA) used for face recognition ([1], [2],[3]),
handwritten digit classification ([4]), or gait recognition ([5], [6]).
These multilinear methods take all the variation factors of the trai-
ning image database into account by considering it as a high order
tensor and determining multiple interrelated subspaces by means of
the higher order singular value decomposition (HOSVD) ([7]).

In this paper, we consider the problem of target classification in
synthetic aperture radar (SAR) images. Such images are very noisy
due to speckle noise. Moreover, unlike optical images, SAR images

of a same target observed from different viewing angles are characte-
rized by great variations in appearance, which makes the target clas-
sification problem non trivial. Usually, in supervised classification,
the test images are expected to belong to predefined training classes.
In practical situations, especially for military applications, some test
images do not contain objects belonging to learned classes. In this
case, two additional classes must be considered : the rejection class
and the confusion class. Unlearned targets are labelled into the re-
jection class while the confusion class is used when the classifier is
not able to decide between several classes.

The rest of the paper is organized as follows. In Section II, we
recall some definitions relative to tensors. Section III presents the
MPCA-based algorithm including training and testing phases of the
classification process. A link with two existing MPCA-based classi-
fiers is also established. In Section IV, we show how a SAR image
database can be encoded as a fourth-order tensor, and we present
some experimental results obtained with true SAR images. In Sec-
tion V, the data compression ability of our approach is illustrated. Fi-
nally, the paper is concluded with some perspective for future work.

Fig. 1. SAR image of a target in the MSTAR database

Notations : vectors and matrices are represented by boldface
lower case (x) and boldface capital (X) letters, respectively, whe-
reas tensors are denoted by blackboard capital letters (X). Rows
and columns of matrices are denoted using the matlab notation ; for
example, the i-th row of X is denoted X(i, :).



2. TENSOR ANALYSIS

In this section, we recall some definitions relative to tensors and
the HOSVD. More details can be found in [8].

2.1. Definitions

A tensor X of order N can be viewed as an N-way array, of dimen-
sions I1×I2×. . .×IN , each entry xi1i2...iN being indexed by means
of N indices with 1 ≤ in ≤ In. Each index is associated with a way,
also called a mode. The mode-n vectors of X ∈ ℜI1×I2×...×IN are
the In-dimensional vectors obtained by varying the index in while
keeping the other indices fixed. The mode-n matricization of X gives
the unfolded matrix X(n) ∈ ℜIn×IN ...In+1In−1...I1 whose columns
are the mode-n vectors. The Frobenius norm of a real tensor X is gi-
ven by :

‖X‖2
F

=

I1
∑

i1=1

I2
∑

i2=1

. . .

IN
∑

iN =1

x
2
i1...iN

(1)

.

The mode-n product of a tensor X ∈ ℜI1×...×In×...×IN with a
matrix A ∈ ℜJn×In gives a tensor Y ∈ ℜI1×...×Jn×...×IN whose
entries are computed by :

yi1...in−1jnin+1...iN =

In
∑

in=1

xi1...iN ajnin (2)

The mode-n product, written in tensor notation as Y = X×n A,
can be expressed in terms of unfolded matrices as Y(n) = AX(n).

2.2. Higher order singular value decomposition (HOSVD)

The HOSVD can be viewed as a high order generalization of the ma-
trix SVD which orthogonalizes the column spaces of the N unfolded
matrices X(n), n = 1, . . . , N . Such an HOSVD allows to write the
tensor X as ([7]) :

X = S ×1 U1 ×2 U2 . . . ×N UN (3)

where the matrices Un ∈ ℜIn×In , n = 1, . . . , N , are orthogonal.
The core tensor S ∈ ℜI1×...×IN defines the interactions between the
mode-n matrices Un whose columns are orthonormal vectors span-
ning the column space of X(n). Frobenius norm obtained in fixing
one mode of the core tensor S are the singular values of the tensor
X : σ(in,i) = ‖Sin=i‖F

.

3. MPCA-BASED TARGET RECOGNITION

We use MPCA as a supervised algorithm for classification. The trai-
ning phase consists in forming an (N + 3)th-order tensor with all
images of the database and computing its HOSVD in order to re-
veal interesting pattern dependencies in the database images. Then,
a test image to be classified is projected onto the (N+1) subspaces
associated with the first (N+1) modes.

3.1. Training phase

A training set is composed of Ik classes of images characterized by
N different variation factors. These factors correspond to the first
N modes of the training tensor. Let us consider a database compo-
sed of images of size Y × X belonging to Ik classes characteri-
zed by N modes of respective dimensions I1, . . . , IN (we assume
that there is the same number of images per class in the training

database). Each image of the database is defined by the coordinate
set (i1, . . . , iN , ik) with in = 1, . . . , In, n = 1, . . . , N and ik =
1, . . . , Ik. The total number of images in the database is given by
(
∏N

n=1 In)Ik. All the images are ranged into a (N +3)th-order ten-
sor D of dimension I1 . . . × IN × Ik × X × Y where the last two
modes are pixel modes and the (N + 1)th-mode is the mode-class.
HOSVD of this tensor can be written as :

D = S ×1 U1 × . . . ×N UN ×N+1 Uk ×N+2 Ux ×N+3 Uy (4)

Each image Di1,...,in,ik ∈ ℜY ×X belonging to the training da-
tabase can be written using the HOSVD as follows :

Di1,...,in,ik = S ×1 U1(i1, :) . . . ×N UN (iN , :)

×N+1 Uk(ik, :) ×N+2 Ux ×N+3 Uy (5)

Columns of Uk are singular vectors characterizing energy in the
class space. Each row of Uk is related to one specific class and ge-
nerates, through the core tensor S, all the images of the ithk class.

3.2. Testing phase

Let us consider a test image Dtest. This image can be decomposed
using the HOSVD of the training tensor D as :

Dtest = S ×1 v1 . . . ×N vN ×N+1 vk ×N+2 Ux ×N+3 Uy (6)

where v1, . . . , vN and vk are unknown row vectors of respective
lengths I1, . . . , IN , Ik, to be optimized. The optimization problem
consists in minimizing the following Frobenius norm under an unit
norm constraint on each optimized vector :

v̂1, . . . , v̂N , v̂k = argmin
v1,...,vN ,vk

||Dtest − S ×1 v1 . . . ×N vN

×N+1vk ×N+2 Ux ×N+3 Uy||
2
F (7)

This simultaneous minimization with respect to v1, . . . , vN and
vk leads to a nonlinear optimization problem that can be solved in
a suboptimal way by applying the alternate least squares (ALS) al-
gorithm, which amounts to solve a linear projection subproblem at
each iteration. Each subproblem is linked to the minimization of a
conditional LS cost function associated with a different vectoriza-
tion of Eq. (6) that can be rewritten in the equivalent element-wise
form :

dyx =

I1
∑

i1=1

. . .

IN
∑

iN =1

Ik
∑

ik=1

Ix
∑

ix=1

Iy
∑

iy=1

si1...iN ikixiy

v1(i1) . . . vN (iN )vk(ik)ux(x, ix)uy(y, iy) (8)

Stacking the rows of the image Dtest ∈ ℜY ×X to form the row
vector dtest ∈ ℜ1×Y X , we get the N+1 following vectorized forms
of Eq. (6) :

dtest = v1S(1)(Uy ⊗ Ux ⊗ vk ⊗ vN ⊗ . . . ⊗ v2)
T

= . . .

= vNS(N)(Uy ⊗ Ux ⊗ vk ⊗ vN−1 ⊗ . . . ⊗ v1)
T

= vkS(N+1)(Uy ⊗ Ux ⊗ vN ⊗ . . . ⊗ v1)
T



where ⊗ denotes the Kronecker product and S(n), for n = 1, . . . , N+
1, is the mode-n matrix representation of the core tensor S. Each one
of these equations can be solved in the LS sense, with respect to one
vector factor, conditionally to the knowledge of the N other vector
factors, this knowledge being provided first by the initialization and
then by estimates obtained at previous iterations. This ALS-based
algorithm for computing the multilinear projection is summarized in
Table 1 where it and (.)† denote, respectively, the iteration number
and the Moore-Penrose matrix pseudo-inverse.

1. Initialization v̂
(0)
2 , . . . , v̂

(0)
N , v̂
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2. Alternate computation
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∥

∥

∥

v̂
(it+1)
1

∥

∥

∥

∥

. . .
v̂
(it+1)
N

= dtest(S(N)(Uy ⊗ Ux ⊗ v̂
(it)
k

⊗ v̂
(it+1)
N−1

⊗ . . . ⊗

v̂
(it+1)
1 )T )†

v̂
(it+1)
N

← v̂
(it+1)
N

/

∥

∥

∥

∥

v̂
(it+1)
N

∥

∥

∥

∥

v̂
(it+1)
k

= dtest(S(N+1)(Uy ⊗ Ux ⊗ v̂
(it+1)
N

⊗ . . .⊗ v̂
(it+1)
1 )T )†

v̂
(it+1)
k

← v̂
(it+1)
k

/

∥

∥

∥

∥

v̂
(it+1)
k

∥

∥

∥

∥

3. Return to step 2 until convergence

Table 1. ALS-based multilinear projection

The computation loop is repeated until the difference between
Dtest and the test image reconstructed using (6) with (v1, . . . , vN , vk)
replaced by their estimated values, becomes smaller than a predefi-
ned threshold. The main advantage of this algorithm is its simplicity.
However, its convergence is strongly dependent on the initialization.

To improve convergence, we propose to use as initial values v̂
(0)
k the

row vectors Uk(ik, :), with ik = 1, . . . , Ik, of the mode-N+1 matrix
factor of the HOSVD defined in (4). The image Dtest is labelled as
class itest

k such as :

i
test
k = argmin

ik

‖v̂k − Uk(ik, :)‖2
F

(9)

Once recognition carried out, all other factors of Dtest can be esti-
mated as :

i
test
n = argmin

in

‖v̂n − Un(in, :)‖2
F

, n = 1, . . . , N (10)

3.3. Comparison with two other MPCA-based recognition me-

thods

Our approach can be viewed as a generalization of two existing
MPCA-based recognition methods. In the case of fourth-order ten-
sors (N = 1), the Ik LS solutions of (7) obtained for vk = Uk(ik, :
), ik = 1, . . . , Ik, can be interpreted as the projections of the test

image Dtest onto Ik sets of basis matrices {A
(ik)
i1

, i1 = 1, . . . , I1}
characterizing the Ik classes. The classification criterion can then be
rewritten as :

i
test
k = argmin

ik

min
v1

‖Dtest − S ×1 v1 ×2 Uk(ik, :) ×3 Ux ×4 Uy‖
2
F

= argmin
ik

min
v1

∥

∥
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∥
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Dtest −

I1
∑

i1=1

v1(i1)A
(ik)
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∥

∥

∥

∥
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2

F

with A
(ik)
i1

= S(i1, :, :, :)×2 Uk(ik, :)×3 Ux ×4 Uy . The basis ma-

trices A
(ik)
i1

are the same as the ones defined in [4]. Our approach

can also be viewed as an unfolded matrix formulation of the algo-
rithm proposed in [1] that consists in solving Eq.(6) as follows :

R = v1 ◦ . . . ◦ vN ◦ vk = T
† × Dtest (11)

with T = S ×N+2 Ux ×N+3 Uy . Instead of computing the vectors
v1, . . . , vN and vk by means of the ALS algorithm, the multiliner
projection problem is solved in computing the best-rank(1,. . . ,1) ap-
proximation of the tensor R. However, this approach needs to com-
pute the inverse tensor T

† which is not clearly defined.

3.4. Confusion and rejection classes

When recognition is carried out using (9), we use the distance
R(ik) = ‖v̂k − Uk(ik, :)‖2

F
. Confusion and rejection classes can

be incorporated by introducing two thresholds : the confusion thre-
shold ∆c and the rejection threshold Sr . If R(ik) − R(itest

k ) < ∆c

for all ik ∈ {1, . . . , Ik} with ik 6= itest
k , the decision between dif-

ferent classes can be considered as confused. If R(ik) > Sr for all
ik ∈ {1, . . . , Ik}, it can be concluded that the unknown target does
not belong to any class of the training set. Confusion and rejection
thresholds are free parameters, chosen by the operator according to
the robustness needed for the classification. Increased values of ∆c

and Sr imply a decrease of the classification error rate but also of
the recognition rate.

4. APPLICATION TO TARGET RECOGNITION IN SAR

IMAGES

4.1. SAR image database tensor

A SAR image database is composed of a set of images of targets
with different aspect angles and grazing angles. Generally, images
at one grazing angle are chosen for the training set while images at
another grazing angle are chosen for the testing set. The aspect angle
is considered as a variation factor. In this case, MPCA is applied to
a fourth-order tensor characterized by two pixel modes, one aspect
angle mode and one target class mode. Fig.2 presents a fourth-order
tensor of a SAR database. The HOSVD of this SAR image tensor
can be written as :

D = S ×1 Uaspect
angle

×2 Utarget ×3 Ux ×4 Uy (12)

Fig. 2. Fourth-order tensor of MSTAR database images



4.2. Experimental results

Some experiments were carried out using the MSTAR (Moving Sta-
tionary Target Acquisition and Recognition) database composed of
various images of ten types of targets, with the aspect angle varying
between 0˚ and 360˚. Each image corresponds to a target at two
different grazing angles : 15˚ and 17˚. In this work, we used a subset
composed of five types of targets : BMP2, BRDM2, D7, T62 and
T72. Images at 15˚ grazing angle were chosen for the training set
while images at 17˚ grazing angle were chosen for the testing set. For
both training and testing, we selected a set of 180 images for each
target, with an approximative 2˚ aspect angle step. After background
masking preprocessing ([9]), images are of dimension 30 × 50. So
MPCA was applied to the fourth-order training tensor of dimension
5 × 180 × 30 × 50. Recognition (Rc), confusion (Cf) and rejection
(Rj) rates obtained after five iterations of the ALS algorithm are
given in Table 2. Confusion threshold ∆c and rejection threshold Sr

were chosen empirically to get an apriori fixed recognition rate .

Target Rc (in %) Cf (in %) Rj (in %)

BMP2 83,0 5,4 6,1

BRDM2 89,6 4,3 4,5

D7 95,0 1,6 2,4

T62 81,9 6,2 8,1

T72 81,4 5,6 7,9

Average 86,1 4,6 5,8

Table 2. Recognition, confusion and rejection rates

Rejection performance were evaluated using a target which was not
included in the training database. Images of the target 2S1 available
in the MSTAR database were considered in the testing phase. With
the same thresholds as before, we obtained a rejection rate of 61%
for this unlabelled target.

5. DATA COMPRESSION

A tensor-based approach provides a better compression rate than
a matrix SVD-based approach. In the matrix case, a low rank ap-
proximation is obtained in truncating the SVD. In the same way, a
low rank approximation of a tensor can be obtained as a truncated
HOSVD, i.e. by discarding the least significant singular values of
each unfolded matrix representation of the tensor. Preserving the
shape of the data enables a better compression than with a linear
approach. For example, after background masking processing, SAR
images are sparse because the detection algorithm has removed most
of pixels belonging to the clutter. Truncated HOSVD can remove
all those null pixels from the data. Fig.3 shows the recognition rate
for different compression rates obtained with the MPCA approach
and the PCA approach using matrix SVD with vectorisation of da-
tabase images. In this figure, a 80% compression rate means that we
used only 20% of the data volume of the training set to achieve the
recognition. As we can see, the MPCA approach allows to improve
the recognition rate, comparatively with the PCA approach, from a
compression rate of 60%.

Fig. 3. Recognition rate at different compression rates obtained with
MPCA and PCA

6. CONCLUSION

In this paper, a MPCA-based approach has been proposed for
automatic target recognition in SAR images. This approach allows
to solve a multimodal target recognition problem by considering an
image database as a fourth-order tensor. Some simulation results ob-
tained with the MSTAR database illustrate the good performance of
the proposed MPCA-based classification method, in terms of both
classification and compression rates.
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