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Abstract. The problem of characterizing sequents for which there is
a unique proof in intuitionistic logic was first raised by Mints [Min77],
initially studied in [BS82] and later in [Aot99]. We address this problem
through game semantics and give a new and concise proof of [Aot99].
We also fully characterize a family of λ-terms for Aoto’s theorem. The
use of games also leads to a new characterization of principal typings
for simply-typed λ-terms. These results show that game models can help
proving strong structural properties in the simply-typed λ-calculus.
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1 Introduction

Coherence theorems in category theory are used to ensure the equality of the
composition of certain morphisms. In particular such conditions have been stud-
ied for cartesian closed categories - models of the simply-typed λ-calculus - in
[BS82], a result which was later extended in [Aot99]. These results imply that a
unique λ-term inhabits a given typing that verifies certain syntactic constraints.
In [BS82], the exhibited typings are balanced while in[Aot99] they are negatively
non-duplicated. A question that arises from these results, is that of the con-
sequences of these constraints on types on their inhabitants. It can easily be
observed that balanced typings are exactly inhabited by affine λ-terms. It was
showed in [Kan07] that the family of almost linear λ-terms was included in that
of the terms inhabiting negatively non-duplicated typings. One of the aims of
this paper is to completely characterize the family of λ-terms that can be typed
with negatively non-duplicated typings.

More precisely, we show that using game semantics leads to a concise proof of
Aoto’s theorem, and in general, gives an accurate method to address structural
properties of simply-typed terms. The dialogic-game representation of proofs
originates in [Lor59,Lor68,Bla92] and while game semantics has been widely
used to study programming language semantics [AM99,HO00] and λ-calculus
semantics [Hug00,GFH99,KNO02], to our knowledge it has never been used to



address issues on proofs/terms structures, while it offers two main advantages:
first, it brings closer representations of typings and λ-terms which helps associ-
ating families of λ-terms with families of typings; second, it provides the analysis
of proofs with a fine grained and natural access to the interplay of atomic types
occurring in sequents. Our study leads indeed to a rather simple proof of Aoto’s
theorem, and to a syntactic characterization of the inhabitants of negatively non-
duplicating types as first-order copying λ-terms, which extends both notions of
linear and almost linear terms. These λ-terms could be depicted in Kanazawa’s
vocabulary as almost affine 1. From a more general perspective, game semantics
offers a simple way of investigating the relationship between typings and their in-
habitants. As an example, we give a new characterization of the principal typings
of β-normal terms.

In this paper, we will first recall basic notions on the simply-typed λ-calculus
and introduce typing games and strategies; in the third section the correspon-
dence between strategies and simply-typed terms will be presented; finally, we
give a new characterization of principal typings, a concise proof of [Aot99] and
a full characterization of the terms for [Aot99].

2 Preliminaries

2.1 Simply-typed λ-calculus

Let A be a countable set of atomic types. The set T (A ) of simple types built
upon A is the smallest set built as the closure of A under the right-associative
connector →. We call a type substitution σ an endomorphism of T (A ) i.e. a
function that verifies σ(α → β) = σ(α) → σ(β), for α, β in T (A ). Note that
a type substitution is completely defined by the values it takes on A . A type
relabelling σ is a type substitution such that σ(A ) is included in A . Finally, a
type renaming denotes a bijective type substitution.

Let us consider a countable set of variables V . The set Λ of λ-terms built on
V is inductively defined with the following syntactic rules:

Λ ::= V | λV .Λ | (ΛΛ)

We write λ-terms with the usual conventions, omitting sequences of λ’s and
unnecessary parentheses. For a term M , the notions of free variables (noted
FV (M)), bound variables (BV (M)) and variables (V (M) = FV (M)∪BV (M))
are defined as usual. We also take for granted the notions of α-conversion, β-
reduction and η-conversion. A precise definition of all these notions can be found
in [Bar84]. A context is a λ-term with a hole, built according to the following
rules:

Λ[] ::= [] | λV .Λ[] | Λ[]Λ | ΛΛ[]

1 This result was independently proved by Kanazawa in a yet unpublished work. Nev-
ertheless, we believe the use of game semantics allows to express more directly the
relation between syntactic properties of types and their inhabitants, giving a simpler
proof.



The notation adopted for contexts will be C[], C1[], . . . and grafting a term N
in a context C[] is noted C[N ]. An occurrence of a subterm N in M is given
by a context C[] such that M = C[N ]. We say that an occurrence of N in M
is characterized by C[] when C[N ] = M . In general, we simply speak about an
occurrence N of a subterm of M without mentionning the context that charac-
terizes it. A term N is called a subterm of a term M when it has at least an
occurrence in M , i.e. when there is a context C[] such that C[N ] = M .

A typing environment Γ is a finite subset of V × T (A ) such that if (x, α)
and (x, β) are in Γ , α = β holds. We write such an environment as a sequence
of type assignments of the form x : α. A typing 〈Γ ; γ〉 is a pair made of a
typing environment Γ and a type γ. A typing judgement of a term M is written
Γ ⊢ M : γ and is said valid (we also say 〈Γ ; γ〉 is a typing of M , or M is an
inhabitant of 〈Γ ; γ〉) if it can be obtained with the following inference system:

Γ, x : α ⊢ x : α

Γ, x : α ⊢ M : β

Γ ⊢ λx.M : α → β

Γ ⊢ M : α → β ∆ ⊢ N : α

Γ ∪ ∆ ⊢ MN : β

As a derivation of a typing judgement for a term M is always constructed
by closely following the syntactic structure of M , for a given derivation D of
the judgement Γ ⊢ M : γ, there is a unique subderivation (where subderivation
is taken in the obvious sense) D′ of D that corresponds to an occurrence of a
subterm N of M . Thus a derivation D of Γ ⊢ M : γ assigns to each occurrence N
of a subterm of M a unique judgement of the form ∆ ⊢ N : δ. Given a derivation
D of Γ ⊢ M : γ, M is said in η-long form relative to D when for each occurrence of
any subterm N of M which is assigned a judgement of the form ∆ ⊢ N : δ1 → δ2

relative to D, either N is of the form λx.N ′ or the context C[] which characterizes
this occurrence of N is of the form C ′[[]N ′]. Terms in η-long form present several
advantages (see [JG95]) and every simply-typed term M can be put in η-long
form with respect to a derivation of a judgement [Hue76]. Furthermore, whenever
M is in normal form, there is a unique way of deriving any typing judgement
of M . In such a case, we say that to an occurrence of N in M is associated the
pair 〈∆; δ〉 relative to 〈Γ ; γ〉 when the judgement associated to this occurrence
of N relative to the unique derivation of Γ ⊢ M : γ is ∆ ⊢ N : δ. A term is said
in long normal form when it is β-normal and η-long for some typing. A typing
〈Γ ; γ〉 is a principal typing (or most general typing) of a term M , if Γ ⊢ M : γ
is a valid judgement and if for every typing 〈∆; δ〉 of M :

– ∆ = ∆1 ∪ ∆2, where a type assignment x : α appears in ∆1 if and only if x
is a free variable of M

– there is a type substitution σ such that 〈∆1; δ〉 = 〈Γ ; γ〉 · σ.

An important result is that if a term M has a typing, then it has a principal
typing which is unique up to renaming (see [Hin97]). This is the reason why from
now on we will speak of the principal typing of a simply-typed term M . Given
any typing 〈Γ ; γ〉, polarity of types in 〈Γ ; γ〉 is defined as follows:



– γ has a positive occurrence in 〈Γ ; γ〉.
– for every type assignment x : δ ∈ Γ , δ has a negative occurrence in 〈Γ ; γ〉.
– if α → β has a positive (resp. negative) occurrence in 〈Γ ; γ〉, then α has a

negative (resp. positive) occurrence and β a positive (resp. negative) one in
this typing.

A typing 〈Γ ; γ〉 is said balanced if each of its atomic types has at most one
positive and at most one negative occurrence in it. It is said negatively non-
duplicating if each of its atomic types has at most one negative occurrence in
it.

Theorem 1. [BS82] If a term M inhabits a balanced typing, then M is the
unique inhabitant of this typing modulo =βη.
[Aot99] If a term M inhabits a negatively non-duplicating typing, then M is the
unique inhabitant of this typing modulo =βη.

2.2 Arenas and typings

In what follows, arenas and games are presented as a restriction of Hyland-Ong
games (HO-games) [HO00] and Nickau games [Nic94] as we do not use notions
of question and answer. Following [KNO02], arenas associated to types are con-
sidered as ordered labelled tree; arenas associated to typings are considered as
unordered labelled trees. Given a type γ, a move in the arena of γ is a finite
sequence of natural numbers (we write N∗ for the set of such sequences, ǫ for the
empty sequence, and s1 · s2 for the concatenation of such sequences). Elements
of N will be written i, j, i1, . . ., and elements of N∗ s, s1, . . .. Given a subset N
of N∗ and i ∈ N, we denote by i · N the set {i · s | s ∈ N}. Finally, given
s ∈ N∗, we write |s| for the length of s defined as |ǫ| = 0, |i| = 1 for i ∈ N and
|s1 · s2| = |s1| + |s2|.

Let us consider γ = γ1 → . . . → γn → a ∈ T (A ), where a is an atomic
type. We inductively define the arena Aγ = (Mγ , τγ) (where Mγ is a finite set of
moves and the typing function τγ is a function from Mγ to A ) from the arenas
(Mγi

, τi) associated to γi for every i ∈ [1, n]:

1. Mγ = {ǫ} ∪
⋃

i=1...n i · Mγi
,

2. τγ : Mγ 7→ A is defined by:
(a) τγ(ǫ) = a
(b) τγ(i · s) = τγi

(s), for i ∈ [1 . . . n] and s ∈ N∗

The arena associated to a type γ ∈ T (A ) is therefore a finite prefix-closed
subset of N∗ whose elements are labelled with atomic types. The parent relation
expresses the enabling relation [HO00]: given s1 and s2 in N∗, s1 enables s2

(written s1 ⊢ s2) when there is i in N such that s2 = s1 ·i. Given an arena (M, τ),
we define the function pl : M 7→ {O,P} which associates moves to players (P

stands for the proponent and O for the opponent), and pl : M 7→ {O,P} its

inverse function (i.e. pl (m) = O iff pl (m) = P for every m ∈ M , and pl = pl ),

by pl (ǫ) = O and pl (s2) = pl (s1) for s1 ⊢ s2. In the rest of the document, we



aǫ a ǫf

b1f

c11f

b 2f

b ǫg

c 1g

c ǫx

Fig. 1. Example of an arena

use the partition MO = {s ∈ M | pl (s) = O} and MP = {s ∈ M | pl (s) = P}
of M which separates P -moves (i.e. negative atoms) and O-moves (i.e. positive
atoms) in M . Remark the correspondence between, atomic types and moves,
polarity and pl .

Given a type assignment x : γ, the associated arena Ax:γ = (Mx:γ , τx:γ) is
defined similarly to Aγ but moves in Mx:γ are paired with the variable x, and
written ǫx, ix, sx, . . . for the pairs (ǫ, x), (i, x), (s, x). . . respectively. In the rest
of the document, we will use m, n,m1, . . . for moves. For a variable x, a sequence
s in N∗ and i ∈ N, given the move m = sx, we write i · m (resp. m · i) for the
move (i ·s)x (resp. (s ·i)x). For a set of moves M , the preceding relation m1 ≺ m2

stands for m1, m2 ∈ M iff there exist i, j ∈ N and m ∈ M such that m1 = m · i,
m2 = m · j and i < j.

Let us consider a typing 〈Γ ; γ〉, where Γ = x1 : γ1, . . . , xn : γn. Its associated
arena A = (M, τ) is defined as:

1. M = Mγ ∪
⋃

i∈[1,n] Mxi:γi

2. τ(m) =

{
τγ(m) if m ∈ Mγ

τxi:γi
(m) if m ∈ Mxi:γi

for some i ∈ [1, n]

Moreover, the enabling relation is extended so that m1 ⊢ m2 holds iff

– m2 = m1 · j for some j in N or
– m1 = ǫ ∈ Mγ and m2 = ǫxi

for some i ∈ [1, n]

The arena associated to a typing 〈Γ ; γ〉 is therefore represented as a forest
made of the labelled trees associated to the type γ and to the type assignments
in Γ . The enabling relation gives an arborescent structure to this forest, but
while the arena associated to a type defines an ordered tree (with the left-to-
right relation given by ≺), the arborescent structure of an arena associated to a
typing is not ordered (two subtrees which roots are ǫx, ǫy can be permuted). Note
that the notation mx for a move in the arena associated to some typing 〈Γ ; γ〉
allows to differentiate this arena from the arena of 〈Γ −{x : δ}; δ → γ〉. Figure 1



presents the arena for the sequent 〈f : (c → b) → b → a, g : c → b, x : c; a〉,
where O-moves are represented by white nodes, P -moves by dark nodes and
oriented black edges represent the enabling relation.

2.3 Games and strategies

In the rest of the document, we use S, S1, . . . to denote finite sequences of moves
m1.m2 . . . mn of a given arena. We write S1 ⊑ S2 when the sequence of moves S1

is a prefix of the sequence of moves S2. A finite sequence S = m1 . . . mn of moves
in an arena A is said justified if to each occurrence of a move m in S (except the
initial occurrence m1), there is an occurrence of a move n which precedes m in S
and which enables m (the occurrence of n is said to justify the occurrence of m).
Formally, a justified sequence S is written (m1, 1, 0) . . . (mn, n, l) where (m, i, j)
denotes the move in position i in S, justified by (m′, j, k) where j < i. This
notation will be simplified for the particular case of strategies we are interested
in.

Given a finite sequence of moves S, the P -view pSq of S removes moves
which are irrelevant for player P in S and is inductively defined as:

pǫq = ǫ for the initial move ǫ
pS.(m, i, j)q = pSq.(m, i, j) for a P -move m
pS1.(m1, j, k).S2.(m2, i, j)q = pS1q.(m1, j, k).(m2, i, j) for an O-move m2.

The O-view of a sequence S can be defined similarly, but is not needed for our
purpose. We call a justified sequence S = m1 . . . mn a legal position if it verifies:

1. m1 = ǫ (Initial move condition)
2. for S = S1.(m, i, j).(n, i + 1, k).S2, pl (m) = pl (n) (Alternation)
3. pSq = S (P -view condition)

For a given arena A, we write LA the set of its legal positions.
In general, a game is defined as an arena to which we associate a set of

positions, in the present case, a set of prefix-closed legal positions. Because our
study only requires the particular notion of games where available positions are
precisely all legal positions in the given arena, we confuse the usual notion of
game with that of an arena. Note that, given a legal position L, because L is
P -views, an occurrence of an O-move M 6= ǫ in L is justified by the immediately
preceding move (which is a P -move). The notation for occurrences of moves in
a legal position S can therefore be simplified as follows:

– an occurrence of an O-move n in S will be denoted by (n, i) if it is in position
2i + 1 in S in a left-to-right order;

– an occurrence of a P -move m in S will be written (m, i) if this occurrence
is justified by a preceding occurrence (n, i) of the O-move n.

Remark that this notation confuses occurrences of a P -move justified by
the same occurrence of an O-move (n, i). In the next section, we will see that
these occurrences correspond to the same variable in the term associated to the
strategy. When unnecessary, information about justification will be omitted from
our notation and an occurrence of a move m will simply be noted m.



Definition 1. Let A = (M, τ) be an arena and Σ ⊆ LA a finite non-empty and
prefix-closed set of legal positions. Σ is a (P -)strategy (or typing strategy) if:

1. the length |S| of any sequence S ∈ Σ is even and different from 0.
2. if S.m.n1, S.m.n2 ∈ Σ, then n1 = n2

3. if S.m.n ∈ Σ then τ(m) = τ(n)

According to the second property of this definition, a strategy Σ is uniquely
determined by the set max(Σ) ⊆ Σ made of the sequences which are maximal
for the partial order ⊑.

aǫ a ǫf

b1f

c11f

b 2f

b ǫg

c 1g

c ǫx

Fig. 2. Example of a typing strategy

As an example, Figure 2 represents the arena for the sequent 〈f : ((c →
b) → b → a), g : c → b, x : c; a〉. In this Figure, paths made of thick arrows
starting from ǫ denote sequences of moves which are legal positions in the arena
if the justification constraint is respected. An example of strategy Σ is given by
max(Σ) = {(ǫ, 0).(ǫf , 0).(1f , 1).(ǫg, 0), (ǫ, 0).(ǫf , 0).(2f , 1).(ǫg, 0).(1g, 2).(ǫx, 0)}.

Definition 2. Given an arena A = (M, τ), a typing strategy Σ on A is called
a winning strategy if

– for all S.m in max(Σ), there is no move n ∈ MO, such that m ⊢ n.
– for every sequences S.m1 ∈ Σ and S.m1.n ∈ LA, there is a P -move m2 such

that S.m1.n.m2 ∈ Σ.

The first condition ensures P wins when O can play no move while the second
one ensures that P wins with this strategy independently from O’s strategy. In
the rest of the document, if not specified otherwise, only winning strategies will
be considered.

Example 1. In the arena of Figure 2, there is a winning strategy Σ such that
max(Σ) = {S1, S2} with:



(ǫ, 0).(ǫf , 0)

(1f , 1).(ǫg, 0)

(1g, 2).(11f , 1)

(2f , 1).(ǫg, 0)

(1g, 2).(ǫx, 0)

Fig. 3. Example of an arborescent reading

– S1 = (ǫ, 0).(ǫf , 0).(1f , 1).(ǫg, 0).(1g, 2).(11f , 1)
– S2 = (ǫ, 0).(ǫf , 0).(2f , 1).(ǫg, 0).(1g, 2).(ǫx, 0)

Remark that there is another typing strategy Σ′ such that max(Σ′) = {S′

1, S2}
where S′

1 = (ǫ, 0).(ǫf , 0).(1f , 1).(ǫg, 0).(1g, 2).(ǫx, 0).

3 Strategies as terms

3.1 Interpreting λ-terms

Given an arena A = (M, τ), the prefix-closure property of a strategy Σ on A
can be used to represent max(Σ) as a tree denoted TΣ . We call this tree the
arborescent reading of Σ and given a strategy Σ it is inductively defined on
prefix-closed set of alternating sequences as TΣ = m1.m2[TΣ1

, . . . , TΣp
] if:

– for every S in max(Σ), S = m1.m2.S
′ for some S′,

– {n1, . . . , np} = {m′ | m2 ⊢ m′} and ni ≺ nj iff i < j,
– Σi = {ni.S

′ | m1.m2.ni.S
′ ∈ Σ}.

For example the strategy defined by max(Σ) = {S1, S2} in Example 1 has
the arborescent reading (also pictured on Figure 3)

TΣ = (ǫ, 0).(ǫf , 0)[(1f , 1).(ǫg, 0)[(1g, 2).(11f , 1)], (2f , 1).(ǫg, 0)[(1g, 2).(ǫx, 0)]]

Given an arena A, let us note FVA = {((ǫx, 0), x) | there is a variable x, ǫx ∈
M}

Definition 3. Let the interpretation of a strategy Σ on an arena A = (M, τ) be
JΣK = JTΣ , FVAK which is inductively defined on TΣ as:

J(m, i).(n, j)[TΣ1
, . . . , TΣq

], V K = λx1 . . . xp.xJTΣ1
, W K . . . JTΣq

, W K

where m ∈ MO, n ∈ MP , the set W is equal to V ∪{((m ·k, i), xk) | m ·k ∈ M},
the xk’s being fresh variables, and ((n, j), x) is in W .

The second rule of the interpretation associates variables to occurrences of P -
moves. We say that an occurrence of a variable x is a realization of a P -move m
(or of (m, i)) in JΣK when JΣK = C[xN1 . . . Nn] = C[J(m, i)[TΣ1

, . . . , TΣn
], V K].



Note that ((m, i), x) is in V . Moreover, if we suppose JΣK respects the syntactic
convention of Barendregt, i.e. if every variable in JΣK is uniquely identified by its
name, then it is easy to see that every occurrences of a variable x are realizations
of the same (m, i). In this case, we simply say that the variable x is a realization
of the P -move m (or of (m, i)). In the rest of the document, JΣK is supposed to
verify Barendregt’s convention for every strategy Σ.

This interpretation of winning strategies as λ-terms allows us establishing a
bijection between the set of strategies in the arena associated to the pair 〈Γ ; γ〉
and the set of inhabitants of that pair modulo βη-conversion.

Lemma 1. Given the arena A associated to the typing pair 〈Γ ; γ〉, and a win-
ning strategy Σ on A, Γ ⊢ JΣK : γ is a valid judgement.

Proof. The proof is done by induction on the structure of TΣ .

In the course of the proof of this Lemma, it can be noted that JΣK is β-normal
and η-long with respect to 〈Γ ; γ〉.

Lemma 2. Given Γ ⊢ N : γ, there is a winning strategy Σ on A such that
JΣK =βη N .

Proof. Without loss of generality we suppose that N is in long normal form
with respect to the typing pair 〈Γ ; γ〉. We then construct Σ inductively on the
structure of N .

To establish the bijection between terms and strategies, it suffices to complete
the picture with the following Lemma.

Lemma 3. Given an arena A, and two winning strategies Σ1 and Σ2 on A,
JΣ1K = JΣ2K iff Σ1 = Σ2.

3.2 Game-theoretic characterization of Principal Typings

Given a simply-typed λ-term N , its principal typing enjoys two equivalent char-
acterizations:

1. an intentional one, through the Hindey-Milner inference algorithm [DM82].
2. an extensional one, by specifying that every other typing of N can be found

by substitution on the principal one.

In this section we propose a third characterization of principal typings of
β-normal terms by means of game semantics.

Definition 4. Given a typing arena A = (M, τ) and a typing strategy Σ on A,
the binary relations � and �Σ on MO × MP are defined as follows:

1. n � m iff τ(m) = τ(n)
2. n �Σ m iff there is S ∈ Σ, such that S = S′.n.m.



For a P -move m, we note �
m = {n ∈ MO | n � m} the set of its possible

antecedents, and �
m
Σ = {n ∈ MO | n �Σ m} the set of its antecedents in Σ. For

any typing strategy Σ, �
m
Σ is a subset of �

m. Remark that for any P -moves
m1, m2, τ(m1) = τ(m2) is equivalent to �

m1 = �
m2 .

Let us define RΣ ⊆ MP×MP as m1RΣm2 iff �
m1

Σ ∩�
m2

Σ 6= ∅. We note R∗

Σ the
transitive closure of RΣ ; it is easy to verify that R∗

Σ is an equivalence relation.
Then, all elements (m1, m2) in RΣ , have at least one antecedent n ∈ MO in
common in Σ; this implies τ(n) = τ(m1) = τ(m2). Thus, whenever m1 R∗

Σ m2,
τ(m1) = τ(m2).

Definition 5. Let us consider a typing arena A = (M, τ) and a strategy Σ on
A. Σ is a covering typing strategy if

1. Σ is a winning typing strategy. (winning condition)
2. For all moves m = ǫx ∈ MP , there is a sequence S.m ∈ Σ. (ǫ-completeness)
3. For all O-moves m, there is a P -move n and a sequence S ∈ Σ (or S is

empty), such that S.m.n ∈ Σ. (O-completeness)
4. For all m1, m2 in MP , τ(m1) = τ(m2) iff m1R

∗

Σm2. (least typing constraint)

Theorem 2. Given a term N , a typing pair 〈Γ ; γ〉 and the corresponding arena
A = (M, τ). The two following properties are equivalent

1. the strategy Σ on A such that JΣK =βη N is a covering strategy
2. 〈Γ ; γ〉 is the principal typing of the long normal form of N relative to 〈Γ ; γ〉

Proof. Without loss of generality we assume that N is in long normal form
relatively to 〈Γ ; γ〉. We prove the equivalence between the two following propo-
sitions:

1’. Σ is not a covering strategy on A
2’. 〈Γ ; γ〉 is not the principal typing of N

The implication 2′. ⇒ 1′. is proved using a disjunction of cases. First, we suppose
that there is a type assignment x : α in Γ such that x has no occurrence in
N ; then Σ violates the condition of ǫ-completeness and thus is not a covering
strategy. Secondly, we let 〈Γ ′; γ′〉 be the principal typing of N and suppose
there is type substitution σ such that 〈Γ ; γ〉 = 〈Γ ′; γ′〉 · σ; we associate to a
type substitution a transformation on the initial arena (a morphism of arena)
and show that if σ is not a relabelling then Σ violates one of the condition in
Definition 5. The implication 1′. ⇒ 2′. is proved with similar arguments.

4 Expressing structural properties

4.1 First-order copying terms

We are now about to define syntactically the family of λ-terms that correspond
to strategies in arenas associated to negatively non-duplicating typing pairs.
This definition requires some intricate relation between the variables that occur



in a term. The main technical difficulty for defining this relation comes from α-
conversion. Thus, we adopt Barendregt’s naming convention of bound variables
that consists in giving a different name to each variable introduced by each λ-
abstraction. Under this convention, and given a normal λ-term N in η-long form
for some typing 〈Γ ; γ〉 and two of its variables x, y, the binary relation xIN

ij y on
V (N) × V (N) (where i, j ∈ N) holds iff

N = C[xN1 . . . Ni−1(λx1 . . . xj−1yxj+1 . . . xn.N)Ni+1 . . . Nm]

Definition 6. Let us consider a λ-term N in η-long form for some typing and
which variables have distinct names. Given two variables x and y in V (N),
x ≈N y is verified iff:

1. x = y.
2. or there are two variables z1, z2 and i, j in N such that z1I

N
ij x, z2I

N
ij y, and

z1 ≈N z2

The idea behind the relation x ≈N y on a term N is to express that the
variables x and y are recursively introduced by the same variable.

Example 2. Given N = λfg.g(f(λx1y1.x1(λz1.z1)))(f(λx2y2.y2(x2(λz2.z2)))),
the relations x1 ≈N x2, y1 ≈N y2 and z1 ≈N z2 hold.

This definition is naturally extended to subterms of N :

Definition 7. Let us consider a term N in long normal form for some typing
〈Γ ; γ〉, and two of its subterms N1 and N2; N1 ≈N N2 is verified if:

– N1 = x1, N2 = x2, and x1 ≈N x2

– N1 = λx1.P1, N2 = λx2.P2, x1 ≈N x2 and P1 ≈N P2

– N1 = x1P1 . . . Pn, N2 = x2Q1 . . . Qn, x1 ≈N x2 and Pi ≈N Qi for every
i ∈ [1, n].

Example 3. In the previous example, we have x1(λz1.z1) ≈N x2(λz2.z2). But we
do not have f(λx1y1.x1(λz1.z1)) ≈N f(λx2y2.y2(x2(λz2.z2))).

Remark that for a term N = C1[C2[P1][P2]] in long normal form for some
typing 〈Γ ; γ〉 and where P1 ≈N P2, the term N ′ = C ′

1[(λx.C ′

2[x][x])P ] that
is β-convertible to N is also an inhabitant of 〈Γ ; γ〉. In the previous example,
(λFfg.g(f(λx1y1.Fx1))(f(λx2y2.y2(Fx2))))(λx.x(λz.z)) is simply typable and
has the same most general typing as N .

In the rest of the document, we focus on a particular case for this relation:

Definition 8. Let us consider a term N in long normal form for its princi-
pal typing 〈Γ ; γ〉. N is said first-order copying (written copy(1)) whenever two
subterms N1 and N2 are assigned the same type α in 〈Γ ; γ〉 iff N1 ≈N N2.

Example 4. The term in Example 2 is not copy(1) because f(λx1y1.x1(λz2.z2))
and f(λx2y2.y2(x2(λz2.z2))) have the same type in the principal typing of N
but are not in relation with ≈N . The term N = f(h(λx1y1.y1))(h(λx2y2.y2)) is
copy(1) and can be expanded into (λz.fzz)(h(λxy.y)) preserving its principal
typing. Note that z is of atomic type in any typing for which N is in η-long form.



The notion is called first-order copying because the maximal subterms of N
which verify the relation ≈N are of atomic type in the principal typing of N just
as in the last example above.

4.2 Proof uniqueness for copy(1)-terms

We are now going to see that first-order copying are precisely the inhabitants
of negatively non-duplicating typings. But we first prove that negatively non-
duplicating typings have at most one inhabitant.

Lemma 4. Let us consider a negatively non-duplicating typing 〈Γ ; γ〉 and the
associated arena A = (M, τ). There is at most one occurrence of each O-move
m in every sequence of a winning strategy Σ on A.

Proof. If we suppose there is a strategy Σ which contains a sequence S of the
form S1.n.m1.S2.n.m2 where n ∈ MO then we can prove Σ must contain an
infinite number of sequences which is absurd.

Theorem 3. [Aot99] Let 〈Γ ; γ〉 be a negatively non-duplicating typing. There is
at most one inhabitant of 〈Γ ; γ〉.

Proof. Let us suppose that N is an inhabitant of 〈Γ ; γ〉 and let A = (M, τ) be
the arena 〈Γ ; γ〉. Then we let Σ be the strategy on A such that N = JΣK. We
recall that a P -move m corresponds to a negative occurrence of an atomic type
a = τ(m). Suppose there is another strategy Σ′ 6= Σ in A; we show by induction
on the length of a sequence S in Σ′ that S ∈ Σ.

1. if |S| = 2, then S = (ǫ, 0).(m, 0) for some P -move m. Because the pair is
negatively non-duplicating, every P -move m′ 6= m in M verifies τ(m′) 6=
τ(m). Therefore S must also be in Σ.

2. if |S| = 2p+2, then S is of the form S1.(m, p).(n, i). By induction hypothesis,
S1 is in Σ. Moreover, if S1.(n, p).(m, i) is in Σ′, there exists a P -move m′

such that S1 = S2.(m
′, j) (where m′ ⊢ n). But because Σ is a winning

strategy there must exist a P -move m′′ in M such that there is a sequence
of the form S1.(n, p).(m′′, k) in Σ. Again, the typing being negatively non-
duplicating, m is the only P -move such that τ(m) = τ(n) and therefore we
must have m = m′′. Moreover, according to Lemma 4, k = j.

We now turn to proving that negatively non-duplicating typings are inhab-
ited by first-order copying λ-terms and that conversely the principal typing of
first-order copying λ-terms is negatively non-duplicating. This correspondence
is similar to the one between balanced typings and affine λ-terms [Bel76,Hir91].

Lemma 5. Let us consider an arena A = (M, τ), a strategy Σ on it and the
term N = JΣK. Two variables x1, x2 in V (N) verify x1 ≈N x2 iff there is
m ∈ MP such that x1 and x2 are realizations of m in JΣK.



Proof. First, the right implication is shown by induction on the definition of the
≈N relation on variables.

For the left implication, let us first define J(S) for a sequence S in a strategy
Σ as follows:

– J((ǫ, 0)) = 0.
– J(S1.(m, i).S2.(n, i)) = 1 + J(S1.(m, i)) if n is a P -move.
– J(S.(m, i)) = J(S) if m is a O-move.

Let us suppose the two variables x1 and x2 are realizations of the same P -move
m in JΣK, which is formally written as:

N =





C1[J(m, i1).[T1, . . . , Tn], V1K] = C1[x1JT1, V1K . . . JTn, V1K]

C2[J(m, i2).[T1
′, . . . , Tn

′], V2K] = C2[x2JT1
′, V2K . . . JTn

′, V2K]

Let us consider S1.(n, i1) and S2.(n, i2), the sequences in Σ for the respective
occurrences of n in the equation above. We prove the rest of the lemma by
induction on p = max(J(S1.n), J(S2.n)).

Theorem 4. If a negatively non-duplicating typing 〈Γ ; γ〉 types a term N then
N is copy(1).

Proof. Consider the strategy Σ on the arena A associated to 〈Γ ; γ〉 such that
JΣK = N . According to Theorem 3, Σ is the unique winning strategy in A.
Suppose N = C1[N1] = C2[N2], such that N1 = λx1 . . . xq.z1P1 . . . Pp1

and
N2 = λy1 . . . yq.z2Q1 . . . Qp2

are of the same type δ in 〈Γ ; γ〉. We can write JΣK
as:

JΣK =

{
C1[JT1, V1K] = C1[Jn1.m1.[T1,1, . . . , T1,p1

], V1K] = C1[N1]

C2[JT2, V2K] = C2[Jn2.m2.[T2,1, . . . , T2,p2
], V2K] = C2[N2]

where n1, n2 are O-moves, and m1, m2 P -moves. Because N1 and N2 are of the
same type, τ(m1) = τ(m2) and because 〈Γ ; γ〉 is negatively non-duplicating
m1 = m2 = m. This implies p1 = p2 = p. By induction on the trees T1 and T2,
we prove N1 ≈N N2.

Theorem 5. Given a first-order copying term N in long normal form for its
principal typing 〈Γ ; γ〉, 〈Γ ; γ〉 is negatively non-duplicating.

Proof. Given the arena A = (M, τ) associated to 〈Γ ; γ〉, and the strategy Σ on
A, such that N = JΣK, we know Σ is a covering strategy (Theorem 2). Suppose
there exists n1 6= n2 in MP , such that τ(n1) = τ(n2). By Theorem 2, this leads to
n1R

∗

Σn2, which implies the existence of two sequences S1.n1 and S2.n2 in Σ such
that N = Ci[Jni[Ti1, . . . , Tim], ViK] = Ci[Ni] for i ∈ {1, 2}. N1 and N2 are of the
same atomic type τ(n2) = τ(n1) then N1 = x1P1 . . . Pn and N2 = x2Q1 . . . Qm.
According to Lemma 5, x1 ≈N x2 does not hold which implies that N1 ≈N N2

does not hold either: we obtain a contradiction with the hypothesis that N is
first-order copying.



5 Conclusion

Games are widely used in logic for the study of programming language semantics
[HO00], logic semantics [Bla92], and λ-calculi semantics [Hug00]. In this article,
we show that game semantics brings a new point of view on the structural prop-
erties of the simply-typed λ-calculus. It was already known that the balanced
types used in [BS82] are exactly the principal typings of affine λ-terms i.e. terms
M for which each subterm λx.M ′ in it has at most one free occurrence of x in
M ′ and each free variable x has at most one occurrence in M [Bel76,Hir91]. Us-
ing games, we obtain a full correspondence between negatively non-duplicating
typings and the newly introduced class of first-order copying λ-terms.

Even though the problems of coherence for the simply-typed λ-calculus seem
quite theoretical, they have recently proved to be useful in designing parsing
algorithms for grammars of simply-typed λ-terms [dG01,Mus01]. Determining
a λ-term only with its typing properties allows indeed to partially characterize
it up to βη-conversion. This idea has been used in [Kan07] to propose a very
general parsing technique using [Aot99] coherence theorem for almost linear λ-
terms and in [Sal10] to prove that parsing grammars of simply-typed λ-terms
is decidable. Based on the result presented in this paper, we expect to extend
Kanazawa’s algorithm to first-order copying terms.

The question of extending coherence theorems to a wider class of terms re-
mains an open-question. A family of typings has been given in [BD05] under the
name of deterministic typings, with a method similar to the one given in this
article, but it seems hard to give a syntactic characterization of the terms which
inhabits such typings. Nevertheless, the use of game semantics gives an easy
framework to study proof structures and while we focused on normal proofs, we
shall try to extend our results to non-normal ones. For example, it would be
interesting to investigate a generalization of the game-theoretical characteriza-
tion of principal typings of β-normal terms to non β-normal ones will also be
addressed.
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Hug00. D.J.D. Hughes. Hypergame Semantics: Full Completeness for System F . PhD
thesis, Oxford University, 2000.

JG95. C.B. Jay and N. Ghani. The virtues of η-expansion. J. of Functional Program-

ming, 5(2):135–154, 1995. Also appeared as tech. report ECS-LFCS-92-243.
Kan07. M. Kanazawa. Parsing and generation as Datalog queries. In Proceedings of

the 45th Annual Meeting of the Association for Computational Linguistics,
pages 176–183, Prague, 2007. Association for Computational Linguistics.

KNO02. A.D. Ker, H. Nickau, and L. Ong. Innocent game models of untyped λ-
calculus. Theoretical Computer Science, 272(1-2):247 – 292, 2002.

Lor59. P. Lorenzen. Ein dialogisches konstruktivitatskriterium. Infinitistic Methods,
pages 193–200, 1959.

Lor68. K. Lorenz. Dialogspiele als semantische grundlage von logikkalkiilen. Arch.

Math. Logik Grundlag, 11:32–55, 1968.
Min77. G.E. Mints. Closed categories and the theory of proofs. Journal of Mathe-

matical Sciences, 15:45–62, 1977.
Mus01. R. Muskens. Lambda Grammars and the Syntax-Semantics Interface. In

R. van Rooy and M. Stokhof, editors, Proceedings of the Thirteenth Amster-

dam Colloquium, pages 150–155, Amsterdam, 2001.
Nic94. H. Nickau. Hereditarily sequential functionals. In A. Nerode and Y. Matiyase-

vich, editors, LFCS, volume 813 of Lecture Notes in Computer Science, pages
253–264. Springer, 1994.

Sal10. Sylvain Salvati. On the membership problem for non-linear abstract categorial
grammars. Journal of Logic, Language and Information, 19(2):163–183, 2010.



A Isomorphic arenas

Arenas are a particular kind of relational structures. Original games defined by
Hyland and Ong and Nickau mainly focus on β-reductions, through the composi-
tion of strategies; this led to the construction of categories of arenas and games.
Because we consider terms in β-reduced form, this is not needed and we study
formal properties of arenas described as forest of labelled trees. The following
notion of homomorphism of arena is a transformation which allows to describe
two notions: the notion of type substitution of a typing 〈Γ ; γ〉 and the notion of
curryfication on the term or typing.

In order to do so, let us first remark that given a typing 〈Γ ; γ〉 and its
associated arena A = (M, τ), to an occurrence of a formula or type α in 〈Γ ; γ〉,
there is an associated prefix-closed set of moves M ′ for which there is a least
upper bound for the transitive closure of the enabling relation (written M̂ ′);
moreover (M ′, τ) is equal to Aα, the arena associated to α, modulo renaming
of the moves; we call (M ′, τ) a sub-arena of (M, τ), and we note σA(M ′) = α
the formula in 〈Γ ; γ〉 represented by this sub-arena. Finally, given an arena
A = (M, τ), we note F (A) the set of all its sub-arenas.

Given two arenas A1 = (M1, τ1) and A2 = (M2, τ2), we define a homomor-
phism of arena as a mapping of the moves of the initial arena A1 with sets of
moves in sub-arenas of A2; this mapping preserves certain conditions on the typ-
ing function and on the enabling relation. Formally, a homomorphism of arena
F : A1 7→ F (A2) is defined as:

1. F̂ (ǫ) = ǫ.

2. for m, n in M1, if m ⊢ n then F̂ (m) ⊢ F̂ (n).
3. for m1, m2 in M1, if τ1(m1) = τ2(m2) then σA2

(F (m1)) = σA2
(F (m2))

Remark that 1. and 2. imply pl is preserved by homomorphism as follows: for

every move m in M1, pl (m) = pl (F̂ (m)).
A homomorphism of arena F is an isomorphism if F defines a bijection

between M1 and M2 which respects 3. Two isomorphic arenas are noted A1
∼= A2.

Because F (m) is the singleton {F̂ (m)} if F is an isomorphism, F (m) will denote

{F̂ (m)}. Remark that the identity id defines an isomorphism between the arenas
associated to a typing 〈x1 : γ1, . . . , xn : γn; γ〉 and the ones associated to any
typing found by permutation of the type assignments in the context Γ . A type
substitution can also be seen as a homomorphism of arena: let us consider a
typing 〈Γ ; γ〉 and its arena A = (M, τ). Given the arena A′ = (M ′, τ ′) associated
to 〈Γ ; γ〉 · [a 7→ α], there is an associated homomorphism F : A 7→ F (A′) such

that F̂ (m) = m and:

– if τ(m) 6= a, F (m) = {m} and τ(m) = τ ′(F̂ (m))
– otherwise, σA′(F (m)) = α

An example is graphically illustrated in Figure 4.
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Fig. 4. Type substitution [a 7→ (b3 → b2) → b4 → b1] in (a1 → a) → a2

Lemma 6. The arenas A1 = (M1, τ1) and A2 = (M2, τ2) associated respec-
tively to 〈x1 : γ1, x2 : γ2 . . . , xn : γn; γ〉 and 〈x2 : γ2 . . . , xn : γn; γ1 → γ〉 are
isomorphic.

Proof. Let us consider the arenas A1 and A2 as enunciated, and define a renam-
ing abs : M1 7→ M2 such that:

– abs(sx1
) = {1.s} for every move sx1

∈ M1

– abs(i · s) = {(i + 1) · s} for every move i · s in M1, where i ∈ N and s ∈ N∗

– abs(m) = {m} for every other move m in M1

Moreover, we define τ2(abs(m)) = τ1(m) for every move m in M1. The function
abs defines an isomorphism between A1 and A2. According to the renaming of
the moves, it is easy to check that the enabling relation in A1 is verified in A2

and vice versa.

Given an isomorphism F between the arenas A and B, and a sequence S =
m1 . . . mn of moves in A, we write F (S) = F (m1) . . . F (mn).

Lemma 7. Let us consider two isomorphic arenas A1 = (M1, τ1) and A2 =
(M2, τ2) for an isomorphism F : A1 7→ A2. For every legal position S in A1,
F (S) is a legal position in A2.

Proof. Let us consider the legal position S in A1 and show F (S) is a justified
sequence. S being legal in A1, we know that every prefix S′ of S of length
superior to 2 verifies the justification condition: S′ = S1.m.S2.n and m justifies
n. But the sequence F (S) = F (S1).F (m).F (S2).F (n) remains justified in A2 as
F (m) ⊢ F (n).

The sequence F (S) verifies the initial move condition as F (ǫ) = {ǫ} and
the alternation condition as pl (F (m)) = pl (m). Finally, the P -view condition
is also verified; indeed, if S = ǫ, P(F (S)) = P(ǫ) = ǫ; if S = S′.m where m is
in MP

1 , P(S.m) = P(S).m and P(F (S.m)) = P(F (S).F (m)) = P(F (S)).F (m) as
F (m) ∈ MP

2 ; if S = S1.(m1, j).S2.(m2, j) and m2 ∈ MO
1 the property is verified

by stability of pl and of the enabling relation.



Lemma 8. Given two isomorphic arenas A1 and A2, there is a winning strategy
on A1 if and only if there is a winning strategy on A2

Proof. Let us consider A1 = (M1, τ1) and A2 = (M2, τ2) and the isomorphism
F between A1 and A2. Suppose there is a winning strategy Σ on A1; according
to Lemma 7, for every sequence S ∈ Σ, F (S) is a legal position in (M2, τ2).

Moreover, by definition m ⊢ n iff F̂ (m) ⊢ F̂ (n), which implies the strategy
F (Σ) = {F (S) | S ∈ Σ} to be winning in A2.

B Proof of the Term-Strategy correspondence

Lemma 1 Given the arena A associated to the typing pair 〈Γ ; γ〉, and a winning
strategy Σ on A, Γ ⊢ JΣK : γ is a valid judgement.

Proof. Let us write A = (M, τ). The proof is done by induction on the structure
of TΣ :

– if TΣ = (ǫ, 0)(m, 0), then JΣK = λx1, . . . xn.x such that for i ∈ N and m = i ∈
M holds iff i ∈ [1, n]. Let us write τ(m) = a. If there is a variable x such that
m = ǫx, then A is the arena of a typing 〈Γ, x : a; γ1 → . . . → αn → a〉, which
types JΣK. Otherwise, if m = i, for some i in [1, n], then x = xi and A is the
arena of a typing of the form 〈Γ ; γ1 → . . . → γi−1 → a → . . . → γn → a〉
which types JΣK.

– if TΣ = (ǫ, 0)(m, 0)[TΣ1
, . . . , TΣp

], then

JTΣ , FVAK = λx1 . . . xn.xJTΣ1
, FVA ∪ V K . . . JTΣp

, FVA ∪ V K

where V = {((i, 0), xi) | i ∈ N and m = i ∈ M}. Given 〈Γ ; γ1 → . . . → γn →
a〉 the typing associated to A, FVA ∪ V corresponds to the variables in the
typing context Γ, x1 : γ1, . . . , xn : γn. This typing context must contain a
type assignment x : α1 → . . . → αn → a, where for every i ∈ [1, n], αi is
the type associated to the sub-arena of A made of the set of moves which
have m · i has common prefix. Then JTΣj

, FVA ∪ V K corresponds to the
interpretation of the winning strategy Σj on the arena associated to 〈Γ, x1 :
γ1, . . . , xn : γn;αj〉, for every j ∈ [1, p]; by induction hypothesis, Γ, x1 :
γ1, . . . , xn : γn ⊢ JTΣj

, FVA ∪ V K : αj . Because the typing environments of
these typings contain a type assignment x : γ1 → . . . → γn → a, we finally
obtain Γ ⊢ JΣK : γ1 → . . . → γn → a as a valid judgement.

Lemma 2 Given a typing pair 〈Γ ; γ〉, its associated arena A, and a term N
such that Γ ⊢ N : γ is a valid judgement, then there is a winning strategy Σ on
A such that JΣK =βη N .

Proof. Without loss of generality we suppose that N is in long-normal form with
respect to the pair 〈Γ ;α〉. We then construct Σ inductively on the structure of
N .



– if N = x: then every typing for which N is η-long must be of the form
〈Γ, x : a; a〉, where a is atomic. The corresponding arena A = (M, τ) verifies
the existence of two moves m1 = ǫ and m2 = ǫx such that no move m1 · i and
m2 · i (for i ∈ N∗) exist in M . Moreover, τ(ǫ) = τ(ǫx). This is equivalent to
the existence of a strategy Σ = {ǫ, ǫx} on the arena A; this strategy verifies
JΣK = x.

– if N = λx.N ′: let us consider A = (M, τ) the arena associated to 〈Γ ;α → β〉,
a typing for which N is η-long. We consider abs the isomorphism defined in
the previous section; then abs−1(A) = A′ is the arena associated to 〈Γ, x :
α;β〉 which implies A′ is a typing arena for N ′. By induction hypothesis,
the associated game has a winning strategy Σ′ such that JΣ′K = N ′. But
abs(Σ′) = Σ is a winning strategy on A according to Lemma 8. Finally, for
TΣ′ = (ǫ, 0).(m, 0)[TΣ′

1
, . . . , TΣ′

n
], we obtain

JTΣ′ , FVA′K = λx1 . . . λxn.yJTΣ′

1
, FVA′ ∪ V ′K . . . JTΣ′

n
, FVA′ ∪ V ′K = N ′

where V ′ = {((m, 0), i) | i ∈ N and m = i ∈ M ′}, and the following inter-
pretation for Σ:

JTΣ , FVAK = λxλx1 . . . λxn.yJTabs(Σ′

1
), FVA ∪ V K . . . JTabs(Σ′

n), FVA ∪ V K

where V is the analog of V ′ in A. Then JΣK is syntactically equal to λx.N ′

for FVA ∪ V = FVA′ ∪ V ′, an hypothesis we can suppose (otherwise, the
equality is verified modulo α-equivalence).

– if N = xN1 . . . Nn: let 〈Γ, x : α1 → . . . → αn → a; a〉 be a typing for
which N is η-long. Then for every i ∈ [1, n], 〈Γ ;αi〉 is a typing for the
term Ni, which remains in η-long form for it. By considering Ai the arena
for 〈Γ, x : α1 → . . . → αn → a;αi〉, the induction hypothesis leads to
the existence of a strategy Σi on Ai, such that Ni = JΣiK. Let us build a
renaming on moves app : M1 + . . . + Mn → M as follows:

• if m ∈ Mi for some i ∈ [1, n] and there is s ∈ N∗ such that m = s, then
app(m) = (i · s)x

• otherwise app(m) = m otherwise.

We define a new arena made of the set of moves M = app(M1+. . .+Mn)∪{ǫ}
and the typing function τ such that τ(ǫ) = τ(ǫx) and τ(app(m)) = τi(m),
for m ∈ Mi and i ∈ [1, n]. Then, A = (M, τ) is the arena associated to
〈Γ, x : α1 → . . . → αn → a; a〉 because every element of the form sx ∈ Mi

is preserved in M (Γ is unchanged) and τ(ǫ) = τ(ǫx). We now consider
the typing strategy Σ, such that TΣ = ǫ.ǫx[app(JΣ1K), . . . , app(JΣnK)] on A.
Then

JTΣ , FVAK = xJ(app(TΣ1
), FVA)K . . . Japp(TΣn

), FVAK

Because app does not rename moves of the form ǫy, every term Ni is equal
to J(app(TΣi

), FVAi
K = Ni. This leads to JΣK = xN1 . . . Nn.

Lemma 3 Given an arena A, and two winning strategies Σ1 and Σ2 on A, if
JΣ1K = JΣ2K then Σ1 = Σ2.



Proof. Let us proceed by induction on TΣ1
:

– if TΣ1
= (ǫ, 0)(m1, 0), then JΣ1K = λx1 . . . xn.z1. The interpretation of Σ2 is

equal to such a term iff Σ2 = {(ǫ, 0), (m2, 0)}. Moreover, JΣ1K = JΣ2K iff m1

and m2 refer to the same variable modulo α-equivalence, i.e. m1 = m2.
– if TΣ1

= (ǫ, 0)(m1, 0)[TΣ11
, . . . , TΣ1m

], then

JTΣ1
, FVAK = λx1 . . . xn.z1JTΣ11

, FVA ∪ V K . . . JTΣ1m
, FVA ∪ V K

where FVA = {((ǫx, 0), x) | there is a variable x such that ǫx ∈ M} and
V = {((i, 0), xi) | ǫ ⊢ m and m = i ∈ N} Moreover, TΣ2

must be of the form
(ǫ, 0)(m2, 0)[TΣ21

, . . . , TΣ2m
] so that JΣ1K = JΣ2K. This implies

JTΣ2
, FVAK = λx1 . . . xn.z2JTΣ21

, FVA ∪ V K . . . JTΣ2m
, FVA ∪ V K

Then JTΣ1j
, FVA ∪ V K = JTΣ2j

, FVA ∪ V K must stand for every j ∈ [1, m],
which implies by induction hypothesis, TΣ1j

= TΣ2j
. Moreover, z1 and z2

must again refer to the same variable, which implies m1 = m2, so finally,
Σ1 = Σ2.

C Proof of Theorem 2

Lemma 9. Let us consider a term N in long-normal form for 〈Γ ; γ〉 and 〈Γ ′; γ′〉.
Given A and A′ the respective arenas of these typings, and Σ, Σ′ the strategies
in A and A′ respectively, such that JΣK = JΣ′K = N , then Σ = Σ′

Proof. We prove it by induction on Σ the arborescent reading of which is of the
general form (ǫ, 0).(m, 0).[TΣ1

, . . . , TΣn1
]. Similarly the arborescent reading of

Σ′ is of the form (ǫ, 0).(m′, 0).[TΣ′

1
, . . . , TΣ′

n2

] and

N =

{
JΣK = λx1 . . . xp1

.xJTΣ1
, FVA ∪ V K . . . JTΣn1

, FVA ∪ V K

JΣ′K = λx1 . . . xp2
.x′JTΣ′

1
, FVA ∪ V ′K . . . JTΣ′

n2

, FVA ∪ V ′K

and N is of the form λx1 . . . x1 . . . xp.yN1 . . . Nn. Then p1 = p2 = p, which
implies we can force V = V ′. Moreover, m = m′ and n1 = n2 = n. By induction
hypothesis, Σi = Σ′

i for every [1, n] which finally leads to Σ = Σ′.

Lemma 10. Let us consider a typing 〈Γ ; γ〉 and its arena A = (M, τ). Suppose
there is a strategy Σ on A such that JΣK = N . If 〈Γ ; γ〉 is not the principal
typing of N , then Σ is not a covering strategy on A

Proof. Consider A the arena of 〈Γ ; γ〉 and Σ the strategy on A such that N =
JΣK. Let us also consider A′ = (M ′, τ ′) the arena associated to the principal
typing 〈Γ ′; γ′〉 of N and Σ′ the typing strategy on A′ such that N = JΣ′K.
According to Lemma 9,

Σ = Σ′ (∗)

For convenience, we note JΣKA and JΣKA′ the interpretation of Σ in A and A′

respectively.
If 〈Γ ; γ〉 is not the principal typing of N , then one of the three following

cases is verified:



1. there is a type assignment x : α in Γ such that x is not free in N . Then there
is some move of the kind ǫx which does not appear in any of the sequences of
Σ. By definition Σ is not a covering strategy (the ǫ-completeness condition
is not verified).

2. We now suppose the existence of a type substitution σ, such that 〈Γ ; γ〉 =
〈Γ ′; γ′〉 · σ and which contains a substitution of the kind [a 7→ α], where
α is not an atomic type. Let us write sub : A′ 7→ F (A) the corresponding
homomorphism of arena. Let us therefore consider a move m ∈ M ′ such that
τ(m) = a; because α is not atomic there is at least one move n ∈ sub(m)

such that ̂sub(m) ⊢ n:

– if ̂sub(m) is an O-move. First, if there is no sequence S in Σ in which m
appears, the O-move completeness condition is violated and Σ cannot
be a covering strategy in A. So let’ suppose

JΣKA = C[J ̂(sub(m), j).( ̂sub(m′), k)[TΣ1
, . . . , TΣn

], V KA]

JΣKA = C[λx1 . . . xp.yJTΣ1, V
′KA . . . JTΣn, V ′KA]

for some j ∈ N. Because ̂sub(m) has at least one child, p ≥ 1. By
definition of the interpretation of Σ, there exists i ∈ [1, p] and a move
n ∈ sub(m) such that ((n, j), xi) in V ′. But n is not a move in A′

and J(m, j).(m′, k)[TΣ1
, . . . , TΣn

]KA′ = yJTΣ1
, V ′KA′ . . . JTΣn

, V ′KA′ . It
implies JΣKA′ 6= N and we obtain a contradiction with (*).

– if ̂sub(m) is a P -move. First, if there is a sequence of the shape S.m in
Σ, then

JΣKA = C[J ̂(sub(m), j)[TΣ1
. . . TΣp

], V KA] = C[xN1 . . . Np]

where p > 0. But J ̂(sub(m), j)TΣ1
. . . TΣp

, V KA′ is equal to x and again
there is a contradiction with (*). If m appears in no sequence of Σ, then
there is no sequence S.m.n.S′ in Σ on A. Again, the strategy cannot be
a covering strategy on A, as n would be an O-move not appearing in any
sequence of Σ.

3. so let us suppose σ is only made of substitutions of the form [a 7→ b], where
a and b are atomic types. Then the homomorphism associated to σ is an
isomorphism. Let us suppose σ is not a renaming: there exist two distinct
atomic types a1 and a2 such that σ(a1) = σ(a2) = b. We consider two moves
m1, m2 ∈ M ′ such that τ ′(m1) = a1 and τ ′(m2) = a2

– if m1, m2 are O-moves in A′. Suppose the first three conditions of the
definition of a covering strategy are verified for the strategy Σ on A.
It again ensures the existence of some sequences S1.sub(m1).n1 and
S2.sub(m2).n2 in Σ. By definition of a typing strategy, all P -moves
n such that sub(mi) is in �

n
Σ (for i = {1, 2}) must verify τ(n) =

τ(sub(mi)) = b. If the least typing constraint condition is verified we ob-
tain n1R

∗

Σn2. Let us suppose n1RΣn2 for simplicity; then there is a move
m in �

n1

Σ ∩�
n2

Σ and n1 and n2 must verify τ ′(sub−1(n1)) = τ ′(sub−1(n2))
in A′, as JΣKA′ = N . This contradicts the hypothesis a1 6= a2.



– suppose m1 is a P -move in A′; if sub(m1) and sub(m2) appear in some
sequences of Σ, the proof is identical to the previous case. Otherwise,
let us again suppose the first three conditions of a covering strategy are
verified on Σ and the absence of a sequence S1.sub(m1) in Σ. Suppose

the least typing constraint condition is also verified. Then �
sub(m1)
Σ = ∅

which would imply τ(sub(m1)) 6= τ(m), for every move m 6= m1 in M ,
and in particular for m2, if m2 is a P -move; otherwise there is such a
P -move m such that m2 ∈ �

m
Σ .

Lemma 11. Let us consider a typing 〈Γ ; γ〉 and its arena A. Suppose there is a
strategy Σ on A such that JΣK = N . If Σ is not a covering strategy on A, then
〈Γ ; γ〉 is not the principal typing of N

Proof. Let us suppose Σ is not a covering strategy on A:

– if the winning condition is not verified, according to Lemma 2, 〈Γ ; γ〉 is not
a typing for N .

– if the ǫ-completeness condition is not verified, the domain of Γ extends
FV (N).

– if the O-completeness condition is not verified, there is an O-move n which
does not appear in any of the sequences S of Σ. Also, given the P -move m
such that m ⊢ n, this move cannot appear in any sequence of Σ (otherwise n
and any move enabled by m would appear in some S ∈ Σ by definition of a
winning strategy). Let us consider the prefix-closed set of moves E = {m·s ∈
M | s ∈ N∗}. Then (E, τ) is a sub-arena of A; given σA((E, τ)) = α, we can
build a new typing 〈∆; δ〉 which arena is obtained by replacing E by the
move m labelled with a fresh atomic type a, and Σ is still a strategy which
is interpreted as N . The newly obtained typing 〈∆; δ〉 verifies 〈∆; δ〉 · [a 7→
α] = 〈Γ ; γ〉, and the latest is not the principal typing of N .

– if the least typing constraint condition is not verified, there exist m1 and m2

in MP such that τ(m1) = τ(m2) = a, but m1R
∗

Σm2 is not verified. For i ∈
{1, 2}, we consider the sets Ei = {m | miR

∗

Σm} ∪ {n | miR
∗

Σm and Snm ∈
Σ}; then E1 ∩ E2 = ∅ and we can build a new arena (M, τ ′) which only
differs from A by labeling of the moves in E1 with a fresh atomic type E1,
and the moves in A2 with a fresh atomic type a2. The typing 〈∆; δ〉 of N
associated to this new arena verifies 〈Γ ; γ〉 = 〈∆; δ〉 · [a1 7→ a, a2 7→ a] and
again 〈Γ ; γ〉 cannot be the principal typing of N .

Theorem 2 Given a term N in normal form, a typing pair 〈Γ ; γ〉 and the
corresponding arena A = (M, τ). The two following properties are equivalent

1. there is a covering strategy Σ on A such that N = JΣK
2. 〈Γ ; γ〉 is the principal typing of N = JΣK and N is η-long in 〈Γ ; γ〉

Proof. The equivalence between the two following propositions:

1’. Σ is not a covering strategy on A
2’. 〈Γ ; γ〉 is not the principal typing of N

is given by Lemma 10 and 11



D Proofs of Theorems in section 4.1

Lemma 4 Let us consider a negatively non-duplicating typing 〈Γ ; γ〉 and the
associated arena A = (M, τ). Then every sequence in a winning strategy Σ on
A has at most one occurrence of each O-move m.

Proof. Let us suppose this is wrong: there is a strategy Σ which contains a
sequence S of the form S1.m.n1.S2.m.n2 where m is a O-move. Because the
typing is negatively non-duplicating, there is at most one P -move n of type
τ(m) in the arena. This implies n1 = n2. Hence, we can consider a sequence
of moves S in a winning strategy as a sequence of pairs of moves MO × MP

written (m, f(m)), f being a function which associates to a move m ∈ MO

the unique move n ∈ MP such that τ(n) = τ(m) if it exists. Then for ev-
ery O-move m′ such that there exists i ∈ N and f(m) · i = m′ ∈ M , the
sequence S1.(m, f(m)).S2.(m, f(m)).(m′, f(m′)) belongs to Σ by definition of
a winning strategy. There is therefore an infinite number of sequences of the
form S1.((m, f(m)).S2)

∗ (where ((m, f(m)).S2)
∗ denotes a sequence made of an

arbitrary number of concatenations of (m, f(m)).S2) in Σ, which is absurd.

Given a justified sequence S.(n, i), we note J(S.(n, i)) the value inductively
defined as:

– J((ǫ, 0)) = 0.
– J(S1.(m, i).S2.(n, i)) = 1 + J(S1.(m, i)) if n is a P -move.
– J(S.(m, i)) = J(S) if m is a O-move.

Then J(S.(n, i)) corresponds to the number of enabling m ⊢ m′ (where m ∈ MO

and m′ ∈ MP from (n, i) to (ǫ, 0) in S.(n, i).

Lemma 12. Let us consider an arena A = (M, τ), a strategy Σ on A and the
term N = JΣK.
If there is a P -move n ∈ MP such that x1 and x2 are realizations of n in JΣK,
then x1 ≈N x2.

Proof. Let us suppose the two variables x1 and x2 are realizations of the same
P -move n in JΣK; this is written as:

N =





C1[J(n, i1).T1. . . . Tn, V1K] = C1[x1JT1, V1K . . . JTn, V1K]

C2[J(n, i2).T1
′. . . . Tn

′, V2K] = C2[x2JT1
′, V2K . . . JTn

′, V2K]

Let us consider S1.(n, i1) and S2.(n, i2) the sequences in Σ which contain the
occurrences of n in the equation above. Let us prove x1 ≈N x2 by induction on
p = max(J(S1.(n, i1)), J(S2.(n, i2))):

– If p = 1, then S1 = S2 = ǫ, i1 = i2 = 0 and x1 = x2 are occurrences of the
same variable.



– We suppose the property to be true for p > 1. Because there is a unique O-
move m such that m ⊢ n, S′

1.(m, i1) ⊑ S1 and S′

2.(m, i2) ⊑ S2 are verified.
Now, because p > 1, there is a P -move n′ which enables m, and integers
j1 and j2 such that S′

1 = S′′

1 .(n′, j1) and S′

2 = S′′

2 .(n′, j2). By definition
max(J(S′′

1 .(n′, j1)), J(S′′

2 .(n′, j2))) = max(J(S1.(n, i1)), J(S2.(n, i2))) − 1.
Hence, given y1 and y2 the variables which correspond to the realizations
of these two occurrences of n′ in JΣK, we obtain by induction hypothesis
y1 ≈ y2. Finally

N = C ′

k[(n, jk)Tk,1 . . . Tk,j . . . Tk,q, Wk]

= C ′

k[ykJTk,1, WkK . . . JTk,j , WkK . . . JTk,q, WkK]

= C ′

k[ykJTk,1, WkK . . . λxj
1,k . . . xj

i−1,kxkxj
i+1,k . . . xj

r,k.Nk,j . . . JTk,q, WkK]

for k ∈ {1, 2}. Therefore ykI
N
jixk which leads to x1 ≈N x2.

Lemma 13. Let us consider an arena A = (M, τ), a strategy Σ on A and the
term N = JΣK.
If two variables x1, x2 ∈ V (N) verify x1 ≈N x2, then there is a P -move n ∈ MP

which realizes both x1 and x2 in JΣK

Proof. Let us consider two variables x1 and x2 in N , such that x1 ≈N x2. We first
recall that variables have distinct name in N by definition of the interpretation
of a strategy. We proceed by induction on the definition of ≈N :

– if x1 = x2 = x. According to the definition of the interpretation of Σ,

N =





C1[J(n1, i1).T1. . . . Tn, V1K] = C1[x1N1 . . . Nn]

C2[J(n2, i2).T1
′. . . . Tn

′, V2K] = C2[x2P1 . . . Pn]

and n1 = n2 = n in MP where n is the unique move such that ((n, i), x)
appears in V1 ∩ V2, for some i ∈ N.

– if there are two variables z1 and z2 such that z1 ≈N z2 and naturals i, j
such that z1I

N
ij x1 and z2I

N
ij x2. By induction hypothesis, there is a P -move

n which realizes z1 and z2 in Σ:

N =





C1[J(n, i1).T1. . . . Tn, V1K] = C1[z1N1 . . . Nn]

C2[J(n, i2).T1
′. . . . Tn

′, V2K] = C2[z2P1 . . . Pn]

Because z1I
N
ij x1 and z2I

N
ij x2, we know that Ni = λy1 . . . yj−1x1yj+1 . . . yp.N

′

and Pi = λy′

1 . . . y′

j−1x2y
′

j+1 . . . y′

p.P
′. But by definition of the interpretation,

x1 and x2 must be realizations of the move (n · i) · j.

Lemma 14. Let us consider two sequences S1.m1.n and S2.m2.n in a strategy
Σ in an arena A. Suppose that A is associated to a negatively non-duplicating
typing. Then for every sequence S, the sequence S1.m1.n.S is in Σ iff S2.m2.n.S
is in Σ.



Proof. We proceed by induction on |S|/2:

– if |S| = 0 the result is already given.
– suppose the lemma to be true for |S|/2 ∈ N and the existence of a sequence

Si.mi.n.S.m′.n′ ∈ Σ, for some i in {1, 2}. Given j 6= i ∈ {1, 2}, there must be
a sequence of the form Sj .mj .n.S.m′.n′′ in Σ by the definition of a winning
strategy. Because the typing is negatively non-duplicating, n′ = n′′.

Theorem 4 If a negatively non-duplicating pair 〈Γ ; γ〉 types a term N then N
is copy(1).

Proof. Let us consider the arena A = (M, τ) associated to 〈Γ ; γ〉, a negatively
non-duplicating typing. By hypothesis, there is a strategy Σ on A, such that
N = JΣK. According to Theorem 3, Σ is the unique winning strategy in A.
Suppose N = C1[N1] = C2[N2], such that N1 and N2 are of the same type δ in
〈Γ ; γ〉 and such that there is no subterms N ′

1 = C ′

1[N1], N ′

2 = C2[N2] of the same
type. The general forms of N1 and N2 are respectively λx1 . . . xq.z1P1 . . . Pp1

,
and λy1 . . . yq.z2Q1 . . . Qp2

, because N is η-long for this typing. Moreover, we
can write JΣK as:

JΣK =

{
C1[JT1, V1K] = C1[Jm1.n1.T1,1 . . . T1,p1

, V1K] = C1[N1]

C2[JT2, V2K] = C2[Jm2.n2.T2,1 . . . T2,p2
, V2K] = C2[N2]

where m1, m2 are O-moves, and n1, n2 are P -moves. Because N1 and N2 are of
the same type, we obtain τ(m1) = τ(m2). Moreover, 〈Γ ; γ〉 is negatively non-
duplicating which implies n1 = n2 = n; considering p ∈ N the number of moves
enabled by the move n in the arena A, we obtain p1 = p2 = p. Let us proceed
by induction on the trees T1 and T2

– if T1 = m1.n and T2 = m2.n, then N1 = λx1 . . . xq.z1 and N2 = λy1 . . . yq.z2,
for q ≥ 0. Then z1 and z2 come from the interpretation of two occurrences
of n in Σ and according to Lemma 5, z1 ≈N z2. Moreover, the subterms N1

and N2 are of the same type γ. If q > 0, for every i in [1, q] the variables
xi and yi are of the same type; these variables correspond to the P -moves
m1 · i and m2 · i in the interpretation of Σ. Because they are of the same
type, τ(m1 · i) = τ(m2 · i); but the typing being negatively non-duplicating,
m1 · i = m2 · i must stand for each i ∈ [1, n] which implies m1 = m2 = m.
This forces xi ≈N yi for every i ∈ [1, n]; so finally N1 ≈N N2.

– otherwise, according to Lemma 14, T1,i = T2,i for every i ∈ [1, p]. By induc-
tion hypothesis on the trees T1 and T2, for every i ∈ [1, p], the interpretation
of the trees T1,i and T2,i leads to the terms Pi and Qi respectively, and
Pi ≈N Qi. Because z1 ≈N z2 and xj ≈N yj for every j ∈ [1, q] by hypothesis
of induction, N1 ≈N N2.


