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ABSTRACT 

This article presents the concepts of an air-source Heat Pump for Simultaneous heating and cooling (HPS) 

designed for hotels and smaller residential, commercial and office buildings in which simultaneous needs in 

heating and cooling are frequent. The main advantage of the HPS is to carry out simultaneously space heating 

and space cooling with the same energy input. Ambient air is used as a balancing source to run a heating or a 

cooling mode. The second advantage is that, during winter, energy recovered by the subcooling of the refrigerant 

is stored at first in a water tank and used subsequently as a cold source at the water evaporator to improve the 

average performance and to carry out defrosting of the air evaporator using a two-phase thermosiphon. Unlike 

conventional air-source heat pumps, defrosting is carried out without stopping the heat production. A R407C 

HPS prototype was built and tested. The basic concepts of the HPS are detailed in part1 of this article [1]. Its 

performance on defined operating conditions corresponds to the data given by the selection software of the 

compressor manufacturer. In the present part of this article, the operation of the high pressure control system, the 

transitions between heating, cooling and simultaneous modes and the defrosting sequence are analysed and 

validated experimentally. 

Keywords: heat pump, heating, cooling, thermosiphon, defrosting 
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NOMENCLATURE 

AHX air heat exchanger 

C-mode cooling mode 

E  energy (J) 

h enthalpy (kJ kg-1) 

H-mode heating mode 

HP high pressure (Pa) 

HPS heat pump for simultaneous heating and cooling 

k pressure drop factor (kg2 m-5 s-2) 

L latent heat (J kg-1) 

LP low pressure (Pa) 

m mass (kg) 

m&  mass flow rate (kg s-1) 

Q&  heating or cooling capacity (W) 

p pressure (Pa) 

S-mode simultaneous mode 

T temperature (°C) 

t time (s) 

Subscripts: 

aCd air condenser 

aEv air evaporator 

CD condensation 

cw cold water 

df defrosting 

f frost 

fus fusion 

hw hot water 

r refrigerant 

Sc subcooler 

vap vaporisation 

wCd water condenser 
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wEv water evaporator 

1 Context and objectives 

Energy efficiency of buildings is continuously improving thanks to more and more stringent thermal regulations. 

Besides, comfort requirements demand more and more energy. The demand for cooling is rising to compensate 

internal heat gains caused by more and more household electrical equipment whilst domestic hot water (DHW) 

demands continue to increase. A better thermal envelope implies less energy for heating and more for cooling. 

Therefore thermal needs of new buildings follow the trend of more balanced energy demands between heating 

and cooling. ECBCS Annex 48 of the International Energy Agency deals with this issue [1]. An answer to a 

simultaneous energy demand in heating and cooling is the heat pump, since it has simultaneously a heating 

capacity at the condenser and a cooling capacity at the evaporator. 

This study presents the design of a heat pump that can satisfy fluctuating needs, simultaneous or not, in heating 

and cooling. This heat pump with heat recovery is named HPS (Heat Pump for Simultaneous heating and 

cooling). It is suited to buildings such as hotels where DHW demands are high, small commercial units like 

groceries and petrol stations or glass-fronted north-south oriented office buildings where simultaneous needs in 

space heating and cooling are frequent. 

Part 1 of this article [2] presents the basic concepts and the performance verification of a R407C HPS prototype. 

This second article validates the dynamic operation of the HPS, namely the transitions between the different 

modes, the high pressure control and the two-phase thermosiphon defrosting technique. 

The first objective of the HPS is to produce, as often as possible, heating and cooling energies using the same 

electric energy input at the compressor. 

The second objective of the HPS is to reduce the performance loss that characterizes air-source heat pumps 

during winter due to low source temperature and frosting [3,4]. Huang et al. [5] compared the most common 

defrosting methods: reversed-cycle defrosting and hot-gas bypass defrosting. When using the reversed-cycle 

defrosting technique, reversible air-to-water heat pumps record a performance loss because of a break in the heat 

production and a drawing of energy from the heat stock previously produced. The air and water heat exchangers 

have to carry out alternatively condensation at high pressure and evaporation at low pressure. When a change of 

mode occurs, the reversing valve switches and the previously high pressure section of the refrigeration circuit 

becomes the low pressure section. The opposite phenomenon occurs in the previously low pressure section. The 

pressure ratio changes nearly instantaneously from a high value to a very low value. This leads to high 

mechanical strains on the compressor that impact on its longevity. The hot-gas bypass defrosting system avoids 

the shocks induced by the switch of the reversing valve and the heat loss in the hot water tank that would occur 
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in a standard reversible heat pump. However a performance loss remains because of the bypass of hot vapour 

from the compressor discharge. Liang et al. [6] detailed another defrosting method: hot gas from the discharge 

line is bypassed, throttled and injected into the evaporator to provide sensible heat as a defrosting energy. 

Attention is especially paid on the fuzzy logic regulation strategy. Electric heating defrosting can also be used 

indirectly by heating the air flowing throughout the outdoor coil [7]. Another technique described by Liu et al. 

[8] consists in re-circulating exhaust air in the air evaporator in order to reduce the frost growth and to delay the 

defrosting sequence. All conventional defrosting methods consume energy. The HPS proposes a special circuit 

design that creates a two-phase thermosiphon used for defrosting. In refrigeration plants, thermosiphons are 

usually cancelled out by non-return valves because they represent risks of liquid refrigerant trapping in the 

circuit. The HPS takes advantage of this phenomenon to carry out defrosting. Thermosiphons are known to be an 

efficient means of heat transfer [9,10]. Dobson [11] showed that thermosiphon effects were difficult to model. 

He also observed that the flows were oscillatory. 

The aim of this phenomenological study is to verify that the high pressure control system is efficient, that 

transitions between modes are sufficiently smooth and to validate the innovative defrosting technique using a 

two-phase thermosiphon. 

 

2 Further in the HPS concepts 

The HPS prototype scheme is shown in Fig. 1. The different components of the circuit and the operating modes 

(heating, cooling and simultaneous modes) are deeply described in the first part of this article [2]. The heating 

mode uses the air evaporator and the water condenser (Evr2 and Evr3 are open). The cooling mode uses the 

water evaporator and the air condenser (Evr1 and Evr4 are open). The simultaneous mode uses the water 

evaporator and the water condenser (Evr1 and Evr3 are open). The present paragraph explains the dynamic 

behaviour of the HPS depending on the needs in heating and cooling. The operation is based on the alternation of 

the heating, cooling and simultaneous modes with or without the two-phase thermosiphon defrosting technique. 

Switching from one mode to another is simply carried out by simultaneously shutting and opening the 

appropriate electronic valves without stopping the compressor. A high pressure control system, described 

hereafter, is necessary to ensure the proper operation of the HPS. 

2.1 Summer sequence 

During summer, the sequence alternates between cooling and simultaneous modes. A cooling demand is detected 

by a cold water temperature higher than the set temperature. A summer sequence is then launched, beginning by 
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the simultaneous mode in case of possible demand in heating. When the heating demand is satisfied, the HPS 

switches to the cooling mode and the air condenser is used instead of the water condenser. The HPS stops when 

the cooling demand is satisfied or switches back to the simultaneous mode if a heating demand is detected by the 

measurement of a low hot water temperature. 

2.2 Classic winter sequence 

During winter, the sequence alternates between heating and simultaneous modes. The cold water tank is used as 

a short-time heat storage. If a heating demand is detected, the sequence begins by the heating mode engaging the 

water condenser, the air evaporator and the subcooler. While producing hot water using the water condenser, the 

cold water tank is heated, usually from 5 to 15°C, by the refrigerant subcooling energy. When the temperature of 

15°C is reached, the HPS regulation switches to the simultaneous mode and uses the energy previously stored in 

the cold water tank as a cold source for the water evaporator. The cold water tank temperature decreases from 15 

to 5°C. 

In the simultaneous mode, the evaporating temperature is higher than in the heating mode from the moment that 

ambient air is colder than the cold water tank. Therefore, using the simultaneous mode for a certain time during 

the winter sequence enables to produce hot water continuously with improved average system performance 

compared to standard air-source heat pumps. Besides, in the simultaneous mode, the air evaporator is not used 

for evaporation and can be defrosted using a two-phase thermosiphon detailed hereunder. 

2.3 Winter sequence with defrosting 

In the heating mode, under cold outside air temperatures, the fins of the air evaporator get frosted. Before frost 

thickness becomes critical, the cold tank temperature has raised 15°C and the simultaneous mode has been 

engaged. In this mode, the air coil is automatically defrosted by a two-phase thermosiphon formed between the 

two evaporators. A supplementary flow of vapour comes out of the water evaporator and migrates towards the 

air evaporator where the temperature, and thus the pressure, is lower. At the outlet of the water evaporator, the 

refrigerant vapour temperature is between 10°C and 5°C depending on the cold water temperature. The 

refrigerant exchanges latent heat with the frosted fins, condenses and flows back to the water evaporator or to the 

suction accumulator by gravity. 

The major advantage of this sequence is to carry out defrosting without stopping heat production. Frost thickness 

can thus be minimized and mean convection heat transfer coefficients at the evaporator can be maximized. The 

average heat pump efficiency under frosting conditions is improved compared to the performance of standard 

air-source heat pumps that use hot gas or reversed cycle defrosting methods. 
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2.4 High pressure control 

As pressures and temperatures are linked during condensation, high pressure control can ensure that 

condensation occurs in the appropriate heat exchanger. Moreover it is able to control the condensation 

temperature and thus the heating capacity. A special liquid receiver is placed on the liquid line. It is connected to 

the compressor discharge line and the inlet of the air evaporator by copper tubes of smaller diameter on which 

normally closed electronic on-off valves are placed (EvrHP and EvrLP on Fig. 1). 

If the chosen mode is the heating mode, condensation occurs in the water condenser. The controller calculates 

the set point for high pressure, function of the hot water inlet temperature at the water condenser (Eq. (1)) and a 

temperature discrepancy characterized experimentally. The equation is a curve fit of data extracted from tables 

published by the International Institute of Refrigeration [12]. The discrepancy ∆TCD takes into account the pinch 

difference between hot water inlet temperature and bubble temperature of refrigerant, a slight subcooling 

because of a possible heterogeneity of phase in the tube at the location where the temperature sensor is placed 

and a security in relation to the control deadband. For condensation at the air coil in the cooling mode, the set 

point for high pressure is a function of the air inlet temperature and another temperature discrepancy proper to 

the heat exchanger. 

( ) ( ) ( ) 6738.51833.00023.0000011.0 23 +∆+⋅+∆+⋅+∆+⋅= −−− CDinhwCDinhwCDinhwSet TTTTTTHP  (1) 

The objective of the high pressure control is to carry out a complete condensation in the water condenser. 

Without this system the thermostatic expansion valve would have “naturally” controlled the system so that 

condensation would finish in the subcooler. Some latent heat from condensation would have not been directly 

transferred to the hot water. 

The high pressure control system indirectly controls the volume of liquid in the receiver. The volume of liquid in 

the different condensers depends on the mode. If the high pressure is below the set point, the electronic valve 

EvrHP is opened. The receiver is filled up with gas coming from the compressor discharge line at a pressure 

higher than the pressure in the receiver until the set pressure is reached. The gas entering the receiver drives the 

liquid towards the evaporator. The non-return valve closes because pressure becomes higher at the outlet than at 

the inlet. The subcooling heat exchanger and the bottom part of the water condenser are filled up with more 

liquid until the appropriate level of liquid is reached. If however the chosen mode is the cooling mode, the 

condenser becomes the air heat exchanger. The set point for pressure is then the lowest possible. The electronic 

valve EvrBP is opened. The pressure is reduced by driving the vapour out of the top part of the receiver towards 

the inlet of the air evaporator. The refrigerant in a liquid phase is sucked out of the water condenser and the 

subcooler and enters the receiver.  
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The proper operation of the control system depends upon a special liquid receiver being designed quite high and 

quite narrow with the main objective to enhance temperature stratification and to limit as far as possible thermal 

transfer between the gas and the liquid. When the gas is injected, part of it condenses. When gas is rejected to the 

low pressure, part of the liquid evaporates. These phenomena reduce the liquid variation induced by a pressure 

variation in the receiver. Although it delays the response in terms of high pressure, it ends by stabilizing the 

control system. The receiver is also thermally insulated to reduce the heat transfer towards the ambience. 

3 Experimental study 

3.1 Experimental setup 

The experimental setup is described in the first part of this article [2]. 

3.2 Dynamic behaviour 

The operating sequences were tested, verifying the operation of the high pressure control method and the 

transitions between modes. Fig. 2 presents the evolution of temperatures of water and air sources during a 10-

minute sequence engaging first the heating mode, followed by the simultaneous mode. The acceptable operation 

of the high pressure control system is also shown in this figure by the measurement of hot gas temperature at the 

top of the liquid receiver. The set pressure increases following Eq. (1) depending on the hot water temperature at 

the entrance of the condenser. The hot gas temperature increases when the electronic valve EvrHP opens and lets 

hot gas enter the receiver and decreases with thermal exchange with the environment. Hot gas injection 

frequency is higher during the heating mode than during the simultaneous mode because of the position of the 

liquid receiver in the system: the receiver was placed in the air flow. During the heating mode the air evaporator 

and the fan are in function. Thermal exchange between the liquid receiver and the environment is enhanced 

during this mode. During the simultaneous mode the air circulation is stopped. Less thermal losses are thus 

observed. Fig. 2 highlights that the prototype has to be modified to reduce thermal losses of the liquid receiver 

and that the injection frequency is too high (between 25 and 40 seconds) to ensure a satisfactory longevity to the 

electronic valve EvrHP. 

When the electronic valve EvrLP opens and drives out gas from the receiver towards the entrance of the air 

evaporator, the high pressure decreases. Fig. 2 does not show this operation that is actually used during 

transitions between modes having different hot sources. 

In order to present each transition fully, figs. 3 and 4 show the temperatures of refrigerant and sources during 

transitions between heating and simultaneous modes and between cooling and simultaneous modes. Globally, 
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temperature variations are smooth for both water and refrigerant at the inlets and the outlets of the water 

condenser and the water evaporator. Stronger temperature variations appear on the air source and for refrigerant 

at the air condenser. The latter temperature variation is due to condensation of refrigerant in the air condenser 

even when it is unused in the simultaneous mode. Temperature and thus pressure decreases while refrigerant is 

condensing. In this situation, a mechanical shock can occur in the circuit if the electronic valve Evr4 opens. The 

strategy adopted to avoid this risk is to use the control system to decrease the high pressure to the level of the air 

heat exchanger side before opening Evr4. 

The dynamic behaviour of the HPS is validated because the objectives of an efficient high pressure control 

system and smooth transitions are satisfied. Oil return has also been checked using the oil light of the 

compressor: no low level was noticed. 

3.3 Defrosting technique 

3.3.1 Two-phase thermosiphon observation 

The two-phase thermosiphon circulates in tubes that have large diameters (represented in green in Figs. 1 and 5). 

Vapour migrates from the water evaporator towards the air evaporators. Condensed refrigerant returns back by 

gravity to the water evaporator and the suction accumulator. 

Thermographic pictures (Fig. 6) have been taken before and during the defrosting phase at the position of the 

white square in Fig. 5. Before the defrosting sequence, temperature is homogenous. The tube contains vapour 

flowing from the air evaporator towards the compressor. When the two-phase thermosiphon defrosting sequence 

is launched, the thermostatic expansion valve TEV2 does not supply refrigerant to the air evaporator anymore 

because the electronic valve Evr2 is closed. In Fig. 6 it can be seen that heterogeneity of temperature appears in 

the tube. The hotter vapour phase flows up the tube in the top part of the section and the colder liquid phase 

flows down in the bottom part. 

 

3.3.2 Defrosting technique validation 

The validation is based on the observation of the frost layer disappearance during a defrosting sequence using 

the two-phase thermosiphon. The defrosting time is compared to a frost layer disappearance time by thermal 

exchange with the ambient air surrounding the test bench. In this second case compressor and fans are stopped. 

 

Frosting: The first phase consists in running the heat pump in a heating mode under frosting conditions. 

Ambient air temperature is controlled around 0°C. Frost progressively appears on the LP sections of the air coils 

of the prototype. The frost layer thickness increases over a period of 30 minutes. 
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Defrosting (Fig. 7): After running the heating mode during 30 minutes, the frost layer is assumed to be 

sufficient to run the defrosting sequence. Fig. 7 shows heterogeneity of the frost layer due to an incorrect tubing 

of the three-fluid AHX. The electronic valve Evr2 is switched off and the electronic valve Evr1 is switched on. 

The water evaporator is used instead of the air evaporator. The simultaneous mode is engaged and the two-phase 

thermosiphon defrosting starts. The frost layer disappears within 2 minutes. As a comparison, after a 30-minute 

frosting phase, the prototype was stopped. The defrosting energy was then brought by thermal convective 

exchange with the ambient air surrounding the test bench. The time of frost disappearance reached 20 minutes. 

This comparison confirms that the thermosiphon defrosting technique works very efficiently. 

 

3.3.3 Two-phase thermosiphon characterization 

The frost mass is evaluated by the mass of water collected after defrosting. The defrosting energy Edf is 

calculated by Eq. (4) using the frost mass mf and the specific latent heat of fusion Lfus. 

fusfdf LmE ⋅=  (4) 

The average defrosting capacity is calculated by Eq. (5) using the defrosting energy Edf and the defrosting time 

tdf. 

df

df
df t

E
Q =&  (5) 

The mean refrigerant mass flow rate is given by Eq. (6) using the enthalpy difference between saturated vapour 

and saturated liquid at 0°C. 

)0( Ch

Q
m

vap
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r °∆
=

&

&
 (6) 

During the defrosting sequence, refrigerant temperatures have been monitored at the outlets of the air 

evaporators TaEv and the water evaporator TwEv (Fig. 1) Corresponding pressures are approximated using the 

vapour saturation P-T curve. The vapour mass flow rate at time i depends on the pressure difference using Eq. 

(7). 

( )
i

i
aEvwEvi

r
k

pp
m

−
=&  (7) 

This equation depends on the pressure drop factor ki. This factor is assumed to be constant during the defrosting 

sequence because the section of the tube is negligibly reduced by the flow of liquid that returns back from the air 

evaporator by gravity. Moreover thermal exchange between the two phases, flowing up (vapour phase) and 

down (liquid phase), has not been studied. Following these assumptions, the refrigerant mass flow rate can be 

estimated using Eq. (8). Defrosting capacity is given by Eq. (9). These two equations bring into play the average 

pressure difference between the outlets of the water evaporator and the air evaporator. 
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Table 1 presents the results for frost mass, defrosting energy and mean values of mass flow rate and defrosting, 

cooling and heating capacities. Mean cooling and heating capacities are measured on water. These values show 

that there is no break in the heat production and that the heat source has switched from ambient air to cold water. 

Fig. 8 shows the evolutions of the refrigerant mass flow rate and the defrosting capacity during the 2-minute 

thermosiphon defrosting sequence. The defrosting capacity curve decreases from 2.32 to 0.26 kW. The mass 

flow rate curve decreases from 6.28 to 2.08 g.s-1. The important variations between 50 s and 100 s are due to the 

internal pressure control, activated after switching from the heating mode to the simultaneous mode. After 120 s, 

the temperature difference between the refrigerant temperatures at the outlets of air and water evaporators 

(respectively TaEv and TwEv in Fig. 1) is around 1°C, which is within the limit of uncertainty of the metrology. 

The operating conditions at the beginning of the defrosting sequence are calculated using the software of the 

compressor manufacturer. They are reported in table 2. According to these values, the supplementary refrigerant 

mass flow rate to be generated at the water evaporator for the thermosiphon represents 6% of the flow rate at the 

compressor. Therefore the water evaporator has to be at least oversized in this proportion. The initial defrosting 

capacity corresponds to more than 12% of the nominal cooling capacity. 

4 Conclusions 

This article is the second part of an experimental study of an air-source heat pump for simultaneous heating and 

cooling (HPS). The first part detailed the basic concepts and the performance validation of the HPS. The present 

article goes further and deals with the operating sequences alternating between heating, cooling and 

simultaneous modes. Apart from producing simultaneously hot and cold water, this machine proposes an answer 

to reduce the performance loss of air-to-water heat pumps under low ambient temperatures by the use of 

operating sequences alternating between an air evaporator and a water evaporator. Moreover, while standard air-

source reversible heat pumps are penalized by defrosting (break in the heat production, decrease in COP), the 

HPS carries out defrosting using a two-phase thermosiphon with increased heat pump performance and without 

stopping the heat production. Thanks to the special management of produced energies, simulations showed an 

annual performance increase of 16.6% when comparing the HPS to a standard reversible heat pump [13]. 

The phenomenology of the HPS operation has first been studied on two points: high pressure control and 

transitions between modes. The high pressure control is operational but needs more development. Transitions 

between modes are smooth, thus acceptable.  
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Then the two-phase thermosiphon has been observed by thermographic pictures of a section of the tube between 

the two evaporators and validated by a favourable defrosting time in comparison with a situation in which the 

heat pump was stopped. The characterization of the thermosiphon showed a phenomenon of high capacity.  

Nevertheless these encouraging results still need to be comforted by in situ tests. Further research has to be 

conducted on the two-thermosiphon defrosting technique. More metrology has to be implemented to improve the 

characterization. The validation has to be conducted under higher levels of frosting using other experimental 

means such as a climatic room. Finally, R407C is not a good choice for the HPS because the two-phase 

thermosiphon will provoke a separation of the different components of the refrigerant mixture [14]. Eventually, 

the performance and even the proper operation of the HPS can be altered. 
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Fig. 2. Source temperatures and hot gas temperature at the receiver during a transition between the heating mode and 

the simultaneous mode 
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Fig. 3. Measured temperatures of sources (a) and refrigerant (b) during transitions between simultaneous and heating 

modes (S-mode and H-mode) 
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Fig. 4. Measured temperatures of sources (a) and refrigerant (b) during transitions between simultaneous and cooling 

modes (S-mode and C-mode) 
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Fig. 5. Photograph of the thermosiphon setup 
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 Before defrosting During defrosting 

Fig. 6. Thermographic pictures of the tube between the two evaporators 
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time = 0 s 

 
time = 60 s 

 
time = 120 s 

Fig. 7. Photographs of the air coil during the two-phase thermosiphon defrosting phase 
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Fig. 8. Evolution of the thermosiphon defrosting capacity and refrigerant mass flow rate  
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List of tables 

 
Designation Value 
Frost mass  397.6 g 
Defrosting energy  133 kJ 
Mean defrosting capacity  1.11 kW 
Mean cooling capacity 15.31 kW 
Mean heating capacity 17.72 kW 
Mean refrigerant mass flow rate  5.30 g.s-1 

Table 1: Defrosting thermosiphon mean characteristics 
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Designation Value 
Condensing temperature (dew point) 33.5°C 
Evaporating temperature (dew point) 11°C 
Suction superheat 4°C 
Nominal cooling capacity 19.00 kW 
Nominal refrigerant mass flow rate 108 g.s-1 

Table 2: Operating conditions at the beginning of the defrosting sequence 

 


