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1 Laboratoire Kastler Brossel, Université Pierre et Marie Curie–Paris 6, ENS, CNRS; 4 place

Jussieu, 75252 Paris, France
2 Centre for Quantum Computation and Communication Technology, Department of Quantum

Science, The Australian National University, Canberra, ACT 0200, Australia

∗nicolas.treps@upmc.fr

Abstract: We propose a direct and real-time ranging scheme using

an optical frequency combs, able to compensate optically for index of

refraction variations due to atmospheric parameters. This scheme could be

useful for applications requiring stringent precision over a long distance

in air, a situation where dispersion becomes the main limitation. The

key ingredient is the use of a mode-locked laser as a precise source for

multi-wavelength interferometry in a homodyne detection scheme. By

shaping temporally the local oscillator, one can directly access the desired

parameter (distance) while being insensitive to fluctuations induced by

parameters of the environment such as pressure, temperature, humidity and

CO2 content.
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15. P. Réfrégier, Noise theory and application to physics: from fluctuations to information (Springer Verlag, 2004).

16. V. Delaubert, N. Treps, C. Harb, P. Lam, and H. Bachor, “Quantum measurements of spatial conjugate variables:

displacement and tilt of a gaussian beam,” Optics letters 31, 1537–1539 (2006).

17. M. Hsu, V. Delaubert, P. Lam, and W. Bowen, “Optimal optical measurement of small displacements,” Journal

of Optics B: Quantum and Semiclassical Optics 6, 495 (2004).

18. B. Edlén, “The Refractive Index of Air,” Metrologia 2, 71–80 (1966).

19. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Applied Optics 35, 1566–+

(1996).
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The accuracy of precise length measurements is commonly limited by dispersive effects. For

instance, the dispersion of air is a crucial issue for geodetic surveying [1] or for the optical

link between a ground station and a satellite [2]. The lack of knowledge about atmospheric

parameters can then act as the main limitation to optical length measurements.

Numerous groups around the world tackle this issue of long range distance measurement.

For instance, in atmospheric links such as satellite ranging or Lunar Laser Range, the accuracy

provided by time-of-flight measurements reaches the millimeter level or below [2, 3]. Interfer-

ometric distance measurements lead to potentially increased accuracies. However, for simple

interferometric experiments, the periodicity of the signal results is ambiguous up to an absolute

distance of a half-wavelength. This ambiguity distance can be extended by combining signals

from multiple wavelengths. For instance, the Very Large Telescope Interferometer uses dual-

field interferometry to reach nanometric accuracy in a 100 m air-filled delay line [4].

It is also possible to combine both time-of-flight and phase measurement to obtain a better

sensitivity and an absolute distance measurement. The ideal tool for this is the phase-stabilized

mode-locked femtosecond laser which delivers a frequency comb that can be seen as a perfect

source for multi-wavelength interferometry [5, 6, 7]. The problem we address here is the way

to use this tool in a complex environment, in order to perform a dispersion free measurement.

We will more precisely treat the example of distance measurement in air independent of the

variation of physical parameters such as pressure, temperature, CO2 content or humidity.

In a multi-parameter environment, where many physical factors can affect the accuracy of

distance measurements, these extra parameters need to be measured and their effects com-



pensated. This is the general strategy of the well-known multicolor schemes [8], which we

introduce in the first part of this paper.

In the second part, we derive fundamental limits for optimal measurement schemes (i.e.

reaching the Cramér-Rao bound with coherent states [9, 10, 11]) for distance measurements

through a dispersive medium, using mode-locked lasers. The technique is based on temporal

mode-dependent interferometry. We show that, in contrast to multicolor schemes for instance,

only one measurement is necessary whatever the number of parasitic parameters we want to

cancel. This is done at the cost of a precise spectral mode shaping of the frequency comb that

is used.

We finally propose a general all-optical experimental setup using pulse shaping and homo-

dyne detections to reach the previous limit. Our distance measurement can be made insensitive

of the environment parameters such as temperature or pressure. No post-processing is needed to

achieve a measurement limited by the laser noise. Another advantage over existing schemes is

that mode-locked lasers are remarkable tools for optical measurement because of their intrinsic

high stability.

Distance measurement in air : multicolor schemes

Let us start by describing the general technique of multicolor schemes. If one needs to mea-

sure a distance in air, the fluctuations of parameters such as pressure or temperature limit the

achievable accuracy. The general idea to solve this problem is to perform several measurements

at different wavelengths to gain informations about these parameters and compensate the meas-

ured length for their variations. For example, in the two-wavelength interferometry (2WI), a

given distance L is measured using two wavelengths λ1 and λ2. The two observables Lφ1
and

Lφ2
deduced from the measurement are such that [8, 12, 13]

Lφ1
= nφ (λ1)L and Lφ2

= nφ (λ2)L . (1)

For dry air (pressure of water vapor Pw = 0), one finds

L = Lφ1
+α(Lφ1

−Lφ2
) with α =

K(λ1)

K(λ2)−K(λ1)
, (2)

where K(λ ) is given in Appendix A, and is calculated from the Edlén model of air. The param-

eter α is independent from pressure, temperature and CO2 content of air. The standard quantum

limit for a distance measurement is obtained by taking (δLφi
)shot = c

2
√

Nωi
. The sensitivity δL

on the distance then strongly depends on the value of α . Typically, for λ1 = 1064 µm and

λ2 = 532 µm, α is of the order of 60. Hence, for a mean photon number N = 4× 1016 per

wavelength (10 mW power and an integration time of 1 s), one gets

(δL)shot
2W I ≃ 3× 10−14 m . (3)

This is the shot noise limit in distance variation measurement (displacement), but one should

note that for an absolute distance characterization (ranging), the precise knowledge of α is the

main limitation factor (δα/α ∼ 1%).

For moist air, one can no longer use Eq. (2). If the pressure of water vapor is unknown or

changing over time, it leads to a systematic error (see [13] for a discussion). A solution is then

to consider a third wavelength λ3 [14] and a third measurement Lφ3
so that

L = Lφ1
+β (Lφ2

−Lφ1
)+ γ(Lφ3

−Lφ1
) . (4)

Expressions of β and γ can be found in [14] and do not depend on pressure, temperature,

CO2 content and humidity. Here again these factors can be large, reducing the sensitivity of



displacement measurement. For a same total number of photons and typical wavelengths, the

shot noise limit is now around 10−12 m. In addition to this degradation, the three-wavelength

scheme is experimentally more involved.

From this example one sees that both the required sensitivity and physical characteristics of

the medium conditions on the number of extra parameters one has to take into account. For

each of these parameters an additional measurement at a different wavelength is necessary.

1. Efficient measurement through dispersive media

We will now give a more general and systematic approach to this problem. First, we derive gen-

eral equations for the propagation of light through a dispersive medium whose characteristics

depend on external parameters. We then elaborate on the ideas developed in [6, 11] and deal

with a very general approach on how to efficiently measure parameters affecting the propaga-

tion of a light pulse. We derive fondamental limits imposed by the quantum nature of light. One

should note nevertheless that we limit ourselves to the study of coherent states, non-classical

quantum states being beyond the scope of this article.

1.1. Propagation in a dispersive medium

We consider the propagation of an electromagnetic field along the z direction in a weakly dis-

persive medium. Its propagation from a source to a detector can be affected by a given set of

parameters~p=(p1, . . . , pi, . . .) that modify the propagation distance L and/or the characteristics

of the dispersive medium: these may be environmental parameters such as air pressure, tem-

perature, etc., or a physical displacement of the source (or the detector). Neglecting polarization

effects and using the paraxial approximation, we assume the field to be in a single transverse

mode (such as a TEM00 mode), and thus will not write the transverse dependence of the field.

We further assume Fourier-limited pulses (assuming perfect temporal coherence) and write the

dispersed field, as seen by the detector, as a scalar field:

E (t,~p)≡ E0 u(t,~p) , (5)

where u(t,~p) is the normalized mean field mode (integrated over the measurement time of the

detector) and E0 is a normalization constant which depends on the number of photons N.

In the following, it will be more convenient to work in the Fourier space:

E (ω ,~p)≡
∫

E (t,~p) eiωt dt, u(ω ,~p)≡
∫

u(t,~p) eiωt dt . (6)

We define ω0 and ∆ω as the mean value and variance of the field:

ω0 =

∫

ω |u(ω ,~p)|2 dω , ∆ω2 =

∫

(ω −ω0)
2 |u(ω ,~p)|2 dω . (7)

Let us consider an input field Ei(ω) whose frequency profile is known. For the sake of sim-

plicity, the field is considered Gaussian (the same final result can be reached with a non Gaus-

sian field but it involves more complex calculations). This field propagates on a distance L(~p)
through a dispersive medium with a dispersion relation k(ω ,~p) which depends on ~p through the

refractive index nφ (ω ,~p). In the frequency space, this propagation is characterized by a spectral

phase k(ω ,~p)L(~p):

E (ω , p) = Ei(ω)eik(ω,~p)L(~p), k(ω ,~p) =
nφ (ω ,~p)ω

c
. (8)

In this paper, we neglect any absorption of the medium, i.e. we consider a real refractive index.

The previous equation (8) is therefore also valid by replacing fields E by normalized modes u.



For a weakly dispersive medium, the dispersion relation k(ω ,~p) can be expanded to the

second order around the mean frequency ω0:

E (ω ,~p)≈ Ei(ω)exp

[

i

(

ω0 tφ (~p)+ (ω −ω0)tg(~p)+
(ω −ω0)

2

ω0

tGVD(~p)

)]

, (9)

where

tφ (~p) = nφ (ω0,~p)
L(~p)

c
, (10)

tg(~p) = ng(ω0,~p)
L(~p)

c
=
(

nφ (ω0,~p)+ω0n′φ (ω0,~p)
) L(~p)

c
, (11)

tGVD(~p) = ω0

(

n′φ (ω0,~p)+
ω0

2
n′′φ (ω0,~p)

) L(~p)

c
. (12)

ng is the group index, and 2
(

n′φ (ω0,~p)+
ω0
2

n′′φ (ω0,~p)
)

corresponds to the Group Velocity

Dispersion (GVD).

In the temporal domain, the field E (t, p) = e−iω0t
Ẽ (t, p), the envelope Ẽ of the field travels

at the group velocity c
ng

while the carrier ω0 moves at the phase velocity c
nφ

; a non zero group

velocity dispersion leads to a broadening of the envelope.

Any change of a parameter in ~p that affects the distance L(~p) will contaminate all quantities

tφ , tg and tGVD, as well as any variation of the refractive index of the medium. In Section 2, we

show how to uncouple, in air, variation of L from variation due to four different environmental

parameters: pressure, temperature, humidity and CO2 content. Note that a generalization to

other environmental parameters can be obtained by expanding equation (9) to higher orders of

the spectral phase and applying the methods developped later in the paper. Nevertheless, these

4 parameters are typically the most relevant for air.

1.2. Detection scheme and Cramér-Rao bound

The general problem of estimating a parameter pi ∈ ~p encoded in a light beam E (~p) has been

treated in [9, 15]. The ultimate limit of sensitivity in the measurement of pi is given by the so-

called quantum Cramér-Rao bound, which can be computed once we specify the quantum state

of the light beam (coherent state, squeezed state, entangled state etc...) [11]. For Gaussian states,

this Cramér-Rao bound can be reached experimentally with a balanced homodyne detection

scheme, as represented in Figure 1. The general idea is that the homodyne detection signal is

proportional to the projection of the input field into the Local Oscillator (LO) mode.

Local Oscillator
medium

-

wi(ω) ∂u
∂ pi

(ω p = 0)

u(ω p)

k(ω p)

u i(ω)

Fig. 1. Detection scheme for measuring pi at the Cramér-Rao bound.

For a small variation of the set of parameters ~p, the field reads:

E (ω ,~p)≈ E (ω ,~0)+~p.
−→
∇ ~p E (ω ,~p =~0) = E0

(

u(ω ,~0)+∑
i

piKiwi(ω)

)

, (13)



where wi are normalized modes such as wi(ω) = 1
Ki

∂u
∂ pi

(ω ,~p =~0), and Ki are dimensional

normalization constants. Introducing the standard L2 inner product 〈 f ,g〉 =
∫

f ∗(ω)g(ω)dω ,

one simply has Ki ≡
√

〈 ∂u
∂ pi

, ∂u
∂ pi

〉.
One should note that in general the modes wi do not form an orthogonal basis. This implies

that independent measurements of each parameter become a complex problem that we now

discuss in detail extensively. Let us first consider the case where only one parameter pi ∈ ~p is

influencing the length measurement. It is shown in [16] that in a homodyne detection scheme,

if the LO mode is proportional to wi (and if there is no phase difference between the LO and

the signal E ), the detected signal S[wi] is given by

S[wi] =
1

Ki

Re [〈u(~p),wi〉] =
p j 6=i=0

pi. (14)

For a coherent state illumination with a mean photon number N, the noise in the measurement

is ∆pi = 2
√

NKi. Therefore, the smallest pi that can be measured (i.e. for a signal to noise ratio

equal to one, S/∆p = 1) is given by

(pi)min =
1

2
√

NKi

. (15)

This value coincides with the Cramér-Rao bound with coherent states [11]. This shows that a

homodyne detection with a LO shaped in mode wi defines what is called an efficient measure-

ment of pi. Moreover, one sees from the previous expression that the sensitivity of the measure-

ment depends both on the number of photons N and on Ki, the latter reflecting the characteristic

variation of the mode with the parameter pi. From now on, the mode wi will be called the

detection mode of the parameter pi.

An experimental demonstration of the efficiency of such a scheme has been realized for pa-

rameters corresponding to spatial displacement of a beam [17, 16], and a theoretical proposition

for a time delay through a dispersion-less medium has been made in [6]. One should stress that,

generally speaking, these kind of experiments are sensitive to variation of parameters within the

detection bandwidth, limited here by light time travel. On the other, this system is immune to

any fluctuations, whatever their frequencies, of parameter corresponding to orthogonal modes,

given we stay in the linear regime.

Let us now consider the general case where there exists at least another parameter p j 6=i such

as wi and w j are not orthogonal. In that case, a homodyne detection with LO mode wi will also

be sensitive to p j. We show here that this issue can be resolved by ’purifying’ the detection

mode wi into a new mode w
p
i that is now orthogonal to w j . This new shape of the LO allows to

measure pi independently of p j. Nevertheless, because it differs from the detection mode wi,

it leads to a reduced sensitivity in the measurement of pi. In the general situation, the purified

mode for a given parameter pi is orthogonal to the hyperplane formed by {w j 6=i}, and the

normalization factors are given by K
p
i = Ki〈wp

i ,wi〉< Ki. The sensitivity in the measurement of

pi is therefore decreased and given by (pi)
p
min =

1

2
√

NK
p
i

.

The choice for the mode of the LO is an experimental tradeoff between accuracy (no per-

turbation coming from p j) and precision. We further elaborate on this point in the following,

taking as a simple example the measurement of tφ , tg and tGVD introduced previously.

To this aim, we introduce a controlled perturbation pφ ≪ tφ of the phase delay tφ → tφ + pφ ,

a perturbation pg ≪ tg of the group delay tg → tg + pg and a perturbation pGVD ≪ tGVD of the

group velocity dispersion delay tGVD → tGVD + pGVD. The corresponding detection modes are



given by:

wφ (ω) = iu(ω) = v0(ω) (16)

wg(ω) = i
ω −ω0

∆ω
u(ω) = v1(ω) (17)

wGVD(ω) = i
1√
3

(ω −ω0)
2

∆ω2
u(ω) =

1√
3

v0(ω)+

√

2

3
v2(ω) (18)

where we have introduced {vi(ω)} the orthonormal basis of spectral Hermite-Gaussian modes

whose expressions are given in Appendix B. The normalization factors are given by Kφ = ω0,

Kg = ∆ω and KGVD =
√

3 ∆ω2

ω0
.

It is clear that wφ and wGVD are not orthogonal, which implies that a measurement using a

LO wφ will not be accurate because of its sensitivity to pGVD, and vice versa. More precisely,

measurements over the various detection modes will yield the following signals:

S[wφ ] = pφ +
∆ω2

ω2
0

pGVD (19)

S[wg] = pg (20)

S[wGVD] =
1

3

ω2
0

∆ω2
pφ + pGVD. (21)

In order to measure only pφ , one has to consider the purified mode w
p
φ introduced previsously,

which is orthogonal to the detection modes of the other parameters. Formally, w
p
φ (ω) is or-

thogonal to the hyperplane generated by {wg,wGVD} in the vector space {wφ ,wg,wGVD} and is

given in the present case (up to a scalar factor) by:

w
p
φ (ω) =

√

2

3
v0(ω)− 1√

3
v2(ω). (22)

A measurement with LO w
p
φ yields:

S[wp
φ ] = pφ . (23)

Defining K
p
φ = Kφ 〈wp

φ ,wφ 〉=
√

2
3
ω0, the sensitivity of this measurement is:

(pφ )
p
min =

1

2
√

N

√

2
3
ω0

. (24)

The two previous equations show that it is possible to retrieve a phase delay information

insensitive to any group velocity dispersion fluctuations with only one homodyne measurement.

This improvement in accuracy is made at the cost of a decreased precision, determined by the

overlap between the purified and non purified modes (here the degradation is given by
√

3/2).

The same process can be applied to obtain the purified mode for measuring pGVD:

w
p
GVD(ω) = v2(ω) with K

p
GVD =

√
2

∆ω2

ω0

. (25)

The link between the detection modes and the purified modes is shown in Figure 2 and in

Table 1.



wϕ

wg

wGVD

v2

v1

=

=

v0

w
p
GVD =

w
p
ϕ

wϕ

wg

wGVD

v2

v1

=

=

v0

Fig. 2. Relation between the different LO modes in the vector space {v0,v1,v2}. The modes

w
p
φ , wφ , wGVD and w

p
GVD lie in the same plane.

2. Application to the measurement of a distance in air

Let us now consider the specific case of measuring a distance in air, independently of the fluc-

tuation of environmental parameters such as pressure and temperature. Indeed, induced index

refraction fluctuations are the main limitations to precise distance measurement. To access the

absolute length, one needs to know precisely the air index variation with these parameters. One

solution is to measure precisely these parameters and use an air model to calculate the refractive

index, for instance the Edlén [18] or the Ciddor [19] equations. But these techniques are not

immune to local variation of the parameters, and some parameters such as the partial pressure

of water vapor are very difficult to precisely access. One can also measure directly the local

refractive index using a refractometer [20].

Another solution is to make several measurements in order to compensate for these effects.

This is the principle of multicolor interferometry [8], whose state of the art is based on second

harmonic generation [21, 12], as we have presented in the introduction. Here we develop our

new experimental scheme based on mode-locked lasers interferometry as introduced in the

previous section. This technique is another kind of multicolor interferometry and allows for

direct measurement of distance in air independently of parameters from the environment.



Parameter Mode Sensitivity Temporal profile

pφ Detection: wφ = v0
1

2
√

Nω0

Purified: w
p
φ =

√

2
3
v0 − 1√

3
v2

1

2
√

N

√

2
3 ω0

pg wg = v1
1

2
√

N∆ω

pGVD Detection: wGVD = 1√
3
v0 +

√

2
3
v2

1

2
√

N

ω0√
3∆ω2

Purified: w
p
GVD = v2

1

2
√

N

ω0√
2∆ω2

Table 1. Summary of the different LO modes and the sensitivities.

2.1. Ranging through air

We apply the technique developed in Section 1.2 to the measurement of the absolute distance

L in air. The parameter to be measured with high sensitivity is pL = L. Fluctuations of the

environment do perturb this measurement. They can be separated into two groups of parameters.

Firstly temperature T , pressure P and CO2 content x affect air index though the same function,

as can be seen in the air model developed in Appendix A. They will be described by only one

parameter pX = X(T,P,x). Secondly, pressure of water vapor Pw has an independent influence,

for which we define the parameter pPw = Pw.

One can calculate the corresponding detection modes using the Edlén model of refractive

index recalled in the appendix and the second order development of the electric field introduced

in the first section. The distance detection mode is given by :

wL(ω) =
1

cKL

(ω0v0(ω)+∆ω v1(ω)) (26)

and the two other detection modes are given in the appendix.

These modes are not linearly independent. Thus if we consider a possible experimental

scheme with homodyne detection in the detection mode for L (see Figure 3) the measured

signal will be :

S[wL] = pL +
KX

KL

〈wL,wX 〉pX +
KPw

KL

〈wL,wPw〉pPw . (27)

Therefore, the signal will be contaminated by variations of the different parameters pX and pPw .

Let us first compute the shot noise limit in the case where pX and pPw are zero (or sufficiently

small). To compare with multicolor schemes, in the remainder of this section the measure-

ment is performed using N = 8× 1016 photons and assuming a laser bandwidth of ∆ω = ω0
6

(corresponding to 3 fs FWHM Fourier-limited pulses). The shot noise limited sensitivity to

displacement is about 2×10−16 m, comparable to usual interferometric measurement schemes.
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Fig. 3. Direct distance measurement with an appropriately shaped LO.

One can evaluate the contamination from the other parameters calculating the pre-factor of

pX and pPw in equation (27). One finds 1
L

KX
KL

〈wL,wX 〉= 27× 10−5 Pa−1 and 1
L

KPw

KL
〈wL,wPw〉 =

−3.7×10−10 Pa−1. These factors are big compared to shot noise limited pure distance measure-

ments. It means it is necessary in this case to take into account the parasitic parameters in order

to preserve the accuracy of the measurement. To solve this issue, we can apply the detection

mode purification procedure introduced previously :

w
p
L(ω) ∝ wL(ω) − 〈wL,wPw〉− 〈wX ,wPw〉〈wL,wX 〉

1−〈wX ,wPw〉2
wPw(ω) (28)

− 〈wL,wX 〉− 〈wX ,wPw〉〈wL,wPw〉
1−〈wX ,wPw〉2

wX (ω) . (29)

The spectral profiles of the purified and non-purified modes are plotted in Figure 4. The nor-

malization constant as well as the derivation of this mode can be found in Appendix C. It is

found that :

K
p
L = KL

√

1− 〈wL,wPw〉2 + 〈wL,wX 〉2 − 2〈wL,wPw〉〈wL,wX 〉〈wX ,wPw〉
1−〈wX ,wPw〉2

. (30)

In that case, the shot noise limit has the following value :

(δL)shot
1HD =

c

2
√

NK
p
L

= 2× 10−11m . (31)

As a matter of comparison, a purification for pX only (which would be equivalent to the two-

color scheme) leads to a shot noise limit of (δL)shot
1HD = c

2
√

NK
p
L

= 3× 10−13m. Even if the

precision is 2 orders of magnitude better, the accuracy of the measurement is not controlled

because of the unknown value of humidity introducing a systematic error.

Using that scheme, one can perform a single-shot measurement of distance immune from

environmental parameters fluctuations. Sensitivity is of the same order of magnitude than in

multicolor scheme (slightly lower in our examples, but this is simply due to smaller spectral

width), and depends on how many parameters one wants to get immune from. From a more
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Fig. 4. Spectral profile of modes wL and w
p
L for 3 fs FWHM Gaussian pulses.

technical point of view, no complex frequency generation is necessary, a femtosecond source

is enough to perform the measurement. Furthermore, the scheme described here could be ex-

tended to more parameters. Of course, the mode shaping can be more difficult to produce and

in particular the precision required in shaping becomes more stringent when more parameters

are considered. In a realistic implementation, one can set up active pulse-shaping with search

algorithms to determine the proper shaping. It is significant to notice that all the work is to be

done at the detection stage and not on the light sent through the medium, which makes it much

easier to handle.

3. Conclusion

We have exhibited a novel optimal and all-optical scheme to measure in real time a distance

compensated for refractive index changes. It relies on a homodyne detection whose local oscil-

lator projects the measurement on an appropriate mode, hence no post-processing is necessary.

We believe this is a simplification compared to existing schemes such as spectral interferometry

for example, where derivatives of the spectral phase have to be done after the measurement.

Let us finally mention that this scheme can further be improved in order to go below the

standard quantum limit. It is well known that the sensitivity of a measurement can outreach

the shot noise limit by using quantum resources such as squeezed or entangled light [22]. In

the scheme presented in this paper, this can be achieved by using a multimode signal light

beam with squeezing in the detection mode associated to the measurement, as demonstrated in

Ref. [11].

A. Index of refraction of air

The common equations used to derive the wavelength dependence of the refractive index of air

are given by the Edlén equations [18], modified by different authors since that time [19, 23, 24,

25, 26, 20]. The accuracy of those equations are roughly of the order of a few 10−9 for dry air

and 10−8 for moist air and needs to take into account a large number of parameters, usually

temperature, pressure, CO2 content, pressure of water vapor. Moreover, different studies do not

necessarily agree and do not cover the whole spectrum. A recent precise measurement of the

refractive index of air has been done in [27]. Experimentally, measuring all those parameters

can be difficult for certain situations, and in addition those parameters have to be measured in

real time, in order to compensate for fluctuations of the refractive index.



In this paper we consider the updated Edlén formula of Bönsch and Potulski [20] :

nφ (σ ,T,P,x,Pw)− 1 = K(σ)X(T,P,x)− g(σ)Pw (32)

where σ = 1/λ is the wavenumber and

K(σ) = 10−8

(

A+
B

130−σ2
+

C

38.9−σ2

)

, (33)

X(T,P,x) =
P

D

1+ 10−8(E −F T )P

1+GT
[1+H(x− 0.04%)] , (34)

g(σ) = 10−10
(

I− Jσ2
)

, (35)

with σ in µm−1, P and Pw in Pascal (Pa), T in degree Celsius (◦C) and x, the CO2 content, in

percentage. The different coefficients further read

A = 8091.37 , B = 2333983 , C = 15518 , (36)

D = 932164.60 , E = 0.5953 , F = 0.009876 , G = 0.0036610 , (37)

H = 0.5327 , (38)

I = 3.802 , J = 0.0384 . (39)

The group index is therefore given by

ng(σ ,T,P,x,Pw)− 1 = (K(σ)+σK′(σ))X(T,P,x)− (g(σ)+σg′(σ))Pw , (40)

so that ng − nφ = σ (K′(σ)X(T,P,x)− g′(σ)Pw).

B. Hermite-Gaussian set of spectral modes

For a Gaussian mean field mode

u(ω) =
1√
∆ω

1

(2π)1/4
e
− (ω−ω0)

2

4∆ω2 , (41)

we introduce the Hermite-Gauss modes

vn(ω) = i
1√
2nn!

Hn

(

ω −ω0√
2∆ω

)

u(ω). (42)

These modes {vn(ω)} form an orthonormal basis of modes.

In order to describe the spectral phase up to the kth order, one needs to use the basis {vn(ω)}
up to the mode k. In this paper, we develop the spectral phase to the second order; therefore, we

use the following modes:

v0(ω) = iu(ω) (43)

v1(ω) = i
ω −ω0

∆ω
u(ω) (44)

v2(ω) = i
1√
2

(

(ω −ω0)
2

∆ω2
− 1

)

u(ω). (45)

The mode spectral profiles are plotted in Figure 5.
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Fig. 5. Spectral profile of Hermite-Gaussian modes v0, v1 and v2.

C. Detection modes of environmental parameters

Detection modes read :

wL(ω) =
1

cKL

(ω0v0(ω)+∆ωv1(ω)) (46)

wX (ω) =
LK(ω0)

cKX

[(

ω0 +
∆ω2

ω0

(δ1 + δ2)

)

v0(ω)+∆ω(1+ δ1)v1(ω)+
√

2
∆ω2

ω0

(δ1 + δ2)v2(ω)

]

wPw(ω) =
−Lg(ω0)

cKPw

[(

ω0 +
∆ω2

ω0

(η1 +η2)

)

v0(ω)+∆ω(1+η1)v1(ω)+
√

2
∆ω2

ω0

(η1 +η2)v2(ω)

]

where we have defined characteristic quantities that do not depend on the environmental pa-

rameters T , P, x and Pw:

δ1 = ω0
K′(ω0)

K(ω0)
, δ2 =

ω2
0

2

K′′(ω0)

K(ω0)
, (47)

η1 = ω0
g′(ω0)

g(ω0)
, η2 =

ω2
0

2

g′′(ω0)

g(ω0)
. (48)

Defining :

KL =
1

c

√

ω2
0 +∆ω2 (49)

KX =
K(ω0)L

c

√

(

ω0 +
∆ω2

ω0

(δ1 + δ2)

)2

+∆ω2(1+ δ1)2 + 2
∆ω4

ω2
0

(δ1 + δ2)2 (50)

KPw =
g(ω0)L

c

√

(

ω0 +
∆ω2

ω0

(η1 +η2)

)2

+∆ω2(1+η1)2 + 2
∆ω4

ω2
0

(η1 +η2)2 (51)

Measurements with the detection modes give:

M[wL] = pL +
KX

KL

〈wL,wX 〉pX +
KPw

KL

〈wL,wPw〉pPw (52)

M[wX ] =
KL

KX

〈wL,wX 〉pL + pX +
KPw

KX

〈wL,wPw〉pPw (53)

M[wPw ] =
KL

KPw

〈wL,wPw〉pL +
KX

KPw

〈wX ,wPw〉pX + pPw (54)



Calculation of the purified mode w
p
L: we first calculate a orthonormal basis in the plane

{wX ,wPw}, which leads for example to a basis {wX ,w
i
Pw
} where

wi
Pw
(ω) =

1
√

1−〈wX ,wPw〉2
(wPw(ω)−〈wX ,wPw〉wX ) (55)

Then we do a Gram-Schmidt orthonormalization of {wX ,w
i
Pw
,wL} which gives:

w
p
L(ω) ∝ wL(ω)−〈wL,wX 〉wX (ω)−〈wL,w

i
Pw
〉wi

Pw
(56)

The normalization constant is:

√

1− 〈wL,wPw〉2 + 〈wL,wX 〉2 − 2〈wL,wPw〉〈wL,wX 〉〈wX ,wPw〉
1−〈wX ,wPw〉2

(57)
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