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ABSTRACT

This paper proposes a learning framework and a set of algo-

rithms for nonsmooth regression, i.e., for learning piecewise

smooth target functions with discontinuities in the function it-

self or the derivatives at unknown locations. In the proposed

approach, the model belongs to a class of smooth functions.

Though constrained to be globally smooth, the trained model

can have very large derivatives at particular locations to ap-

proximate the nonsmoothness of the target function. This is

obtained through the definition of new regularization terms

which penalize the derivatives in a location-dependent man-

ner and training algorithms in the form of convex optimiza-

tion problems. Examples of application to hybrid dynamical

system identification and image reconstruction are provided.

1. INTRODUCTION

This paper proposes a learning framework and a set of algo-

rithms dedicated to nonsmooth function regression. While

a number of efficient machine learning tools exist to learn

smooth functions with high accuracy from a finite data sam-

ple, the accuracy of these approaches becomes less satisfac-

tory for nonsmooth target functions. More precisely, and

since learning without minimal smoothness assumptions is

not possible, we consider piecewise smooth (PWS) target

functions. Such functions have discontinuities in the func-

tion itself or the derivatives at particular locations or bound-

aries between regions in which the function is smooth. In

particular, we focus on the case where these boundaries are

unknown, since with known boundaries the problem simply

amounts to independently solving a classical smooth regres-

sion subproblem in each region. Such behaviors are typi-

cally observed in physical systems subject to saturations or

switches and in images where the intensity can vary smoothly

within an object and jump at edges.

Two major approaches can be applied to learn nonsmooth

functions: general methods for smooth regression and meth-

ods dedicated to nonsmooth regression. The first class of

methods includes regularized kernel methods such as Sup-

port Vector Machines (SVM) and Kernel Ridge Regression

(KRR) [1], for which the training algorithms amount to solv-

ing a convex optimization problem. However, the regulariza-

tion typically considered for such methods explicitly draws

the solution away from nonsmooth functions. On the other

hand, methods designed for nonsmooth regression typically

consider a collection of local (and smooth) submodels. The

mixtures of experts (ME) [2] are a widely known example

where a gating network controls the mixing of the experts for

a particular input. However, such approaches rely on noncon-

vex optimization, which implies that despite the existence of

efficient algorithms such as expectation-maximization, these

algorithms are only guaranteed to converge to a local solu-

tion and are sensitive to their initialization. Other works in

control theory consider switching regression, either for linear

[3]) or nonlinear [4] submodels, and suffer from similar is-

sues. Except for [5], the situation is often worse since these

methods do not constrain the submodels to be active in differ-

ent regions of input space, which creates local solutions that

are not consistent with piecewise models.

In this paper, we derive a new learning approach for piece-

wise smooth functions in the spirit of regularized kernel re-

gression. This means that the model belongs to a class of

smooth functions and that training amounts to solving a con-

vex optimization problem, thus avoiding local minima issues.

Though constrained to be globally smooth, the trained model

can have very large derivatives at particular locations to ap-

proximate the nonsmoothness of the target function. This is

obtained through the definition of new regularization terms

which penalize the derivatives in a location-dependent man-

ner. We show how these can be chosen to obtain algorithms

in the form of convex optimization problems leading to the

desired properties for the model.

Though clearly rooted in machine learning, the proposed

approach is also inspired by works from the signal and im-

age processing literature. In particular, the new regularization

schemes are related to the variational methods for denoising

which involve the total variation (TV) of the sought function

(see [6] for a general overview). TV-based methods typically
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estimate a piecewise constant version of the signal, but exten-

sions to piecewise affine reconstructions were also proposed

(see [7] and references therein). In comparison, the proposed

approach aims at solving a regression problem rather than a

denoising one, i.e., the output of the algorithm is a predic-

tive model of the data rather than a finite set of function val-

ues. In addition, the method can deal with irregular samplings

of continuous input spaces of arbitrary dimensions and with

piecewise smooth models with nonlinear pieces.

2. PRELIMINARIES

2.1. Notations and definitions

Vectors and matrices are written in boldface, e.g., xi ∈ R
d is

a vector of index i, whereas xi ∈ R denotes the ith entry in x.

δi,j denotes the Kronecker delta which is 1 iff i = j. We use

⊙ and ⊗ to denote the Hadamard (entrywise) and Kronecker

products, respectively. For n ∈ N, we recursively define the

differential operator of order n in dimension d, D(n), by

D(n) = ∇⊗D(n−1) =
(

∂
∂x1

D(n−1) . . . ∂
∂xd

D(n−1)
)T

,

(1)

where D(0) is the identity operator. In particular, if the func-

tion f : Rd → R is class Cn, then D(1)f = ∇f is the gradi-

ent of f , D(2)f = vec(Hf) is the vector representation of the

Hessian and D(n)f is a function of Rd to R
dn

that computes

all the nth order derivatives of f . We will denote by Cn the

set of functions of class Cn.

2.2. Learning in RKHS

Let K be a real-valued positive type function [8] on X 2

and (H, 〈·, ·〉H) the corresponding reproducing kernel Hilbert

space (RKHS), i.e., K is the reproducing kernel of H. As-

sume we are given a training set of N pairs (xi, yi) ∈ (X ⊂
R

d)× (Y ⊂ R), i = 1, . . . , N , with the general goal of learn-

ing a function f ∈ H such that this function minimizes a

regularized functional representing a trade-off between the fit

to the data and some regularity conditions on f :

min
f∈H

N
∑

i=1

ℓ(f(xi), yi) + λR(f), (2)

where the data term is defined through a loss function ℓ of R2

to R
+, R(f) is a general regularization term and λ ≥ 0 tunes

the trade-off between the two terms. A typical choice for

R(f) is ‖f‖2H, for which the representer theorem [9] provides

solutions in the form of kernel expansions over the training

set. Such a regularizer based on the induced norm in RKHS

is a global measure of the function smoothness and is particu-

larly suitable for cases without prior information on the shape

of the target function in order to avoid overfitting. However,

these global regularizers (in the sense that minimizing ‖f‖H

influences the shape of f over the entire input space X ) are

not always suitable. For instance, ‖f‖2H similarly penalizes

a noisy function with many oscillations and a very smooth

function with large jumps at a few locations. Thus, in the

case of piecewise smooth target functions, minimizing ‖f‖2H
yields globally smoother functions and discards optimal solu-

tions without distinguishing them from noisy functions.

3. PROPOSED LEARNING FRAMEWORK

The following introduces local regularization terms which

can distinguish between globally nonsmooth functions and

smooth functions with large derivatives at sparse locations.

Then, Sect. 3.2 presents the learning algorithm based on the

proposed regularizers, while the different choices for the hy-

perparameters are discussed in Sect. 3.3 and 3.4.

3.1. Learning with local regularization of higher order

We define a local regularization functional of order (n, p) as

∀f ∈ Cn, ∀x ∈ X , Rn,p(x, f) = ‖D(n)f(x)‖p, (3)

where D(n) is a differential operator of order n as defined

in (1) and p is a parameter that selects a particular norm.

Given a function class H ⊆ Cn, the learning problem with

a local regularizer as in (3) reads

min
f∈H

N
∑

i=1

ℓ(f(xi), yi) + λ

M
∑

i=1

Rn,p(zi, f), (4)

where local regularization terms are minimized for M sample

points zi in order to globally regularize f over X . Various

sampling strategies can be considered here. The zi’s can be

chosen on a grid in order to obtain a sufficient coverage of X
or equal to the training points, xi, in order to obtain a repre-

sentative sample of the data distribution (the latter is used in

all experiments below). Another choice combining the two

features is to sample zi as perturbed versions of the xi.

3.2. Learning algorithms for nonsmooth functions

To be more specific, we now consider the square loss func-

tion, ℓ(f(xi), yi) = (yi − f(xi))
2/2, and the Gaussian RBF

kernel, K(x′,x) = exp(−‖x′ − x‖22/2σ
2). We further re-

strain ourselves to models f built as kernel expansions over

the training set, i.e., f is in the subspace of H spanned by

{K(xi, ·)}
N
i=1:

f(x) =

N
∑

i=1

αiK(xi,x), (5)

where [α1, . . . , αN ]T = α is the vector of parameters to es-

timate. The form of f in (5) indeed constraints the problem

since the representer theorem [9] does not apply to (4).



By defining the kernel matrix K of elements (K)ij =
K(xi,xj) and the target vector y = [y1, . . . , yN ]T , the data

term can be written as 1
2‖y−Kα‖22. Since f is a linear com-

bination of kernel functions with weights αi, any derivative

of f is linear wrt. α and we can rewrite D(n)f(xi) as

D(n)f(zi) = [di1, . . . , didn ]Tα = Diα. (6)

This yields the finite-dimensional optimization problem

min
α∈RN

1

2
‖y −Kα‖22 + λ

M
∑

i=1

‖Diα‖p, (7)

where convexity of the data term is obvious from the choice

of a convex loss function and where the regularization term is

a sum of norms of linear functions, hence convex. Therefore

any local solution of (7) is a global solution. However, the

regularization term makes the cost function nonsmooth.

In (7), we are looking for a sparse solution in terms of the

vector r =
[

‖D(n)f(z1)‖p, . . . , ‖D
(n)f(zM )‖p

]T
by min-

imizing its ℓ1-norm, since λ
∑M

i=1 ‖D
(n)f(zi)‖p = λ‖r‖1.

Therefore, the vector of derivatives, Diα, will be drawn to

zero at points where its norm is small, while large derivatives

will be left at few points. Note that it is crucial here not to

use squared ℓp-norms in (7). For instance, using squared ℓ2-

norms amounts to minimizing ‖r‖22, which would lead to a

smooth optimization problem, but not to sparse solutions.

3.3. Choice of the ℓp-norm

We now describe the algorithms obtained by the choice of p.

ℓ2-norm (p = 2). The most natural choice is p = 2, which

yields the nonsmooth convex optimization program

min
α∈RN

1

2
‖y −Kα‖22 + λ

M
∑

i=1

√

αTDT
i Diα. (8)

While practical algorithms have been proposed to solve such

problems, we instead eliminate the nonsmoothness of the cost

function by considering a constrained (and convex) formula-

tion. This yields the Second-Order Cone Program (SOCP):

min
α∈RN ,ξ∈R,t∈RM

2ξ + λ

M
∑

i=1

ti (9)

s.t.

∥

∥

∥

∥

1− ξ
Kα− y

∥

∥

∥

∥

2

≤ 1 + ξ,

‖Diα‖2 ≤ ti, ∀i ∈ [[ 1,M ]] .

ℓ∞-norm (p = ∞). Another norm which can be employed

here is the ℓ∞-norm, i.e.,

Rn,∞(zi, f) = ‖D(n)f(zi)‖∞

= max
{k1,...,kn}∈{1,...,d}n

∣

∣

∣

∣

∂nf(zi)

∂zk1
. . . ∂zkn

∣

∣

∣

∣

.

In this case, the resulting optimization problem can be written

as a quadratic program (QP) with 2Mm linear constraints,

where m is the number of partial derivatives of order n:

min
α∈RN ,t∈RM

1

2
αTKKα− yTKα+ λ

M
∑

i=1

ti (10)

s.t. − ti ≤ dT
ikα ≤ ti, ∀(i, k) ∈ [[ 1,M ]]× [[ 1,m ]] .

Note that by the symmetry of the mixed derivatives, in prac-

tice when d > 1 and n > 1, we have m < dn.

3.4. Choice of the regularization order n

The following discusses the choice n in order to gradually

deal with piecewise constant, affine and nonlinear functions.

Piecewise constant (PWC) functions. By choosing n = 1,

we have Rn,p(f, zi) = ‖∇f(zi)‖p, where, for the Gaussian

RBF kernel,

∇f(zi) =
1

σ2

N
∑

j=1

αjK(xj , zi)(xj − zi),

i.e., in (7), we set Di =
1
σ2 (X − 1zT

i )
TKi, where Ki is a

diagonal matrix with (Ki)jj = K(xj , zi).

With p = 2, the regularization term of Problem (8) then

becomes closely related to the TV regularization term used

in denoising and known to yield piecewise constant solutions

due to the well-known staircasing effect [6].

The top row of Fig. 1 shows an example where the aim

is to learn a PWC target function over X = [−10, 10] from

a noisy data set (left). We first applied kernel ridge regres-

sion (KRR) [1] with a Gaussian RBF kernel (σ = 0.2), but

failed to find a satisfactory tuning of the regularization con-

stant, as expected. Indeed, the middle plot of Fig. 1 shows

that the value λ = 1 is already too large to allow the model to

correctly estimate the large variations of the function, while

being also too small to counter the effect of the noise. On the

contrary, the proposed method with λ = 0.005 (right plot)

yields a good model in terms of both noise removal and accu-

racy of the nonsmoothness approximation. In addition, reg-

ularization constants in the range 0.002 ≤ λ ≤ 0.01 yield

satisfactory solutions.

Piecewise affine (PWA) functions. PWA functions have

piecewise constant gradient almost everywhere, which can

be obtained by applying the regularizer defined for PWC

functions to the gradient vector field, i.e., by minimizing

‖(∇⊗∇f)(zi)‖p. This amounts to setting n = 2 in (6)-(7),

and to penalizing the Frobenius norm of the Hessian matrix,

Hi, for p = 2 as R2,2(zi, f) = ‖Hf(zi)‖F = ‖Hi‖F , or

its max-norm with R2,∞(zi, f) = ‖Hi‖max. In such cases,
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Fig. 1. From top to bottom: examples of piecewise constant

(PWC), affine (PWA) and quadratic (PWQ) function approx-

imation. Dash lines: nonsmooth target functions. Left: data

points. Middle: KRR. Right: proposed method with n = 1
for PWC, n = 2 for PWA and n = 3 for PWS.

the elements of the Hessian at point zi, are given by

(Hi)kl=
1

σ4

N
∑

j=1

αjK(xj , zi)
[

(xjk−zik)(xjl−zil)− δk,lσ
2
]

,

and we set the (kl)-th row of Di to

dT
i(kl) =

1

σ4

[

(Xk − zik1)⊙ (X l − zil1)− δk,lσ
2
1
]T

Ki.

The example in the middle row of Fig. 1 considers learn-

ing a PWA target function over X = [−10, 10] with σ =
0.5. The proposed method (right plot) with λ = 0.01 can

accurately estimate the large central jump while preserving

smoothness of the function at all other points. On the other

hand, KRR tuned in order to correctly approximate the jump

yields a very perturbed model (middle plot). Here, applying

KRR with a larger regularization constant would reduce the

effect of noise, but also dramatically decrease the accuracy

near the nonsmoothness of the target function.

General piecewise smooth (PWS) functions. Regulariza-

tion of higher order derivatives can be considered in order to

learn PWS functions with nonlinear pieces. Here, we present

results with third order derivatives particularly suitable for

piecewise quadratic (PWQ) functions, while the extension to

higher orders is straightforward.

For f defined as in (5) and a Gaussian RBF kernel, we

have ∂3f(zi)/∂zk∂zl∂zm = dT
i(klm)α, with

dT
i(klm) =

1

σ6
[((Xk − zik1)⊙ (X l − zil1)

−σ2(δk,l + δk,m + δl,m)1
)

⊙ (Xm − zim1)
]T

Ki.

In the above, we used the symmetry of the mixed derivatives

and the convention that higher orders are computed first, e.g.,

∂3f(zi)/∂z1∂z
2
2 = ∂3f(zi)/∂z

2
2∂z1 and is computed by us-

ing k = l = 2 and m = 1. The last row of Fig. 1 shows an

example of such a procedure with σ = 0.5 and λ = 0.05.

4. OBTAINING PIECEWISE MODELS

Piecewise smooth functions can be modeled by a collection

of s smooth submodels, {fj}
s
j=1, with a partition of the input

space determining which submodel is used to compute the

output for a particular input x. For a partition X = ∪s
j=1Sj ,

PWS models are written as

∀x ∈ Sj , f(x) = fj(x), j = 1, . . . , s. (11)

For some applications, such models can be easier to handle.

In this case, the following simple procedure can be used to

transform the solution of (7) into (11).

1. Solve (7) with {zi}
M
i=1 = {xi}

N
i=1.

2. Build a new data set Dx by excluding the points close

to the boundaries of the regions Sj from the training

set, i.e., Dx = {xi : i ∈ [[ 1, N ]] , ‖Dnf(xi)‖p < τ} .

3. Map these points to a feature space with ∀xi ∈
Dx, xi 7→ ϕ(xi) = [xT

i , D
(n−1)f(xi)

T ]T .

4. Apply a clustering algorithm, e.g., k-means, in that fea-

ture space to estimate the labels qi for all xi ∈ Dx.

5. Build s local submodels, fj , from the s data subsets,

Dj = {xi ∈ Dx : qi = j}, with a classical regression

method suitable for the choice of n.

6. Build a classifier h on the data set {(xi, q̃i)}
N
i=1, la-

beled by q̃i = argminj=1,...,s |yi − fj(xi)|.

Step 2 above detects points close to the boundaries by

thresholding the norm of derivatives used in (7), since the

smoothness assumptions on f in (7) and fj in (11) imply a

zero norm inside each region Sj . Note that, after solving (7)

through the optimization of (9) or (10), the values of the norm

at all points are directly given by the slack variables ti. Steps

3 and 4 assume that the partition ∪s
j=1Sj can be represented

by a Voronoi diagram. However, more complex partitions

can still be represented by increasing the number of regions

s. The classifier h estimating the partition in Step 6 can be

directly given by the clustering algorithm of Step 4, e.g, k-

means yields the centers of Voronoi cells which can be used

to estimate labels of new data points. Alternatively, we can

train a new classifier with a supervised algorithm to correct

potential errors of the clustering algorithm. Predictions for

test points x are then given by fq(x), where q = h(x).
Figure 2 shows the recovery of the partition of the input

space and the submodels by the procedure above on two ex-

amples: a PWA target function (the ‘ML’ shape) and a PWQ

function (the ‘cursive ML’ shape) with 6 pieces each.
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Fig. 2. Learning a PWA (top) and a PWQ (bottom) model.

Left: smooth model obtained after Step 1 with n = 2 (top)

and n=3 (bottom). Right: affine (top) and quadratic (bottom)

submodels with the partitions of the input space (dash lines).

Table 1. Comparison of one-step-ahead MSE.

Method Ref. [5] SOCP (9) PWA (Sect. 4)

MSE 4.31± 4.01 1.06± 0.41 0.81± 0.43

5. EXAMPLES AND APPLICATIONS

5.1. Piecewise smooth dynamical system identification

PWS dynamical systems offer a convenient framework to

model systems involving both continuous dynamics and dis-

crete events. Such systems can be described by a PWS

function f as yi = f(xi), where xi is built from past in-

puts ui and outputs yi of the system [3]. We consider the

PWA system studied in the Example 1 of [10], where xi =
[yi−1, ui−1]

T . In each of the following 100 experiments, we

generate N = 400 points with this system and split them in

two subsets, a training set and a validation set, of 200 sam-

ples each. Another test set with Nt = 500 data points is used

to computed the one-step-ahead mean square error, MSE =
1/Nt

∑Nt

i=1(yi − f(xi))
2. Problem (9) is solved on the train-

ing data while tuning of λ ∈ {10−4, 10−3, 10−2, 0.05, 0.1} is

performed on the validation set. We use an RBF kernel with

σ = 0.5. Solving (9) yields a smooth approximation of the

PWA system, which is then used in the procedure of Sect. 4

to learn a PWA model with s = 3 (in this case, λ is tuned wrt.

the validation error of the PWA model). We compare with the

PWA system identification method of [5] for a parameter c
tuned in the range {6, 7, 8, 9, 10, 12, 15}. Table 1 shows that

the proposed procedures outperform the method of [5] on av-

erage. The latter also leads to a large standard deviation of the

MSE due to large errors in about 20% of the experiments.
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Fig. 3. Top row: original and complete noisy images. Next

rows show results obtained with an increasing percentage of

missing pixels (25%, 50%, 75%): noisy image with holes

(left), smooth model (5) solution to (9) (middle) and PWA

model given by the algorithm of Sect. 4 (right).

5.2. Image denoising with missing pixels

Image denoising aims at recovering an original image I from

a noisy image, In = I + E, while preserving edges. Image

denoising with missing pixels considers the slightly more dif-

ficult task where only parts of a noisy image are available.

The proposed framework particularly fits such cases, where

reconstructing the entire image simply amounts to computing

predictions with the trained model at all pixels, i.e., for an Nx-

by-Ny image, for all x ∈ [[ 1, Nx ]] × [[ 1, Ny ]]. Figure 3 shows

the results of such experiments for an original PWA image

and Fig. 4 for a piecewise quadratic (PWQ) image. Note that

since the proposed approach is a general regression method

rather than a dedicated image processing technique, the aim is

not to compare the performance with other denoising methods

but rather to illustrate potential applications. Figures 3 and 4

also show the results of the procedure of Sect. 4 to obtain

piecewise models (11). Note that these PWA and PWQ mod-

els are mostly applicable when the optimal target model is

truly (or close to) PWA or PWQ. However, the smooth models

trained by solving (9) or (10) are always applicable as shown

by Fig. 5, where the illuminated peach image is piecewise

smooth, but not piecewise quadratic.
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Fig. 4. Left to right: original image, noisy image with 50%
of missing pixels, smooth model (5), and PWQ model (11).

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

Fig. 5. Top: original and noisy images (0 and 50% of missing

pixels). Bottom: smooth models trained by (9) with n=3.

6. DISCUSSIONS

When X is a discrete input space and is completely

represented in the data set, the regularization term with

R1,2(xi, f) = ‖∇f(xi)‖2 is the total variation of f and, with

the square loss, the learning problem (4) is equivalent to the

classical ROF model [11] for TV-based denoising. For con-

tinuous input spaces, an implicit discretization is given by the

sampling of the data set. Note that this constitutes the only

discretization in comparison with TV-based methods where f
is also typically discretized and only defined through its val-

ues at the sampled points. Therefore, the setting is rather dif-

ferent: TV-based methods typically operate on data sets cov-

ering the entire discrete input domain, whereas the proposed

framework aims at problems in sparsely sampled continuous

spaces. Compared with denoising approaches, the proposed

method thus offers a predictive model with generalization ca-

pabilities. In practice, this model allows the derivatives to be

computed explicitly and not through discrete approximations

such as finite differences. This also means that dealing with

an irregular sampling of the input space or missing data points

is straightforward (as with classical learning approaches).

Straightforward extensions to other loss functions may be

considered depending on the desired properties of the model

(sparsity, robustness to outliers. . . ). For instance, if the ℓ1-

loss or ε-insensitive loss are used with p = 2, the first conic

constraint in (9) simply becomes a linear constraint; with p =
∞, this yields linear programs instead of the QP (10).

Directly solving the constrained programs (9) and (10)

can become prohibitive for very large data sets. Future work

will consider faster algorithms for the unconstrained opti-

mization of a smoothed version of the cost function (7) and

investigate the extension of existing strategies for minimiz-

ing the TV functional to the proposed framework. Another

research direction with practical consequences concerns the

derivation of the full solution path wrt. λ.

Casting the problem as the convex optimization of a regu-

larized risk also paves the way for further analysis of the con-

sistency or error bounds in a classical learning framework.
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