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Abstract

Reed instruments are modeled as self-sustained oscillators driven by the pressure inside the mouth of the musician. A

set of nonlinear equations connects the control parameters (mouth pressure, lip force) to the system output, hereby

considered as the mouthpiece pressure. Clarinets can then be studied as dynamical systems, their steady behavior

being dictated uniquely by the values of the control parameters. Considering the resonator as a lossless straight cylinder

is a dramatic yet common simplification that allows for simulations using nonlinear iterative maps.

This paper investigates analytically the effect of a linearly increasing blowing pressure on the behavior of this

simplified clarinet model. When the control parameter varies, results from the so-called dynamic bifurcation theory are

required to properly analyze the system. This study highlights the phenomenon of bifurcation delay and defines a new

quantity, the dynamic oscillation threshold. A theoretical estimation of the dynamic oscillation threshold is proposed

and compared with numerical simulations.

Keywords: Musical acoustics, Clarinet-like instruments, Iterated maps, Dynamic Bifurcation, Bifurcation delay,

Transient processes.

1. INTRODUCTION

One of the interests of mathematical models of musical

instruments is to be able to predict certain characteris-

tics of the produced sound given the gesture performed

by the musician. In the case of a clarinet for instance,

the amplitude, frequency or spectral content (the sound

parameters) can be to a certain extent, determined as a

function of the blowing pressure and lip force applied to

the reed (the control parameters). A basic model, such

as the one introduced by Wilson and Beavers [25], allows

to compute the amplitude of the oscillating resonator

pressure from the knowledge of these two control pa-

rameters, giving results that follow the major tendencies

observed in experiments. Several degrees of refinement

can be added to this model, usually aiming at realistic

sound and mechanical behavior. Well known simpli-

fications of this model allow to study analytically the

behavior of the clarinet. Simplified models, of course,

are unable to describe or predict with refinement the

exact harmonic content of the sound, or the influences

of such important details as the reed geometry and com-

position or the vocal tract of the player. However, they

can provide an understanding of the factors essential

for the production of sound.

The highest degree of simplification of the model

(introduced in Section 2) considers a straight, lossless

(or losses independent of frequency) resonator and the

reed as an ideal spring [20, 17, 6]. With these assump-

tions, the system can be simply described by an iterated

map [21]. Iterated maps often describe a succession of

different regimes with variable periodicity. By analyzing

the asymptotic values of these regimes it is possible to

estimate: thresholds of oscillation, extinction, beating

regimes, etc. [7], amplitudes and stability of the steady

state regime [22] and phenomena of period doubling

[18, 23].

These characteristics arise from the so-called static

bifurcation theory assuming that control parameters are

constant. For example, these studies allow to find a

static oscillation threshold γst [7] such that a constant

regime is stable if the blowing pressure is below γst and

a periodic regime is stable if it is above γst . More pre-

cisely, the oscillation emerges through a flip bifurcation

[19]. This behavior is static, obtained by choosing a

constant blowing pressure, letting the system reach its

final state, and repeating the procedure for other con-

stant blowing pressures. Therefore, most studies using

iterated map approach are restricted to a steady state

analysis of the oscillation, even if transients are studied.



2 B. Bergeot et al.

They focus on the asymptotic amplitude regardless of

the history of the system.

During a note attack transient the musician varies

the pressure in her/his mouth before reaching a quasi-

constant value. During this transient the blowing pres-

sure cannot be regarded as constant. In a mathematical

point of view increasing the control parameter (here the

blowing pressure) makes the system non-autonomous

and results from static bifurcation theory are not suf-

ficient to describe its evolution. Indeed, it is known

that, when the control parameter varies, the bifurcation

point – i.e. the value of the blowing pressure where

the system begins to oscillate – can be considerably de-

layed [16, 2, 13]. Indeed, the bifurcation point is shifted

from γst to a larger value γd t called dynamic oscillation

threshold. This phenomenon called bifurcation delay

is not predicted by the static theory. Therefore, when

the control parameter varies, results from the so-called

dynamic bifurcation theory are required to properly an-

alyze the system.

The purpose of this paper is to use results from dy-

namic bifurcation theory to describe analytically a sim-

plified clarinet model taking into account a blowing

pressure that varies linearly with time. In particular we

propose a theoretical estimation of the dynamic oscilla-

tion threshold.

Section 2 introduces the simplified mathematical

model of a clarinet and the iterated map method used to

estimate the existence of the oscillations inside the bore

of the clarinet. Some results related to the steady state

are presented in this section. Section 3 is devoted to the

study of the dynamic system that takes into account a

linearly increasing blowing pressure. The phenomenon

of bifurcation delay is demonstrated using numerical

simulations. A theoretical estimation of the dynamic os-

cillation threshold is also presented and compared with

numerical simulations. In Section 4 the limits of this

approach are discussed. It is shown, when the model

is simulated, that the precision (the number of decimal

digits used by the computer) has a dramatic influence

on the bifurcation delay. The influence of the speed at

which the blowing pressure is swept is also discussed.

2. STATE OF THE ART

2.1 Elementary model

The model of the clarinet system used in this article fol-

lows an extreme simplification of the instrument, which

can be found in other theoretical works [20, 6].

This basic model separates the instrument into two

functional elements. One of these is the bore, or res-

onator, a linear element where the pressure waves prop-

y(t)

−H

0 U(t) Ur(t)
Uin(t)

P (t)

Mouthpiece

Reed

Lip

Mouth

Pm

Reed channel

Figure 1: Schematic diagram of a single-reed mouthpiece.
Presentation of variables, control parameters and choice of
axis orientation. U is the flow created by the pressure imbal-
ance Pm −P between the mouth and the bore, Ur is the flow
created by the motion of the reed, Ui n is the flow entering the
instrument, y represents the position of the tip of the reed and
H is the opening of the reed channel at rest.

agate without losses. The other is the reed-mouthpiece

system, which is considered as a valve controlled by the

pressure difference between the mouth and the mouth-

piece. It is often called the generator and is the only

nonlinear part of the instrument. A table of notation is

provided in Appendix A.

2.1.1 The reed-mouthpiece system

The reed-mouthpiece system is depicted in Fig. 1. The

reed is assumed to behave as an ideal spring charac-

terized by its static stiffness per unit area Ks . So, its

response y to the pressure difference ∆P = Pm −P is

linear and is given by:

y =−∆P

Ks
. (1)

From (1) we can define the static closing pressure

PM which corresponds to the lowest pressure that com-

pletely closes the reed channel (y =−H):

PM = Ks H . (2)

The reed model also considers that the flow created

by the motion of the reed Ur is equal to zero, so that

the only flow entering the instrument is created by the

pressure imbalance between the mouth and the bore:

Ui n =U . (3)

The non-linearity of the reed-mouthpiece system is

introduced by the Bernoulli equation which relates the

flow U to the acoustic pressure P [15, 14]. This relation

is the nonlinear characteristics of the exciter, given by:
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U =



UA

(
1− ∆P

PM

)√
|∆P |
PM

sgn(∆P )

if ∆P < PM ; (4a)

0

if ∆P > PM . (4b)

The flow UA is calculated using the Bernoulli theo-

rem:

UA = S

√
2PM

ρ
, (5)

where S is the opening cross section of the reed channel

at rest and ρ the density of the air.

Introducing the dimensionless variables and control

parameters [6]:

∆p =∆P/PM

p = P/PM

u = Zc U /PM

γ = Pm/PM

ζ = Zc UA/PM .

(6)

Zc = ρc/Sr es is the characteristic impedance of the cylin-

drical resonator of cross-section Sr es (c is the sound

velocity). Equation (4) becomes:

F (p) =


ζ
(
1−γ+p

)√|γ−p|sgn(γ−p)

if γ−p < 1 ; (7a)

0

if γ−p > 1. (7b)

The parameters γ and ζ are the control parameters of

the system. An example of the function F is shown in

Fig. 2(a).

2.1.2 The resonator

Assuming that only plane waves exist in the resonator

and propagate linearly, the resonator can be character-

ized by its reflection function r (t). The general expres-

sion relating p(t ) to u(t ) through r (t ) is:

p(t )−u(t ) = [r ∗ (p +u)](t ). (8)

The resonator is modeled as a straight cylinder. Re-

flections at the open end of the resonator are considered

perfect (no radiation losses) and viscous and thermal

losses are ignored. In this case the reflection function

becomes a simple delay with sign inversion:

r (t ) =−δ(t −τ), (9)

where δ is the Dirac generalized function and τ= 2l/c

is the round trip time of the sound wave with velocity c

along the resonator of length l .

With the reflection function (9), equation (8) be-

comes:

p(t )−u(t ) =−[
p(t −τ)+u(t −τ)

]
. (10)

Assuming that the blowing pressure γ skips instanta-

neously from 0 to a finite value and remains constant, p

and u remain constant during the first half-period and

hence during each forthcoming half-period. Therefore,

p and u are square waves.

Using a discrete time formulation (the discretization

is done at regular intervals τ) and noting p(nτ) = pn and

u(nτ) = un , we obtain the following difference equation:

pn −un =−(
pn−1 +un−1

)
. (11)

2.2 Iterated map: outgoing and incoming wave repre-
sentation

In linear acoustics any planar wave can be expanded

into an outgoing wave p+ and an incoming wave p−.

Using the dimensionless variables defined in equation

(6), the acoustic pressure p and flow u are given by:

p = p++p− ; u = p+−p−, (12)

Replacing in equation (11),

p+ = 1

2
(p +u) ; p− = 1

2
(p −u). (13)

By combining equations (7) and (12) a nonlinear rela-

tion G between p+ and p− can be obtained:

p+ =G
(−p−)

. (14)

An explicit expression of the function G was deter-

mined, for ζ< 1, by Taillard et al. [23]. Fig. 2(b) shows

an example of the function G . Using equations (12), the

relation (11) becomes:

p−
n =−p+

n−1. (15)

Finally, equations (14) and (15) define the iterated

map [20, 21]:

p+
n =G

(−p−
n

)=G
(
p+

n−1

)
. (16)

In the following, the variable p+ will be used prefer-

entially. The variable p can easily be calculated using

equations (15) and (12).
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Figure 2: Nonlinear characteristics in u = F (p) representation (a) and p+ =G(−p-) representation (b) for γ= 0.42 and ζ= 0.6.

2.3 Results from static bifurcation theory

The difference equation (16) can be analyzed using the

static bifurcation theory, which assumes that the control

parameters are constant. This will be hereafter referred

to as the static case. The parameter γ will be specifically

introduced as a subscript in the definition of the non-

linear characteristics (16), stressing that this will be the

parameter of interest in the current study (ζ will always

consider to be constant):

p+
n =Gγ

(
p+

n−1

)
. (17)

Some of the predictions of the static bifurcation the-

ory that are important to this work are recalled in the

following sections while applying them to the map of

equation (17) [17, 6, 23].

2.3.1 Expression of the static regime and static oscilla-

tion threshold

For all values of the control parameter γ below a par-

ticular value of the parameter γ called static oscillation

threshold and noted γst the series p+
n converges to a sin-

gle value (the static regime), also referred to as the fixed

point of Gγ. It can be found by solving the following

equation:

p+∗ =Gγ

(
p+∗)

. (18)

After solving the equation we obtain :

p+∗(γ) = ζ

2
(1−γ)

p
γ. (19)

When the static regime is reached p+
n = p+

n−1 =−p−
n .

Therefore, for the variable p = p++p−, the static regime

is equal to zero.

The static regime exists for all values of the param-

eter γ but it is stable when γ< γst and unstable when

γ > γst . The condition of stability of the static regime

[17] allowing to obtain the value of the static oscillation

threshold is: ∣∣∣G ′
γ

(
p+∗)∣∣∣< 1, (20)

where G ′
γ is the first derivative of the function Gγ. The

value of the static oscillation threshold is finally:

γst = 1

3
. (21)

Beyond the oscillation threshold, other bifurcations

occur, the 2-valued oscillating regime becoming unsta-

ble and giving rise to a 4-valued oscillating state. This

cascade is the classical scenario of successive period

doublings, leading eventually to chaos [8, 23]. The val-

ues of the parameter γ for which appear the different

2n-valued oscillating regimes depend on the value of the

parameter ζ: the smaller is ζ, the earlier the 2n-valued

oscillating regimes appear. When γ= 1/2, whatever the

value of ζ, a 2-valued oscillating regime reappears, the

beating-reed regime . This is a particularity of model

of the clarinet, it is due to the fact that when γ−p > 1

(equation (7b)) the reed presses against the mouthpiece

lay. It can be shown [6] that in this permanent regime

p =±γ (c.f. Fig. 3).

2.3.2 Static bifurcation diagrams

Common representations of the static bifurcation dia-

gram for clarinets usually show the steady state of the

pressure inside the mouthpiece p or that of its ampli-

tude (corresponding in the lossless model to the abso-
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lute value of p) with respect to the control parameter

γ [7]. In this paper, calculations are based on p+, so

that most bifurcation diagrams will represent the steady

state of the outgoing wave [23].

Fig. 3 shows an example of these three representa-

tions of the static bifurcation diagram for ζ= 0.5. Fig. 3

represents only the two first branches of the diagrams.

The first branch corresponds to the fixed points of the

function Gγ and the second branch represents the fixed

points of the function (Gγ ◦Gγ). On Fig. 3(b) and Fig.

3(c) the dashed line represents the curve of the static

regime. For the variable p, the static regime is equal

to zero and for the variable p+ it is a function of the

parameter γ, noted p+∗(γ). Oscillating regimes with

higher periodicities which may appear between γ= 1/3

and γ= 1/2 are not represented.

3. TIME-VARYING BLOWING PRESSURE

3.1 Problem statement

3.1.1 Definitions

Before presenting the problem, some definitions are in-

troduced in order to avoid ambiguity in the vocabulary

used hereafter. In the remainder of this paper, all simu-

lations and calculations will be performed considering

that the parameter ζ is a constant and equal to 0.5. The

definitions presented below, used commonly in works

dealing with bifurcation theory, can present some con-

flicts with that of musical acoustics. The terms that will

be used in the remaining discussions are clarified in the

following paragraphs:

Static case The control parameter γ is constant and

the system is described by:

p+
n =Gγ

(
p+

n−1

)
. (22)

The steady state of the series p+
n depends on the value

of the control parameter γ. If γ is smaller than γst , the

series tends to a static regime. To avoid confusion, the

static regime will now be called non-oscillating static

regime. If γ is larger than γst the steady state of p+
n is

an oscillating regime. This regime is called oscillating

static regime. This behavior is still static, obtained by

choosing a value of γ, letting the system reach its steady

state, and repeating the procedure for each value of γ.

Note that, even if the system tends to a steady state, the

initial condition p+
0 often induces a transient regime.

Dynamic case As pointed in the introduction, in a mu-

sical context, the blowing pressure cannot always be

considered constant. The dynamic case take this into

γst
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0.4

0.6

0.8

1

γ
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|

(a)

γst

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

γ
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st
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e
of

p

(b)

γst

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

γ

St
ea

dy
st

at
e

of
p
+ p+∗(γ)

(c)

Figure 3: Graphical representation of the static bifurcation
diagrams for ζ= 0.5. Diagrams based on variables (a) |p|, (b)
p and (c) p+. The dashed line represents the curve of the
static regime, corresponding to the fixed point p+∗(γ) of the
function Gγ when the diagram is base on variable p+.

account considering that the control parameter γ is vari-

able and now written as γn . When γ is a linear function

of time, the system is described by the following differ-

ence equations:

{
p+

n =G
(
p+

n−1,γn
)

(23a)

γn = γn−1 +ε. (23b)

Since γ is changed only at each multiple of τ, the

solution of equation (23) is still a square signal, i.e. two-

state oscillating regime.

A slowly varying parameter implies that ε is arbitrar-
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Figure 4: Numerical simulation performed on the system (23). (a) complete orbit of the series and (b) zoom near the non-
oscillation dynamic regime. ζ= 0.5, ε= 10−3, γ0 = 0.2 and p+

0 =G(0,γ0).

ily small (ε¿ 1). The hypothesis of an arbitrarily small

ε could be questioned in the context of the playing of

a musical instrument. However, this hypothesis is re-

quired in order to use the framework of dynamic bifur-

cation theory (see forthcoming sections).

An example of a numerical simulation performed on

the system (23) is shown in Fig. 4 for ζ = 0.5, ε = 10−3

and an initial condition γ0 = 0.2. The initial value of the

outgoing wave is p+
0 =G(−p−

0 = 0,γ0). Indeed, for n = 0

the incoming wave p− is clearly zero, otherwise sound

would have traveled back and forth with an infinite ve-

locity.

The series p+
n first shows a short oscillating transient,

which will be called transient oscillating dynamic regime.

This oscillation decays into a non-oscillating dynamic

regime. Beyond a certain threshold, a new oscillation

grows, giving rise to the final oscillating dynamic regime.

This paper will focus on the transition (i.e. the bi-

furcation) from the non-oscillating dynamic regime to

the final oscillating dynamic regime. The value of the

parameter γ for which the bifurcation occurs is called

dynamic oscillation threshold, noted γd t .

3.1.2 Bifurcation delay

Bifurcation delay occurs in nonlinear-systems with time

varying control parameters. Fruchard and Schäfke [13]

published an overview of the problem of bifurcation

delay.

In fig. 5, the system (23) was simulated numerically,

showing the time evolution of the series p+
n and of the

control parameter γn (cf. Fig. 5(a)). To better under-

stand the consequence of a time-varying parameter, the

orbit of the series p+
n is plotted as a function of the pa-

rameter γn – in this case the evolution of the system can

be interpreted as a dynamic bifurcation diagram. This is

compared to the static bifurcation diagram in Fig. 5(b).

We can observe that the static and the dynamic bifur-

cation diagrams coincide far from the static oscillation

threshold γst . However, in the dynamic case, we can see

that the orbit continues to follow closely the branch of

the fixed point of function G throughout a remarkable

extent of its unstable range, i.e. after γst : the bifurca-

tion point is shifted from the static oscillation threshold

γst to the dynamic oscillation threshold γd t . The term

bifurcation delay is used to state the fact that the static

oscillation threshold γst is smaller than the dynamic

oscillation threshold γd t .

Non-standard analysis has been used in the past to

study the phenomenon of bifurcation delay [11, 12], ex-

plaing that one of the causes of the bifurcation delay is

the exponential proximity between the orbit of the se-

ries p+
n and the curve of the the fixed point of G . Other

studies of bifurcation delay using standard mathemat-

ical tools – mathematics [2, 3] or physics publications

[16, 24] – explain bifurcation delay as an accumulation

of stability during the range of γ for which the fixed

point of G is stable (i.e. 0 < γn < γst ). The dynamic os-

cillation threshold therefore appears as the value of the

parameter γ at which the stability previously accumu-

lated is compensated.

In musical acoustics literature some papers present

results showing the phenomenon of bifurcation delay

without never making a connection to the concept of

dynamic bifurcation. For example this phenomenon is

observed in simulations of clarinet-like systems using

a slightly more sophisticated clarinet model (Raman’s

model) [1]. Raman’s model takes losses into account



Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure 7

0 2000 4000 6000 8000 10000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

γn
p+n

(a)

0 0.2 γst0.4 0.6 0.8 γdt 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Bifurcation Delay

γn

Dynamic
Static
p+∗(γ)

(b)

Figure 5: (a) Time evolution of the series p+
n and of the control parameter γn .(b) Comparison between the series p+

n and the
static bifurcation diagram as a function of γn . ζ= 0.5, ε= 10−4, γ0 = 0 and p+

0 =G(0,γ0).

although they are assumed to be independent of fre-

quency (see [7] for further explanation). Bifurcation de-

lay can also explain the difficulty in estimating the static

oscillation threshold by using a slowly variable blow-

ing pressure [9]. In a preliminary work [5], bifurcation

delays were experimentally observed in a clarinet-like

instrument.

3.2 Analytical study of the dynamic case

This section presents an analytical description of a

clarinet-like system in a dynamic case. The notion of

invariant curve (φ(γ,ε)), invariant under the mapping

(23), will be needed for this study. The study of the

stability of the invariant curve allows to define an ana-

lytical estimation of the dynamic oscillation threshold. A

generic method to calculate the invariant curve is given

by Baesens [2]1, based on a perturbation method [4].

3.2.1 Invariant curve

The invariant curve φ(γ,ε) is invariant under the map-

ping (23), satisfying the following equation:

φ(γ,ε) =G
(
φ(γ−ε,ε),γ

)
. (24)

This curve plays a similar role for the dynamic sys-

tem as fixed points for the static system, attracting or

repelling the orbits. It is independent of the initial con-

dition.

First of all, the invariant curve is expanded into a

power series of ε, here truncated to the first order:

1In [2], the invariant curve is called adiabatic invariant manifold.

φ(γ,ε) ≈φ0(γ)+εφ1(γ). (25)

Fig. 5 shows that, during the dynamic phase, the orbit

of the series p+
n closely follows the curve of the fixed

points of G . This allows to linearize function G around

the curve of the fixed points p+∗(γ):

G(x,γ) ≈G
(
p+∗(γ),γ

)+
[
x −p+∗(γ)

]
∂xG

(
p+∗(γ),γ

)
, (26)

using the notation

∂xG
(
x, y

)= ∂G(x, y)

∂x
, (27)

and knowing that G
(
p+∗(γ),γ

) = p+∗(γ) (cf. equation

(18)). Finally, using a Taylor expansion of φ(γ−ε,ε) equa-

tion (24) is successively solved for the functions φ0(γ)

and φ1(γ), yielding:

φ(γ,ε) ≈ p+∗(γ)+

ε
d p+∗(γ)

dγ

∂xG
(
p+∗(γ),γ

)
∂xG

(
p+∗(γ),γ

)−1
. (28)

Using the explicit expressions of p+∗ and d p+∗/dγ

we have:
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Figure 6: Plot of γd t as a function of the initial condition γ0, for different values of the slope ε. (a), (b) and (c): solid lines are
the theoretical prediction γth

d t calculated from equation (36). Gray "∗" markers represent the value γnum
d t for which the system

begins to oscillate. (d): combination of the previous theoretical predictions. "~" represent the highest γ0 for which the system
has enough time to reach a non-oscillating dynamic regime.

φ(γ,ε) ≈ ζ

2
(1−γ)

p
γ−

ε
ζ
(
3γ−1

)
4
p
γ

∂xG
(
p+∗(γ),γ

)
∂xG

(
p+∗(γ),γ

)−1
. (29)

More details about the calculation of the invariant

curve are given in Appendix Appendix B.

To simplify the notation, in the rest of the document

the invariant curve will be noted φ(γ). Its dependency

on parameter ε is not explicitly stated.

3.2.2 Stability of the invariant curve and theoretical esti-

mation of the dynamic oscillation threshold

A theoretical estimation of the dynamic oscillation

threshold is done by identifying the value of γ for which

the invariant curve looses its stability. The invariant

curve is said to be unstable when the orbit of of the se-

ries p+
n escapes from the neighborhood of the invariant

curve φ(γ,ε).

To investigate the stability of the invariant curve

φ(γ,ε), the function G in equation (23a) is expanded

in a first-order Taylor series around the invariant curve

[2]:

p+
n =G(p+

n−1,γn)

≈G
(
φ(γn −ε),γn

)+
[
p+

n−1 −φ(γn −ε)
]
∂xG

(
φ(γn −ε),γn

)
. (30)

A new variable is defined that describes the distance

between the actual orbit and the invariant curve:

wn = p+
n −φ(γn), (31)

and using equation (24), equation (30) becomes:

wn = wn−1∂xG
(
φ(γn −ε),γn

)
. (32)
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The solution of equation (32) is formally:

wn = w0

n∏
i=1

∂xG
(
φ(γi −ε),γi

)
, (33)

for n ≥ 1 and where w0 is the initial value of wn . The

absolute value of wn can be written as follow:

|wn | =

|w0|exp

(
n∑

i=1
ln

∣∣∂xG
(
φ(γi −ε),γi

)∣∣) . (34)

Finally, using Euler’s approximation the sum is re-

placed by an integral:

|wn | ≈

|w0|exp

(∫ γn+ε

γ0+ε
ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣ dγ′

ε

)
. (35)

Equation (35) shows that the variable p+ starts to

diverge from the invariant curve φ(γ,ε) when the argu-

ment of the exponential function changes from negative

to positive. Therefore, the analytical estimation of the

dynamic oscillation threshold γth
d t is defined by:

∫ γth
d t+ε

γ0+ε
ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣dγ′ = 0, (36)

where γ0 is the initial value of γ. This result can be de-

duced from [2] (equation (2.18)), it may also be obtained

in the framework of non-standard analysis [10].

The theoretical estimation γth
d t of the dynamic oscilla-

tion threshold depends on the initial condition γ0 and

on the increase rate ε, it is therefore written γth
d t (γ0,ε).

A numerical solution γth
d t (γ0,ε) of the implicit equa-

tion (36) is plotted in Fig. 6 as a function of the initial

condition γ0 and for ε= 10−2, 10−3 and 10−4. γth
d t can be

much larger than static oscillation threshold γst = 1/3

for small initial conditions γ0. When the initial condi-

tion value γ0 increases, γth
d t approaches the static thresh-

old. Fig. 6(d) shows that the bifurcation delay seems

to be independent of the increase rate ε if this value is

sufficiently small (typically ≤ 10−3).

Equation (36) states that when γ= γth
d t we have |wn | ≈

|w0|, providing a good estimation of the dynamic oscil-

lation threshold γd t if |w0| is sufficiently small, i.e. if p+
0

is sufficiently close to φ(γ0). γ0 = 0 can be problematic

since φ(0,ε) =−∞, but a single iteration is sufficient to

bring the orbit to a neighborhood of the invariant curve.

Therefore, we make the assumption that

γth
d t (0,ε) ≈ γth

d t (ε,ε). (37)

0.3 0.35 0.4 0.45 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

γn

p+ n

Figure 7: Representation of the series p+
n as a function of γn

for ζ= 0.5,ε= 10−3, γ0 = 0.3 and p+
0 =G(0,γ0).

A non-exhaustive study done by running a few sim-

ulations shows that for ε= 10−4 the error in γd t due to

this approximation is under 10−8, rising to 10−7 when

ε= 10−3 and 2×10−5 when ε= 10−2.

3.3 Benchmark of theoretical estimators for the dy-
namic threshold

Multiple criteria can be associated to the beginning of

the oscillating regime. For instance, the oscillations can

start before the series departs from the vicinity of the

invariant curve as described in equation (36). Moreover,

because of the approximation used between equations

(35) and (36), the value of γ= γth
d t may not be an accu-

rate estimation of the value at which the orbit departs

from this vicinity.

For comparison, a dynamic oscillation threshold

(noted γnum
d t ) is calculated by simulating system (23)

and compared with γth
d t . When the orbit of the series

p+
n is periodic, the sign of the second order difference

of p+
n changes sign at each iteration (i.e. the curve of

p+
n changes from upward to downward concave). In dis-

crete time formulation the second order difference is

given by:

(
δ2p+)

i =
(
p+

i −p+
i−1

)− (
p+

i−1 −p+
i−2

)
. (38)

Therefore, γnum
d t , the oscillation threshold measured

in numerical simulations, is reached when(
δ2p+)

i−1

(
δ2p+)

i < 0, (39)

is satisfied.

Then, in Fig. 6, γnum
d t is compared with γth

d t (gray "∗"

markers). In some cases the series p+
n never reaches the

non-oscillating dynamic regime. An example of such

situations is shown in Fig. 7. The values of γnum
d t cor-
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0 0.2 γst 0.4 0.6 0.8 γthdt
1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

γn

p+ n

(a) precision = 5000

0 0.2 γst 0.4 0.6 0.8 γthdt
1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

γn

p+ n

(b) precision = 15

Figure 8: Representation of the series p+
n for ζ = 0.5, ε =

10−4, γ0 = 0, p+
0 =G(0,γ0) and for two different values of the

precision.

responding to the last initial values γ0 for which the

system has enough time to reach the non-oscillating

dynamic regime are circled.

Fig. 6 shows that for ε= 10−4 the theoretical result γth
d t

provides a good estimation of the observed dynamic os-

cillation threshold. For ε= 10−3, the theoretical estima-

tion is also good if the the initial condition is sufficiently

small but as γ0 gets closer to the static threshold γst

the system begins to oscillate before γ= γth
d t . Finally, for

ε= 10−2, γnum
d t is always smaller than γth

d t .

4. LIMIT OF THE MODEL: INFLUENCE OF THE

PRECISION

The phenomenon of bifurcation delay is very sensitive

to noise: either numerical noise (round-off errors of the

computer) or experimental noise (due to turbulence for

instance). Indeed, when the static threshold is exceeded

the system is very unstable. As a result, to observe bifur-

7 15 100 500 5000 7000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γthdt

γst

Precision

γ
n
u
m

d
t

Figure 9: Graphical representation of γnum
d t for different pre-

cisions (prec. = 7, 15, 100, 500 and 5000) and for ε = 10−4.
Results are also compared to analytical static and dynamic
thresholds: γst and γth

d t . ζ= 0.5 and γ0 = 0.

cation delay with numerical simulations and compare

to theoretical results, it is necessary to perform calcula-

tions using a very high precision, as was done previously

in this paper. For lower precisions the bifurcation delay

can be considerably reduced (see [12] for an example in

the logistic map).

Fig. 8 shows an example of numerical simulation per-

formed on system (23). Fig. 8(a) and Fig. 8(b) differ

only in the numerical precision (i.e. the number of dec-

imal digits) used to calculate the orbit. The choice of

the precision is possible using mpmath, the arbitrary

precision library of Python. Fig. 8(a) was obtained using

a precision of 5000 decimal digits, in this case γth
d t gives

a good estimation of the bifurcation point, as it has al-

ready been shown in Fig. 6. On the other hand, using

a precision of 15 decimal digits (Fig. 8(b)), the bifurca-

tion delay is considerably reduced and the theoretical

estimation of the dynamic oscillation threshold is not

valid.

To highlight the influence of the precision γnum
d t is

calculated for different precisions. Results are plotted

in Fig. 9 and compared to the analytical values γst and

γth
d t .

The first thing to observe in Fig. 9 is the very high

sensitivity of γnum
d t to precision, yet all the values of

γnum
d t appear between γst and γth

d t . For the lowest preci-

sion (7 decimal digits) the bifurcation delay disappears

and γnum
d t = γst . If the precision is very high (typically

≥ 5000 decimals) γnum
d t = γth

d t . Therefore, γth
d t can be

interpreted as the limit of the bifurcation delay when

precision tends to infinity. In cases with intermediate

precisions (prec. = 15, 100 and 500) the bifurcation delay

increases with the precision.
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Figure 10: Graphical representation of γnum
d t as a function of ε for ζ= 0.5, γ0 = 0 and using five different precisions. A logarithmic

scale is used in abscissa.

The sensitivity to the precision depends on the value

of the increase rate ε: Fig. 10 plots γnum
d t with respect to

ε for different values of the numerical precision. Results

are also compared with γst and γth
d t .

As above, for the lowest precision (7 decimals) the

bifurcation delay disappears when ε is sufficiently small.

Indeed, γnum
d t is constant and equal to γst . Then bifur-

cation delay occurs and increases with ε. The case of

the highest precision (5000 decimals) is identical to an

analytical case which would correspond to infinite pre-

cision. When ε is sufficiently small, the curves of γnum
d t

and γth
d t overlap. In this case when ε is small γnum

d t is al-

most constant suggesting that the bifurcation delay does

not depend on the increase rate, as previously shown in

Fig. 6(d). Then, still in the case of a precision of 5000

decimals, γnum
d t decreases for increasing ε, and γth

d t also

decreases but to a lesser extent. For intermediate preci-

sions (15, 100 and 500 decimals) the curve of γnum
d t first

increases before stabilizing close to the curve of γth
d t .

For a given value of the precision, the larger the ε,

the smaller is the accumulation of round-off errors cre-

ated by the computer to reach a certain value of γ. This

explains why the bifurcation delay first increases if the

precision is not sufficiently high to simulate an analytic

case. Beyond a certain value, all curves coincide with

the one corresponding to the highest precision. That

means that the system has reached the pair of parame-

ters [precison ; ε] needed to simulate an analytic case.

5. CONCLUSION

When considering mathematical models of musical in-

struments, oscillation threshold obtained through a

static bifurcation analysis may be possibly very different

from the threshold detected on a numerical simulation

of this model.

For the first time for musical instruments, the differ-

ences between these two thresholds have been inter-

preted as the appearance of the phenomenon of bifur-

cation delay in connection with the concept of dynamic

bifurcation.

Theoretical estimations of the dynamic bifurcation

provided in this paper have to be compared with care

to numerical simulations since the numerical precision

used in computations plays a key role: for numerical

precisions close to standard machine precision, the bi-

furcation towards the oscillating regime can occur at sig-

nificantly lower mouth pressure values (while different

most of the time from the threshold obtained through

static bifurcation theory). Moreover, in that case, the

threshold at which the oscillations start becomes more

dependent on the increase rate of the mouth pressure.

The dependency on precision can be linked to the

influence of noise generated by turbulence as the musi-

cian blows into the instrument. This would explain why

the delays observed in artificially blown instruments are

shorter than the predicted theoretical ones [5]. This will

be the subject of further work on this subject, as well

as the validity of these results for smoother curves of

variation of the mouth pressure.

Moreover, in the light of results presented here for a

basic model of wind instruments, varying the blowing

pressure (even slowly) does not appear as the best way

to experimentally determine Hopf bifurcations (static).

In a musical context, since the blowing pressure varies

through time, the dynamic threshold is likely to give

more relevant informations than the static threshold,

even if, in a real situation the influence of noise must
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be considered.

As a final remark, the simplistic model used in this

work only describes one point per half-period of the

sound played by the instrument. It is thus not suitable

to describe different regimes (whose frequencies are har-

monics of the fundamental one) that can be obtained

by the instrument. However a simple extension of this

model calculating the orbits of different instants within

the half-period may be able to provide some insight on

this subject.
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APPENDIX A. TABLE OF NOTATION

Appendix A.1 Physical variables

Symbol Explanation Unit

Zc characteristic impedance Pa·s·m−3

Ks static stiffness of the reed per

unit area

Pa·m−1

PM static closing pressure of the

reed

Pa

H opening height of the reed

channel at rest

m

U flow created by the pressure

imbalance between the mouth

and the mouthpiece

m3·s−1

Ur flow created by the motion of

the reed

m3·s−1

Ui n flow at the entrance of the res-

onator

m3·s−1

UA flow amplitude parameter m3·s−1

Pm musician mouth pressure Pa

P pressure inside the mouthpiece Pa

∆P pressure difference Pm −P Pa

y displacement of the tip of the

reed

m

τ round trip travel time of a wave

along the resonator

s

Appendix A.2 Dimensionless variables

Symbol Associated physical variable

γ musician mouth pressure

ζ flow amplitude parameter

u flow at the entrance of the resonator

p pressure inside the mouthpiece

r reflexion function of the resonator

p+ outgoing wave

p− incoming wave

p+∗ non-oscillating static regime of p+

(fixed points of the function G)

φ invariant curve

w difference between p+ and φ

ε increase rate of the parameter γ

γst static oscillation threshold

γd t dynamic oscillation threshold

γth
d t theoretical estimation of the dynamic

oscillation threshold

γnum
d t value of γ when the system begins to

oscillate (calculated numerically)

Appendix A.3 Nonlinear characteristic of the em-
bouchure

Function Associated repre-
sentation

Definition

F {u ; p} u = F (p)

G {p+ ; p−} p+ =G(−p−)

APPENDIX B. INVARIANT CURVE

The invariant curve φ(γ,ε) is invariant under the map-

ping (23), it therefore satisfies the following equation:

φ(γ,ε) =G
(
φ(γ−ε,ε),γ

)
. (40)

First of all, the invariant curve is expanded into a

power series of ε and only he first-order is retained:

φ(γ,ε) ≈φ0(γ)+εφ1(γ). (41)

Secondly, the function G is linearized around the

curve p+∗(γ) of the fixed points:

G(x,γ) ≈ G
(
p+∗(γ),γ

)+[
x −p+∗(γ)

]
∂xG

(
p+∗(γ),γ

)
(42)

= p+∗(γ)+ [
x −p+∗(γ)

]
∂xG

(
p+∗(γ),γ

)
,(43)

where

∂xG
(
x, y

)= ∂G(x, y)

∂x
. (44)

Then, we make a Taylor expansion of φ(γ−ε,ε):
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φ(γ−ε,ε) ≈ φ(γ,ε)−ε∂φ
∂γ

(γ,ε)+O(ε2); (45)

= φ0(γ)+εφ1(γ)−ε∂φ0(γ)

∂γ
+O(ε2).(46)

Finally, neglecting the second-order terms in ε, equa-

tion (40) becomes:

φ0(γ)+εφ1(γ) = p+∗(γ)+[
φ0(γ)+εφ1(γ)−ε∂φ0(γ)

∂γ
−p+∗(γ)

]
×

∂xG
(
p+∗(γ),γ

)
. (47)

To obtain the approximate analytical expression of

the invariant cure φ, equation (47) is successively solved

for the functions φ0(γ) and φ1(γ).

As expected, to order 0 we find:

φ0(γ) = p+∗(γ). (48)

To order 1, we have to solve:

φ1(γ) =
[
φ1(γ)− ∂φ0(γ)

∂γ

]
∂xG

(
p+∗(γ),γ

)
; (49)

=
[
φ1(γ)− ∂p+∗(γ)

∂γ

]
∂xG

(
p+∗(γ),γ

)
, (50)

and therefore:

φ1(γ) = ∂p+∗(γ)

∂γ

∂xG
(
p+∗(γ),γ

)
∂xG

(
p+∗(γ),γ

)−1
. (51)

Finally the expression of the invariant curve is:

φ(γ,ε) ≈

p+∗(γ) + ε
∂p+∗(γ)

∂γ

∂xG
(
p+∗(γ),γ

)
∂xG

(
p+∗(γ),γ

)−1
. (52)
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