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Toulouse, July 2012.

Program Committee ii



Parallelisation of Hard Real-time Applications for

Embedded Multi- and Many-cores
Keynote speaker for MARC’ONERA’2012

Prof. Dr. Theo Ungerer
Chair of Systems and Networking

Dept. of Computer Science, University of Augsburg

ungerer@informatik.uni-augsburg.de

Providing higher performance than state-of-the-art embedded processors can deliver today will increase safety, comfort,

number and quality of services, while also lowering emissions as well as fuel demands for automotive, avionic and automation

applications. Engineers who design hard real-time embedded systems in such embedded domains express a need for several

times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by

parallelising hard real-time applications and running them on an embedded multi-core processor, which enables combining the

requirements for high-performance with time-predictable execution.

The talk will present research approaches and results of the parallelisation and WCET (Worst-case Execution Time) analysis

of industrial hard real-time applications. It shows how a WCET analysis of the communication and synchronization patterns can

be performed and how a WCET speedup can be reached for parallelised programs based on parallel design patterns. Research

approaches and results of the EC FP-7 projects MERASA (Multi-Core Execution of Hard Real-Time Applications Supporting

Analysability, 2007-2011) and parMERASA (2011-2014) are presented. Both projects target timing analysable systems of

parallel hard real-time applications running on a embedded multi-core processor. parMERASA investigates time predictable

parallelisation for future embedded many-core systems with up to 64 cores.
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Go’s Concurrency Constructs on the SCC
Andreas Prell and Thomas Rauber

Department of Computer Science

University of Bayreuth, Germany

{andreas.prell,thomas.rauber}@uni-bayreuth.de

Abstract—We present an implementation of goroutines and
channels on the SCC. Goroutines and channels are the building
blocks for writing concurrent programs in the Go programming
language. Both Go and the SCC share the same basic idea—the
use of messages for communication and synchronization. Our
implementation of goroutines on top of tasks reuses existing
runtime support for scheduling and load balancing. Channels,
which permit goroutines to communicate by sending and receiv-
ing messages, can be implemented efficiently using the on-die
message passing buffers. We demonstrate the use of goroutines
and channels with a parallel genetic algorithm that can utilize
all cores of the SCC.

I. INTRODUCTION

Go is a general-purpose programming language intended for

systems programming [1]. We leave out a general description

of Go, and rather focus on its support for concurrent pro-

gramming, which is not the usual “threads and locks”, even if

threads and locks are still used under the covers. Programmers

are encouraged to “share memory by communicating”, instead

of to “communicate by sharing memory”. This style of pro-

gramming is reminiscent of message passing, where messages

are used to exchange data between and coordinate execution

of concurrently executing processes. Instead of using locks to

guard access to shared data, programmers are encouraged to

pass around references and thereby transfer ownership so that

only one thread is allowed to access the data at any one time.

Go’s way of thinking is also useful when programming

Intel’s Single-Chip Cloud Computer (SCC) research processor.

The SCC is intended to foster manycore software research,

using a platform that’s more like a “cluster-on-a-chip” than a

traditional shared-memory multiprocessor. As such, the SCC

is tuned for message passing rather than for “threads and

locks”. Or as Intel Fellow Jim Held commented on the lack of

atomic operations: “In SCC we imagined messaging instead

of shared memory or shared memory access coordinated by

messages. [. . . ] Use a message to synchronize, not a memory

location.” [2], [3] So, we think it’s reasonable to ask, “Isn’t

Go’s concurrency model a perfect fit for a processor like the

SCC?” To find out, we start by implementing the necessary

runtime support on the SCC.

II. CONCURRENCY IN THE GO PROGRAMMING LANGUAGE

Go’s approach to concurrency was inspired by previous

languages that came before it, namely Newsqueak, Alef, and

Limbo. All these languages have in common that they built on

Hoare’s Communicating Sequential Processes (CSP), a formal

language for writing concurrent programs [4]. CSP introduced

the concept of channels for interprocess communication (not

in the original paper but in a later book on CSP, also by Hoare

[5]). Channels in CSP are synchronous, meaning that sender

and receiver synchronize at the point of message exchange.

Channels thus serve the dual purpose of communication and

synchronization. Synchronous or unbuffered channels are still

the default in Go (when no buffer size is specified), although

the implementation has evolved quite a bit from the original

formulation and also allows asynchronous (non-synchronizing)

operations on channels.
Go’s support for concurrent programming is based on two

fundamental constructs, goroutines and channels, which we

describe in the following sections.

A. Goroutines

Think of goroutines as lightweight threads that run con-

currently with other goroutines as well as the calling code.

Whether goroutines run in separate OS threads or whether

they are multiplexed onto OS threads is an implementation

detail and something the user should not have to worry about.

A goroutine is started by prefixing a function call or an

anonymous function call with the keyword go. The language

specification says: “A go statement starts the execution of a

function or method call as an independent concurrent thread

of control, or goroutine, within the same address space.” [6] In

other words, a go statement marks an asynchronous function

call that creates a goroutine and returns without waiting for

the goroutine to complete. So, from the point of view of the

programmer, goroutines are a way to specify concurrently

executing activities; whether they are allocated to run in

parallel is determined by the system.

B. Channels

In a broader sense, channels are used for interprocess

communication. Processes can send or receive messages over

channels or synchronize execution using blocking operations.

In Go, “a channel provides a mechanism for two concurrently

executing functions to synchronize execution and communi-

cate by passing a value of a specified element type.” [6] Go

provides both unbuffered and buffered channels. Channels are

first-class objects (a distinguishing feature of the Go branch

of languages, starting with Newsqueak): they can be stored

in variables, passed as arguments to functions, returned from

functions, and sent themselves over channels. Channels are

also typed, allowing the type system to catch programming

errors, like trying to send a pointer over a channel for integers.
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Fig. 1. The 48-core SCC processor: 6x4 tile array (left), 2-core tile (right)

III. A GLIMPSE OF THE FUTURE? THE SCC PROCESSOR

The Single-Chip Cloud Computer (SCC) is the second

processor developed as part of Intel’s Tera-scale Computing

Research Program, which seeks to explore scalable manycore

architectures along with effective programming techniques.

At a high level, the SCC is a 48-core processor with a

noticeable lack of cache coherence between cores. It does

support shared memory, both on-chip and off-chip, but it’s

entirely the (low-level) programmer’s responsibility to avoid

working on stale data from the caches—if caching is enabled

at all. In the default configuration, most system memory is

mapped as private, turning the SCC into a “cluster-on-a-chip”,

programmed in much the same way as an ordinary cluster.

Message passing between cores is enabled by the inclusion

of 16 KB shared SRAM per tile, called Message Passing

Buffer (MPB). Programmers can either use MPI or RCCE,

a lightweight message passing library tuned to the features of

the SCC [7], [8]. RCCE has two layers: a high-level interface,

which provides send and receive routines without exposing the

underlying communication, and a low-level interface, which

allows complete control over the MPBs in the form of one-

sided put and get operations—the basic primitives to move

data around the chip. RCCE also includes an API to vary

voltage and frequency within domains of the SCC, but we

won’t go into power management issues here.

IV. GO’S CONCURRENCY CONSTRUCTS ON THE SCC

RCCE’s low-level interface allows us to manage MPB

memory, but with an important restriction. RCCE uses what

it calls a “symmetric name space” model of allocation, which

was adopted to facilitate message passing. MPB memory is

managed through collective calls, meaning that every worker1

must perform the same allocations/deallocations and in the

same order with respect to other allocations/deallocations.

Thus, the same buffers exist in every MPB, hence symmetric

name space. If we want to make efficient use of channels, we

must break with the symmetric name space model to allow

every worker to allocate/deallocate MPB memory at any time.

Suppose worker i has allocated a block b from its MPB

and wants other workers to access it (see also Figure 2).

How can we do this? RCCE tells us the starting address

of each worker’s portion of MPB memory via the global

variable RCCE comm buffer. Thus, worker j can access any

location in i’s MPB by reading from or writing to addresses

1Worker means process or thread in this context. RCCE uses yet another
term—unit of execution (UE). On the SCC, we assume one worker per core.

Fig. 2. Accessing buffers in remote MPBs without requiring collective
allocations. Because buffer b is not replicated in other cores’ MPBs, offset
o can’t be determined implicitly (as in RCCE put/RCCE get), but must be
passed between cores.

RCCE comm buffer[i] through RCCE comm buffer[i] +

8191. Note that in the default usage model, the 16 KB shared

SRAM on a tile is equally divided between the two cores.

Worker j then needs to know the offset of b within i’s

MPB. This offset is easily determined on i’s side, and after

communicating it to worker j, j can get a pointer to b and

use this pointer to access whatever is stored at this address. To

summarize, any buffer can be described by a pair of integers

(ID, offset), which allows us to abandon collective allocations

and to use the MPBs more like local stores.

A. Goroutines as Tasks

We have previously implemented a tasking environment to

support dynamic task parallelism on the SCC [9]. Specifically,

we have implemented runtime systems based on work-sharing

and work-stealing to schedule tasks across the cores of the

chip. If we map a goroutine to a task, we can leave the

scheduling to the runtime system, load balancing included.

Scheduling details aside, what go func(a ,b,c ); then does is

create a task to run function func using arguments a, b, and

c, and enqueue the task for asynchronous execution. Tasks

are picked up and executed by worker threads. Every worker

thread runs a scheduling loop where it searches for tasks (the

details depend on which runtime is used). One thread, which

we call the master thread, say, thread 0, is designated to run

the main program between the initializing and finalizing calls

to the tasking environment. This thread can call goroutines, but

it cannot itself schedule goroutines for execution. In addition

to the master thread, we need one or more worker threads to

be able to run goroutines. This is currently a restriction of our

implementation.

Figure 3 shows a pictorial representation of workers running

goroutines. Assume we start a program on three cores—say,

core 0, core 1, and core 2—there will be a master thread and

two worker threads, each running in a separate process. Worker

threads run goroutines as coroutines to be able to yield control

from one goroutine to another [10]. While a goroutine shares

the address space with other goroutines on the same worker,

goroutines on different workers also run in different address

spaces (sharing memory is possible). This is a deviation from

the Go language specification, which states that goroutines run

concurrently with other goroutines, within the same address

space. What we need is a mechanism to allow goroutines

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8
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Fig. 3. An example execution of a program with goroutines on three
cores of the SCC processor. In this example, worker 1 is running three
goroutines, while worker 2 is running two goroutines. The master thread can
call goroutines but not run them. Worker threads switch goroutines as needed,
whenever a goroutine blocks on a channel.

to communicate, regardless on which core they are running.

Channels in shared memory provide such a mechanism.

B. Channels

Our channel implementation takes advantage of the SCC’s

on-chip memory for inter-core communication. A channel is

basically a blocking FIFO queue. Data items are stored in

a circular array, which acts as the channel’s internal buffer.

Channel access must be lock-protected because the SCC lacks

atomic operations and only provides one test-and-set register

per core for the purpose of mutual exclusion.

A buffered channel of size n has an internal buffer to store n

data items (the internal buffer has actually n+1 slots to make

it easier to distinguish between an empty and a full buffer).

If the buffer is full and another item is sent to the channel,

the sender blocks until an item has been received from the

channel. An unbuffered channel, which is the default in Go

when no size is given, is implemented as a buffered channel

with an internal buffer to store exactly one data item. Unlike a

send to a buffered channel, however, a send to an unbuffered

channel blocks the sender until a receive has happened.

A channel (unbuffered) takes up at least 160 bytes—four

cache lines to hold the data structure, plus a cache line of

internal channel buffer. When we try to write a concurrent

program such as the prime sieve presented in the Go language

specification [6] and in the Go tutorial [11], we must be aware

of channel related memory leaks that can quickly exhaust the

MPBs. Go on the other hand, is backed by a garbage col-

lector, which reclaims memory behind the scenes, and which,

according to Rob Pike, is in fact “essential to easy concurrent

programming” [12]. What the current implementation doesn’t

include are functions to close a channel and to peek at a set

of channels simultaneously (Go’s select statement, which is

like a switch statement for channel operations).

C. Channel API

The basic channel API consists of four functions:

Channel ∗channel alloc ( size t sz , size t n);

Allocates a channel for elements of sz bytes in MPB memory.

If the number of elements n is greater than zero, the channel

is buffered. Otherwise, if n is zero, the channel is unbuffered.

Note that, unlike in Go, channels are untyped. It would be

perfectly okay to pass values of different types over a single

channel, as long as they fit into sz bytes. Also note that the

current implementation does not allow all combinations of

sz and n. This is because the underlying allocator (part of

RCCE) works with cache line granularity, so we have to

make sure that channel buffers occupy multiples of 32 bytes

((n+1)*sz must be a multiple of 32).

void channel free (Channel ∗ch);

Frees the MPB memory associated with channel ch.

bool channel send(Channel ∗ch, void ∗data , size t sz );

Sends an element of sz bytes at address data to channel

ch. The call blocks until the element has been stored in the

channel buffer (buffered channel) or until the element has

been received from the channel (unbuffered channel).

bool channel receive (Channel ∗ch, void ∗data , size t sz );

Receives an element of sz bytes from channel ch. The element

is stored at address data. The call blocks if the channel is

empty.

Additionally, we find the following functions useful:

int channel owner(Channel ∗ch);

Returns the ID of the worker that allocated and thus “owns”

channel ch.

bool channel buffered (Channel ∗ch);

Returns true if ch points to a buffered channel, otherwise

returns false.

bool channel unbuffered (Channel ∗ch);

Returns true if ch points to an unbuffered channel, otherwise

returns false.

unsigned int channel peek(Channel ∗ch);

Returns the number of buffered items in channel ch. When

called with an unbuffered channel, a return value of 1

indicates that a sender is blocked on the channel waiting for

a receiver.

unsigned int channel capacity (Channel ∗ch);

Returns the capacity (buffer size) of channel ch (0 for

unbuffered channels).

D. Go Statements

Go statements must be translated into standard C code

that interfaces with our runtime library. Listing 1 gives an

idea of the translation process. Suppose we start a goroutine

running function f(in, out), which operates on two channels

in and out. For every function that is started as a goroutine,

we generate two wrapper functions, one for creating and

enqueuing the goroutine (task), the other for running it after

scheduling. Listing 1 shows the corresponding code in slightly

abbreviated form. Function go f creates a task saving all the

goroutine’s arguments and enqueues the task for asynchronous

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8
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void f ( Channel ∗ in , Channel ∗o u t ) ;

/ / The go s t a t e m e n t

go f ( in , o u t ) ;

/ / i s r e w r i t t e n i n t o

go f ( in , o u t ) ;

/ / w i t h t h e f o l l o w i n g d e f i n i t i o n

/ / ( some d e t a i l s are l e f t o u t f o r b r e v i t y )

void go f ( Channel ∗ in , Channel ∗o u t )
{

Task t a s k ;
f t a s k d a t a ∗ t d ;

t a s k . fn = ( void (∗ ) ( void ∗) f t a s k f u n c ;
t d = ( f t a s k d a t a ∗) t a s k . d a t a ;
td−>in owner = channe l owner ( i n ) ;
td−>i n o f f s e t = MPB da ta o f f se t ( td−>in owner , i n ) ;
td−>out owner = channe l owner ( o u t ) ;
td−>o u t o f f s e t = MPB da ta o f f se t ( td−>out owner , o u t ) ;

/ / Enqueue t a s k

}

/ / The da ta s t r u c t u r e t o ho ld t h e g o r o u t i n e ’ s argument s

t y p e d e f s t r u c t f t a s k d a t a {
i n t in owner , i n o f f s e t ;
i n t out owner , o u t o f f s e t ;

} f t a s k d a t a ;

/ / i s p a s s e d t o t h e t a s k f u n c t i o n t h a t wraps t h e c a l l t o f

void f t a s k f u n c ( f t a s k d a t a ∗ a r g s )
{

Channel ∗ in , ∗o u t ;

i n = MPB data ptr ( a rgs−>in owner , a rgs−>i n o f f s e t ) ;
o u t = MPB data ptr ( a rgs−>out owner , a rgs−>o u t o f f s e t ) ;
f ( in , o u t ) ;

}

Listing 1: A go statement and the translation into tasking code.

execution. Channel references are constructed from channel

owner and MPB offset pairs (required to break with the col-

lective allocations model of RCCE, described above), so each

channel is internally represented by two integers. The helper

functions MPB data offset and MPB data ptr calculate off-

sets and pointers based on the MPB starting addresses in

RCCE comm buffer. The task function f task func is called

by the runtime when the task is scheduled for execution, after

which the goroutine is up and running.

V. EXAMPLE: PARALLEL GENETIC ALGORITHM

To demonstrate the use of goroutines and channels, we have

written a parallel genetic algorithm (PGA) that can utilize all

the cores of the SCC. We follow the island model and evolve

a number of populations in parallel, with occasional migration

of individuals between neighboring islands [13].

We choose a simple toy problem: evolving a string from

random garbage in the ASCII character range between 32 and

126. More precisely, we want to match the following string

that represents a simple “Hello World!” program:

“#include <stdio.h> int main(void) { printf(”Hello

SCC!\n”); return 0; }”

The fitness of a string is calculated based on a character by

character comparison with the target string, according to f =∑n

i=0
(target[i] − indiv[i])2, where n is the length of both

strings. Thus, higher fitness values correspond to less optimal

void e v o l v e ( Channel ∗chan , Channel ∗p r e v i n ,
Channel ∗p re v o u t , i n t n , i n t n u m i s l a n d s )

{
GA pop ∗ i s l a n d ;
Channel ∗ in , ∗o u t ;

i f ( n < n u m i s l a n d s − 1) {
i n = c h a n n e l a l l o c ( s i z e o f ( GA indv ) , 0 ) ;
o u t = c h a n n e l a l l o c ( s i z e o f ( GA indv ) , 0 ) ;
go e v o l v e ( chan , in , out , n + 1 , n u m i s l a n d s ) ;

}

i s l a n d = GA create ( i s l a n d s i z e , t a r g e t ) ;
whi le ( GA evolve ( i s l a n d , m i g r a t i o n r a t e ) )

m i g r a t e ( i s l a n d , n , p r e v i n , p r e v ou t , in , o u t ) ;
c h a n n e l s e n d ( chan , &i s l a n d−>i n d v s [ 0 ] , s i z e o f ( GA indv ) ) ;
GA destroy ( i s l a n d ) ;

}

Listing 2: Populations evolve concurrently in goroutines.

Fig. 4. An example of migration between four islands of a parallel genetic
algorithm. Individuals are exchanged over channels in two steps: (1) odd
numbered islands send to even numbered neighbors, and (2) even numbered
islands send to odd numbered neighbors.

solutions, and our goal is to find the string with the fitness

value 0.

Listing 2 shows the code to evolve an island. The GA *

procedures to create, evolve, and destroy a population are not

specific to the SCC but part of our generic GA implemen-

tation.2 Islands are created one after another, each in a new

goroutine. The main thread of the program starts the evolution

by allocating a channel chan, on which the solution will be

delivered, and creating the first goroutine with

go e v o l v e ( chan , NULL, NULL, 0 , n u m i s l a n d s ) ;

Because the main thread cannot run goroutines, it will block

until the evolution has finished when it attempts to receive

from chan.

After every migration rate generations, we migrate two

individuals that we pick at random from the current population

to neighboring islands. To exchange individuals between two

islands a and b, we need two channels: one for sending

individuals from a to b, the other vice versa for sending

individuals from b to a. Every island other than the first and

last has two neighbors and, thus, four channel references to

communicate with its neighbors.

2The core of the GA uses tournament selection, one-point crossover of
selected individuals, and random one-point mutation of offspring individuals.
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Fig. 5. Speedup with multiple islands over the sequential execution with one
island. The total population across all islands has a size of 1280 (island size
= 1280 / number of islands). The migration rate is two individuals every ten
generations.

Figure 4 illustrates what happens during migration. The

example shows four islands numbered from 0 to 3 and the

channels between them. Migration is a two-step process.

We use unbuffered, synchronizing channels, which require a

rendezvous between sender and receiver. First, odd numbered

islands send their individuals, while even numbered islands

receive in the matching order. Then the process of sending

and receiving is reversed.

Figure 5 shows the speedups we have measured for a fixed

population size of 1280.3 Sequential execution refers to the

case where we evolve only one island, so everything runs

inside a single goroutine. When the number of goroutines

exceeds the number of available worker threads, goroutines

are multiplexed onto worker threads. Up to the total number

of cores (48), we make sure that every new goroutine runs

on a separate core, so that goroutines actually run in parallel

(though the runtime doesn’t allow us to control on which

core a goroutine starts execution). Creating more goroutines

than we have cores is no problem; the runtime scheduler

switches between goroutines whenever active goroutines block

on channels during migration.

The toy problem is simple enough that we don’t actually

need a sophisticated GA that migrates individuals between

islands in order to maintain genetic diversity. The same algo-

rithm leaving out migration and instead just switching between

goroutines after every migration rate generations achieves

even higher speedups.

VI. CONCLUSION

We have presented an implementation of goroutines and

channels, the building blocks for concurrent programs in the

Go programming language. Both Go and the SCC share

the basic idea of communicating and synchronizing over

messages rather than shared memory. The Go slogan “Do

3SCC in default configuration: cores running at 533 MHz, mesh and DDR
memory at 800 MHz (Tile533 Mesh800 DDR800).

not communicate by sharing memory; instead, share memory

by communicating” is a good one to keep in mind when

programming the SCC. Communication over channels is akin

to message passing, but channels are much more flexible

in the way they serve to synchronize concurrently executing

activities.

Channels can be implemented efficiently using the available

hardware support for low-latency messaging. However, prob-

lems are likely the small size of the on-chip memory and the

small number of test-and-set registers. The size of the MPB

(basically 8 KB per core) limits the number of channels that

can be used simultaneously, as well as the size and number

of data items that can be buffered on-chip. With only 48

test-and-set registers at disposal, allocating many channels

can increase false contention because the same test-and-set

locks are used for several unrelated channels. As a result,

communication latency can suffer. We could support a much

larger number of channels in shared off-chip memory, trading

off communication latency, but frequent access to shared off-

chip DRAM could turn into a bottleneck by itself.
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Performance of RDF Query Processing on the Intel

SCC
Vasil Slavov, Praveen Rao, Dinesh Barenkala, and Srivenu Paturi

Abstract—Chip makers are envisioning hundreds of cores in
future processors for throughput oriented computing. These
processors, called manycore processors, require new architectural
innovations for scaling to a large number of cores as compared
with today’s multicore processors. We report an early study
on the performance of RDF query processing on a manycore
processor. In our study, we use the Intel SCC, an experimental
manycore processor from Intel Labs. This processor has new
architectural features, namely, 48 Pentium cores, a high speed,
on-chip mesh network to communicate between cores and access
memory controllers, on-chip message passing buffers for high
speed message passing, and software controlled fine-grained
power management. We classify queries based on their I/O
footprint and study the impact of two standard models, namely,
task and data parallel programming models. Based on our
experiments with synthetic and real RDF datasets on the SCC, we
conclude that the task parallelism model provides an immediate
way to boost the performance of RDF query processing.

I. INTRODUCTION

Chip makers are envisioning hundreds of cores in future

processors for throughput oriented computing. In throughput

oriented computing, we expect abundant parallelism oppor-

tunities in the workload, and aim to achieve high throughput

using a large number of simple cores, while compromising the

latency on individual cores [1]. A processor with such large

number of cores is called a manycore processor. The cores

may be homogeneous or heterogeneous. New architectural

innovations for faster on-chip communication and efficient

power management are necessary to scale to a large number

of cores as compared with today’s multicore processors.

In recent years, a few manycore prototypes have emerged

(e.g., 80 core processor called Polaris [2], Larrabee [3], Intel

Single-chip Cloud Computer (SCC) [4]). Of particular interest

to us is the Intel SCC, an experimental manycore processor

from Intel Labs. This processor has new architectural features,

namely, 48 Pentium cores, a high speed, on-chip mesh network

to communicate between cores and access memory controllers,

on-chip message passing buffers for high speed message pass-

ing, and software controlled fine-grained power management.

In this work, we attempt to understand the benefits and

limitations of the SCC for parallel RDF query processing. RDF
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(Resource Description Framework) is a popular language for

representing data on the Web [5]. It enables the interchange

and machine processing of data by considering its seman-

tics. The essence of RDF lies in the notion of representing

any fact as subject, predicate, and object. Formally, RDF

represents resources as a directed, labeled graph where a

pair of adjacent nodes denotes two things and the directed,

labeled edge represents their relationship. The source node

denotes the subject; the sink node denotes the object; and

the edge label is the predicate (or property). This “subject-

predicate-object” relationship is commonly referred to as an

RDF triple. SPARQL is a popular query language for RDF

graphs [6]. Using SPARQL, complex graph pattern queries

can be expressed on individual RDF graphs as well as across

multiple RDF graphs.

In recent years, the RDF data model has become in-

creasingly important in domain-specific applications and the

WWW. Through RDF technologies, one can reason over

semantic data, which is highly appealing in domains such as

healthcare, defense and intelligence, biopharmaceuticals, and

so forth. With the rapidly growing size of RDF datasets (e.g.,

DBPedia [7], Billion Triples Challenge [8]), there is a pressing

need for high performance RDF processing tools. With the

emergence of manycore processors, it is natural and timely to

ask whether a manycore processor can boost the performance

of RDF query processing – through parallel processing. To

the best of our knowledge, there is no published work in this

area. Recent studies on the Intel SCC have focused on low

level aspects such as on-chip message passing performance,

memory access latency, and power and energy consumption

on benchmarks from high performance computing [4], [9].

In our study, we adopt standard task parallel and data par-

allel programming models for parallel RDF query processing.

We categorize RDF queries on real and synthetic RDF datasets

into two different query workloads based on their I/O footprint

– one with small I/O footprint queries and the other with

large I/O footprint queries. We study the effect of inter-query

parallelism via the task parallel programming model on these

workloads. We also study the effect of intra-query parallelism

via the data parallel programming model on these workloads.

The rest of the paper is organized as follows. We present

background and related work in Section II; we present the

methodology of our study in Section III; we present the

empirical findings in Section IV; and we conclude in Section V

with a note on future work.

II. PRIOR WORK ON RDF QUERY PROCESSING

Today, there are a number of open-source and commercial

tools for storing and querying RDF graphs. These tools either
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store and process RDF in main-memory, use an RDBMS,

or a native RDF database. The popular approach has been

to use relational database systems for storing, indexing, and

querying RDF [10], [11], [12], [13], [14], [15]. Abadi et

al. proposed a vertical partitioning approach and leveraged a

column-oriented DBMS for achieving an order of magnitude

performance improvement over previous techniques [16].

RDF-3X [17] and Hexastore [18] demonstrated that storing

RDF data in a single triples table and building exhaustive

indexes on the six permutations of (s, p, o) triples can sig-

nificantly outperform the vertical partitioning approach [16]

and also support a larger class of RDF queries efficiently.

Recently, BitMat [19] was proposed to overcome the overhead

of large intermediate join results in RDF-3X and Hexastore

when queries contain low selectivity triple patterns. (Low

selectivity implies large result set size.)

There are some RDF stores that operate in shared-nothing

clusters (e.g., YARS2 [20], 4store [21], Clustered TBD [22])

by hashing triples/quadruples and distributing them on differ-

ent nodes in the cluster. Parallel query processing is performed.

The scalability of these approaches has been demonstrated on

small sized clusters. Weaver et al. [23] have studied RDF

query processing on supercomputers. More recently, tools for

data intensive computing such as Apache Hadoop and Pig

have been used for query processing and analytics over RDF

data [24], [25], [26]. These approaches are more suitable for

batch processing of queries. A few researchers have focused

on parallel RDF reasoning [27], [28]. More recently, Huang et

al. , developed parallel RDF query processing techniques for

large RDF graphs [29].

On the Intel SCC, Vidal et al. , studied the parallelization

of an AI automated planner using a hash-based distribution

of tasks [30]. Petrides et al. , studied the performance of

relational decision support queries on the SCC [31]. However,

none of the previous work has studied the performance impact

of parallel RDF query processing on the Intel SCC.

III. OUR METHODOLOGY

In this section, we introduce our methodology for parallel

RDF query processing on the SCC. Our first approach is to

express inter-query parallelism via the task parallel program-

ming model. Our second approach is to express intra-query

parallelism via the data parallel programming model. While

we adopt standard techniques for task and data parallelism,

these techniques provide good insights into the benefits and

limitations of the Intel SCC for RDF query processing. The

query workloads we study are I/O bound in nature, unlike prior

work on SCC [4], [9], which focused on high performance

computing benchmarks. We consider two different types of

query workloads: one that has relatively smaller I/O footprint

and the other that has relatively larger I/O footprint.

A. Message Passing Interface

We use the popular Message Passing Interface (MPI) for

writing parallel programs. MPI contains a standard library of

routines for writing portable message-passing based programs.

The MPI routines that we used for the task parallel and data

parallel programming models are listed in Table I. MPI pro-

grams essentially create a collection of processes. MPI Send

and MPI Recv allow a process to exchange messages with

another process (point-to-point communication); MPI Barrier

enables processes to synchronize at certain points during

execution; and MPI Bcast, MPI Scatter, and MPI Gatherv are

collective communication operations, which allow a process to

communicate with a group of other processes.

B. Impact of Granularity

In parallel computing, granularity denotes the ratio between

the amount of computation to the amount of communication.

In fine-grained parallelism, we break a problem into relatively

smaller sized computation tasks and therefore, may require

more frequent communication between processors. In coarse-

grained parallelism, we break a problem into relatively larger

sized computation tasks and therefore reduce the frequency

of communication between processors. However, fine-grained

parallelism enables better load balancing than coarse-grained

parallelism. But it may increase communication cost and

synchronization overhead. By design, Intel SCC provides a

high speed, on-chip network to enable fast communication

between cores. Therefore, we attempt to partition the tasks as

fine-grained as possible in our experiments. Because the query

workloads we study are I/O bound, we use the I/O footprint

to characterize the granularity of a task.

MPI routines Usage

MPI Send Is called when a process wants to send a
message in its local buffer to another process

MPI Recv Is called when a process wants to receive a
message from another process

MPI Barrier Is called by a process to enter a barrier

MPI Bcast Is called by a process to broadcast the
message to all processes in the group

MPI Scatter Is called by a process to scatter an array of
data items to other processes

MPI Gatherv Is called by all processes in the group
(one receiver, multiple senders) so that
the receiver can collect different sized
messages from the senders synchronously

TABLE I
MPI ROUTINES USED

C. Task Parallel Programming Model

We express inter-query parallelism via a straightforward

task parallel programming model. Each query is regarded as

a task. Our model is as follows. On one core, we run the

master and on the other cores, we run workers. Algorithm 1

describes the set of actions performed by the master and

workers. Lines 1-1 denote the actions taken by the master.

Lines 1-1 denote the actions taken by a worker. The master

maintains a single task pool. Once the master and workers

have started (as MPI processes), each worker sends a message

to the master. The master responds to a worker with a query

from the task pool. The worker then executes the query locally

on the index. (The index is constructed over the entire dataset

and is shared by the workers.) Once completed, the worker
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Algorithm 1: Task parallel programming model

proc @Master()
Create a query pool from a list of SPARQL queries to1:

process
while query pool is not empty do2:

MPI Recv(workerid)3:

Remove a SPARQL query q from the pool4:

MPI Send(workerid, q)5:

execute MPI Barrier6:

end
proc @Worker()
while true do7:

MPI Send(master) to request a query8:

q ← MPI Recv(master)9:

if q == EOF then10:

break11:

else
Execute q locally using the index12:

execute MPI Barrier13:

end

repeats the process of requesting and executing queries from

the master until the master informs that there are no more

queries to execute. Once the master and workers reach the

barrier, the task pool has been completely processed.

D. Data Parallel Programming Model

We express intra-query parallelism via a straightforward

data parallel programming model. The task of processing a

query on the entire dataset is broken down into subtasks, where

each subtask consists of executing the query on a different

partition of the dataset. Our model for data parallelism is as

follows. First, we partition the underlying RDF graph into

smaller graphs. We do this by extracting weakly connected

directed subgraphs and applying standard graph partitioning

techniques if necessary (e.g., METIS [32]). If graph partition-

ing is applied, then we aim to minimize the number of cut

edges. We replicate the cut edges in the partitions. (We ignore

the directionality of the edges in the graph while partitioning

and assume each edge has unit weight.) In our approach,

we may miss results. While overcoming this is a non-trivial

research challenge, our goal here is to test whether using

partitioned indexes on multiple cores during query processing

can provide good speedup for the best case scenario.

Similar to the task parallelism approach described earlier, on

one core we run the master, and on the others we run workers.

The master selects a query and broadcasts it to the workers and

also provides each worker with a bucket id to use during query

processing. Each worker executes the query locally on the data

in the specified bucket. The partial results are returned to the

master. Collecting the results can be done either by sending

multiple messages one at a time to the master or using the

collective operation MPI Gatherv. Algorithm 2 describes the

steps involved. The master and the workers reach a barrier

before the next query is processed.

IV. PERFORMANCE EVALUATION

We used RDF-3X [17], a state-of-the-art RDF query pro-

cessing engine in our evaluation. RDF-3X was implemented in

Algorithm 2: Data parallel programming model

proc @Master()
foreach SPARQL query q do1:

Let Bid[ ] denote an array of bucket ids2:

MPI Scatter(Bid[ ]) /* Send a different bucket id to3:

each worker */
MPI Bcast(q) /* Send the same query to each worker4:

*/
MergeResults()5:

end
proc @Worker()
while true do6:

p ← MPI Scatter() /* A worker receives one bucket7:

id */
q ← MPI Bcast() /* Every worker receives the same8:

query */
Execute q locally on the index for bucket p9:

MergeResults()10:

end
proc MergeResults()
if Master then11:

Collect results from workers using multiple12:

MPI Recv or single MPI Gatherv
else

Send results to master using multiple MPI Send or13:

single MPI Gatherv

execute MPI Barrier14:

end

C++ and was compiled to run on the SCC using a 32 bit GCC

compiler. The SCC cores ran Linux and had a NFS mounted

file system where the indexes were stored. We did not modify

the memory organization/configuration of the SCC and used

the default setting.

We implemented the task and data parallel programming

models described in Algorithms 1 and 2 using RCKMPI, a

modified MPICH2 for the Intel SCC [33]. RCKMPI uses the

message passing buffers (MPBs) in the SCC to allow low

latency high bandwidth message passing. The SCC platform

was initialized to run with tile frequency of 800 MHz, mesh

frequency of 800 MHz, and memory controller frequency of

800 MHz.

A. Dataset and Queries

We used two real datasets, namely, YAGO2 [34] and

Uniprot [35]. YAGO2 is a semantic knowledge base de-

rived from Wikipedia, WordNet, and Geonames. Uniprot is a

comprehensive resource for protein sequence and annotation

data. We also generated a synthetic dataset using the Lehigh

University Benchmark (LUBM) [36]. The ontology for this

dataset is based on a university domain.

Note that the SCC cores generate 32 bit addresses. RDF-

3X leverages memory mapping of index files and therefore,

recommends 64 bit processors for indexing and querying large

RDF datasets. To cope with the 32 bit addressing on the SCC,

we indexed a set of triples in each dataset such that the index

size was at most 2GB in size, a limit set by the underlying

OS. This ensured that RDF-3X successfully ran the queries

on the SCC. For YAGO, we indexed 27,331,797 triples; for

Uniprot, we indexed 46,972,851 triples; and for LUBM, we
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Query Dataset I/O Type % Serial

footprint CPU time

QY1 YAGO 14,756 KB small 29 4.73 secs

QY2 YAGO 15,004 KB small 40 9.23 secs

QY3 YAGO 22,832 KB small 29 6.51 secs

QY4 YAGO 33,492 KB small 21 9.27 secs

QY5 YAGO 216,564 KB large 22 82.65 secs

QY6 YAGO 272,848 KB large 30 120.08 secs

QY7 YAGO 332,944 KB large 43 218.43 secs

QL1 LUBM 2,668 KB small 25 1.4 secs

QL2 LUBM 3,132 KB small 35 1.47 secs

QL3 LUBM 9,804 KB small 19 3.5 secs

QL4 LUBM 636,204 KB large 32 299.99 secs

QL5 LUBM 673,924 KB large 29 206.58 secs

QU1 Uniprot 4,468 KB small 39 2.08 secs

QU2 Uniprot 10,344 KB small 39 6.46 secs

QU3 Uniprot 48,020 KB large 31 19.39 secs

QU4 Uniprot 62,188 KB large 19 15.48 secs

QU5 Uniprot 166,808 KB large 17 43.51 secs

TABLE II
INITIAL EVALUATION OF QUERIES

indexed 35,612,176 triples. (The SPARQL queries used for the

experiments are listed in a technical report [37].)

B. Query Workload Classification

The queries used in our evaluation are I/O bound in na-

ture. Using the iostat command, we measured the I/O

footprint of each query. (We dropped the file system buffer

cache before running each query by issuing echo 3 >

/proc/sys/vm/drop_caches.) Based on the I/O foot-

print, we classified the queries into two categories, small

and large. Queries that were classified small had relatively

smaller I/O footprint. Queries that were classified large had

relatively larger I/O footprint. Table II shows the queries and

their classification after running each query serially. (The block

size used by the filesystem was 4096 bytes.) In addition, the se-

rial time (on a single core) and the % CPU utilization for each

query is shown. Queries that had higher CPU utilization (e.g.,

QY7), typically returned more results. Note that internally

RDF-3X stores long string literals in a mapping dictionary,

and uses ids in the indexes. At the end of query processing,

it maps back these ids to literals using the dictionary. For

queries returning large number of results, this cost of mapping

becomes non-negligible [17].

C. Evaluation Metrics

We measured the effectiveness of parallel RDF query pro-

cessing by computing the speedup and efficiency as the number

of available cores was increased. Suppose Ts is the time taken

to execute a workload of SPARQL queries on a single SCC

core. Suppose Tp is the time taken to execute the queries

in parallel (using either data or task parallel programming

models) on n SCC cores. (On n cores, we run one master

and n− 1 workers.) The speedup on n cores is computed by

the ratio Ts

Tp

; the efficiency on n cores is computed by the ratio
speedup

n
.

D. Data Partitioning Approach

For the data parallel programming model, we partitioned a

dataset depending on how many cores were available to run

the workers. (Note that partitioning was done once before

executing all the queries.) Each worker was assigned one

partition and used the index for that partition during query

processing. Different approaches were followed for each of

the three datasets. The main goal was to assign the triples

corresponding to weakly connected directed subgraphs in the

RDF graph into buckets. For LUBM, as the generator produced

separate RDF files, we grouped the triples from one file and

placed it in a bucket. All the files were distributed across the

buckets in a round-robin fashion. For Uniprot, we had one

single XML/RDF file, and we created fragments of this XML

file at points where a new protein was described. The triples

from each fragment were stored together in a bucket. All the

fragments were distributed across the buckets in a round-robin

fashion.

The YAGO2 dataset was available in N-Triples format. First,

we extracted graphs of a particular type from the dataset,

which we call star-shaped graphs. A star-shaped graph is

a weakly connected directed graph, where the degree of all

vertices except one is exactly 1. All the triples from a star-

shaped graph were put into a bucket. On the remaining non-

star graphs, we ran the METIS [32] algorithm to partition the

graphs. After obtaining n partitions, we assigned the triples for

each partition into one bucket. (We replicated the cut edges in

each partition.) As mentioned earlier, our approach may miss

results.

E. Results

We focus on four possible combinations of workload and

parallel programming models, namely, ST (small I/O footprint,

task parallelism), LT (large I/O footprint, task parallelism),

SD (small I/O footprint, data parallelism), and LD (large I/O

footprint, data parallelism). We will refer to these as the ST,

LT, SD, and LD models in subsequent discussions. Note that

all I/O requests go through the MCPC connected to the SCC

platform via the PCIe bus. We measured wall clock time by

ensuring a cold cache scenario. (We dropped the file system

buffer cache before a query was executed on a core.)

1) The ST Model: The query workload for each dataset

consisted of queries marked small in Table II. The task pool

consisted of these queries put in order and scaled by a factor

of 100. (For example, the task pool for YAGO consisted of

queries QY1, QY2, QY3, QY4, . . . , QY1, QY2, QY3, QY4,

. . . .) Figure 1(a) shows the speedup obtained for parallel RDF

query processing using Algorithm 1. On 48 cores (1 master +

47 workers), a promising speedup of 34.92, 32.74, and 32.27

was obtained for YAGO, LUBM, and Uniprot, respectively.

Figure 1(b) shows the efficiency. For all three datasets, the

efficiency reached close to 70% on 48 cores. The tasks were

relatively fine-grained due to their small I/O footprints and

were well distributed across the workers. There was effective

load balancing of tasks across the workers resulting in good

speedup and efficiency. (This is evident from the mean and

standard deviation of the number of tasks processed by each
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Fig. 1. Results for the task parallel programming model

worker as shown in Figures 2(a) and 2(b).) As shown in

Figure 4, the average CPU utilization varied marginally (from

2 to 48 cores), indicating negligible I/O contention in ST.
2) The LT Model: The query workload for each dataset

consisted of queries marked large in Table II. Similar to

ST, the task pool consisted of these queries put in order and

scaled by a factor of 33, 50, and 33 for YAGO, LUBM,

and Uniprot, respectively. Figures 1(c) and 1(d) show the

speedup and efficiency for parallel RDF query processing

using Algorithm 1. On 48 cores, the speedup ranged between

25 to 30 for the three datasets. This is promising given that

the queries had larger I/O footprint than those used in the ST

model. The load was fairly well distributed across the workers.

(See Figures 3(a) and 3(b).) As shown in Figure 4, the drop in

the average CPU utilization (from 2 to 48 cores) was higher for

LUBM and Uniprot as compared to YAGO, indicating higher

I/O contention for these datasets.
3) The SD Model: The query workload for each dataset

consisted of queries marked small in Table II. Each query

was run multiple times using Algorithm 2. Although the data

parallel approach created fine-grained tasks for a query with

increasing number of cores, there was load imbalance as many

of the workers returned no results on their partitions. This

resulted in poor speedup and efficiency as the number of cores

was increased. We show the plots in Figures 5(a) and 5(b).
4) The LD Model: The query workload for each dataset

consisted of queries marked large in Table II. Each query

was run multiple times using Algorithm 2. As more cores were

used to process a query, I/O contention became an issue. This

is evident from the fact that the average CPU utilization for

LD was lower than that for LT on all datasets. As a result, poor

speedup and efficiency were obtained. We show the plots in

Figures 5(c) and 5(d).
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F. Summary of Results on the SCC

• The task parallel programming model yielded good

speedup and efficiency for parallel RDF query processing. This

was true for both small I/O and large I/O footprint queries. The

ST model, however, gave better results than the LT model.

• Although the data parallel programming model created

fine-grained tasks, the speedup and efficiency for both the SD

and LD models were poor due to either load imbalance or

I/O contention. Further research is necessary to address these

issues.

V. CONCLUSIONS AND FUTURE WORK

We have presented an early study of the performance

of parallel RDF query processing on the Intel SCC, an

experimental manycore processor. Using real and synthetic

RDF datasets, we studied how inter-query parallelism (via
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Fig. 5. SD and LD models

the task parallel programming model) and the intra-query

parallelism (via the data parallel programming model) affected

the performance of RDF query processing. We conclude that

the task parallel model provides an immediate way to boost

the query processing performance. In the future, we plan to

develop new RDF query processing strategies to overcome

the challenges posed by the data parallel programming model.

We would also like to study the effect of dynamic voltage

and frequency scaling of the SCC cores on the performance

of RDF query processing.
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Abstract—On many-core processors that do not provide hard-
ware cache coherence, using shared memory in parallel com-
putations is challenging. Reverting to pure message passing
would avoid consistency issues, but replicating large shared
datasets by messages is less efficient than accessing them di-
rectly through shared memory. The TACO-MESH framework
provides lightweight remote method calls and shared objects with
software-managed consistency. This paper presents experience
from porting a graph partitioning algorithm to the framework.
A performance evaluation on the experimental Intel SCC pro-
cessor, which has no hardware cache coherence, shows that
parallelization can be efficient despite the overhead of software-
level consistency management.

Index Terms—many-core, shared memory, cache coherence,
graph partitioning

I. INTRODUCTION

The number of cores in current many-core architectures is

increasing while the performance of most cores decreases in

favor of smaller cores [1]. Technically, many-cores are hybrids

combining aspects of distributed as well as shared memory

systems [2], because internal networks connect the cores to

exchange messages between them and connect to memory

modules that provide direct access to shared memory.

Many architectures employ data and instruction caches

distributed over the network to reduce access latencies and

memory traffic by exploiting locality. On cache coherent

architectures (e.g. Intel MIC [3], and Tilera [4]), the caches

implement a coherence protocol in hardware. However, co-

herence protocols face significant scaling issues compared to

message passing [5], [6], [7], [8]. The SCC processor is an ex-

perimental concept vehicle created by Intel Labs as a platform

for many-core software research. All of its cores have private

caches, but these do, deliberately, not provide hardware-level

coherence [9]. Instead, message passing between cores can

be used to implement software-level coherence. At the other

extreme end are architectures without caches that instead use

large shared on-chip memories and a huge number of simpler

cores (e.g. IBM Cyclops64 [10], Adapteva [11], and some

stream processors in GPUs).

The SCC and other architectures without hardware cache

coherence can be treated like distributed systems to work

around this limitation. However, passing large messages inside

shared memory systems is inefficient, because composing and

receiving large messages evicts large portions of the sender’s

and receiver’s caches. Finally, the message data is just copied

from and to main memory and will also compete for space

in shared caches (e.g. on Intel MIC). Consequently, parallel

programming models and frameworks for many-cores should

avoid large unnecessary data copies. Instead, software layers

that manage the cache coherence for actual shared data should

be integrated into the programming models.

TACO [12] provides a partitioned global address space, re-

mote method invocations, and collective operations; it features

a highly efficient messaging backend on the SCC. [13]. On top

of that, MESH [14], a framework for memory-efficient sharing,

introduces direct access to shared data and a consistency layer

for shared objects while using TACO for coordination.

This paper presents experience gained from porting central

parts of a complex graph partitioning software for modular-

ity clustering [15] to the SCC. The next section introduces

the graph partitioning problem, the local search algorithm,

and the employed graph data structures. We combined the

graph data structures with the MESH consistency layer and

extended MESH with SCC-specific software-level cache coher-

ence, which are described in Section III. Section IV discusses

results obtained from micro-benchmarks and the parallelized

graph partitioning algorithm. Finally, we discuss related work

and provide concluding remarks.

II. MODULARITY GRAPH PARTITIONING

Graph partitioning can be applied in the analysis of social,

biological and technical networks and is, in this context, also

known as graph clustering. For example, persons in social

networks can be modelled by graph vertices, edges connect

pairs of related persons, and edge weights quantify how

often both persons interacted in the past. Graph clustering

is searching groups of highly related vertices and, in our

particular application, a partitioning of the vertices with dense

connections within groups and sparse connections in between.

The modularity by Newman and Girvan [16] is a popular

quality measure that directs the search for interesting vertex

partitions. It is based on the difference between the fraction of

observed within-group edges and the expected fraction. The

expected fraction is based on a stochastic model where the

end-vertices of edges are chosen at random, and the probability

that an end-vertex of an edge attaches to a particular vertex

is proportional to the vertex weight [17]. Compared to other

clustering quality measures, the modularity is still easy to

calculate. Nevertheless, in contrast to the more traditional

quality measures for load-balancing, modularity has data

dependencies that disallow some well-known performance

optimizations. Thus, the modularity is a good representative

for a broader class of graph partitioning problems.
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1: find best v,D,∆Qv,D over all v ∈ V
by collective operation over all workers

2: if ∆Qv,D ≤ 0 then exit loop

// move vertex v from partition C to D:

3: if D is empty then create new partition D
4: set current partition of v to D
5: update partition weights w(C) and w(D)
6: increment partition size of D
7: decrement partition size of C
8: if size of C is 0 then delete partition C

Figure 1. A step of the globally greedy vertex moving algorithm.

The next subsection introduces a simple parallel graph

partitioning algorithm that will be used for the evaluation

of the software-level consistency management. The second

subsection describes the data structures used by this algorithm.

A. Globally Greedy Vertex Moving

The problem of finding a clustering with maximum modu-

larity for a given graph is NP-hard [18], and existing exact

algorithms are usable only up to a few hundred vertices.

In practice, modularity is almost exclusively optimized with

heuristic algorithms, and experimental results indicate that

relatively simple algorithms based on local search can be

highly efficient and effective (e.g. [15]).

One of the simplest local search algorithms is globally

greedy vertex moving as summarized in Figure 1: In each

step, the modularity improvement ∆Qv,D of moving vertex

v to partition D is computed for all pairs of vertices and

partitions (line 1) and the globally best move is applied by

modifying the partitioning data (lines 3–8). This is repeated

until the best move does not increase the modularity (line

2). Faster algorithms exist that are similarly effective but,

unfortunately, also more complex. We chose the simplest

algorithm to focus on the consistency management of the

shared data. Our parallel algorithm uses a set of worker cores

to parallelize the computation of ∆Q by dividing the vertex set

into equally sized subsets. In each step, the workers compute

the improvements of their vertices and return v, D, and ∆Qv,D

of their best move. Then, the master worker selects and applies

the best of these moves.

Moving a vertex v ∈ V from its current partition C ⊆ V

to another partition D ⊆ V increases the modularity by

∆Qv,D = 2
f(v, D)− f(v, C\v)

f(V, V )

− 2
w(v)w(D)− w(v)w(C\v)

w(V )2
,

where f(A,B) is the sum of edge weights between two

vertex sets and w(A) is the sum of vertex weights in the

vertex set. From an algorithmic perspective, this means that

the modularity of a partitioning can be quickly updated after

each move without recomputing it from scratch. The partition

weights w(C) and w(D) of source and destination partition

can be updated after each vertex move by using the weight

w(v) of the moved vertex.

Vertex Set
with indices 0,...,N

Edge Set
with indices 0,...,M

0 Nu

e

Map: vertex to first edge

Map: vertex to edge count

0 Nu

5

Map: edge to target vertex

0 Me+0

v1

e+4...

v5

Figure 2. A graph with N vertices, M edges, and three mappings that
connect edges and vertices. Highlighted in the mappings is the representation
of 5 edges that start in the vertex u and connect to the vertices v1 . . . v5.

Moreover, the search space is restricted, because moving

a vertex to a non-adjacent partition (f(v,D) = 0) never

increases the modularity more than moving it to a new, pre-

viously empty partition (w(v)w(D) = 0). However, the edge

weights f(v,D) must be recomputed in each step because

storing and updating them is less efficient. At each vertex v,

the algorithm scans over its adjacent vertices u and increments

f(v, C(u)) by f(v, u), where C(u) is the partition containing

vertex u. A sparse mapping from partitions to accumulated

edge weights is used to store f(v, C(u)) and is initialized with

zero weights. Internally, each worker uses an own mapping

instance for f(v,D), but all workers share the graph, weights,

and the current partitioning. Altogether, finding the globally

best move requires a constant time per edge and applying a

move costs constant time.

B. Data Structures for Graph Partitioning

The original graph partitioning software [15] had to deal

with many different algorithms that stored different data

about vertices, edges and partitions internally. To handle this

diversity, the concept of Index Spaces and Mappings was

introduced to separate navigation through structures from

the algorithm’s internal data. In general terms, Index spaces

represent a collection of indices and methods to navigate over

these indices, while mappings are key-value stores that use

the indices as keys. This separation allows algorithms to reuse

existing spaces and mappings and to create own mappings for

internal data on top of these spaces.

Figure 2 depicts one of many methods to model a static

graph data structure. The graph has two spaces, namely a

set of vertices and a set of edges, and three mappings to

connect vertices and edges. The actual index values of the

vertices and edges are irrelevant to the algorithms because they

are passed to the mappings transparently and only there the

index is used to retrieve the corresponding data value. In case

the mappings are implemented with arrays, these will work

most efficiently, when the vertices and edges are numbered

consecutively beginning from zero.

Our implementation is based on the class RangeSpace

as fundamental index space. It represents a continuous set of

indicies from zero to an upper bound and provides a forward

iterator as well as methods to increase the upper bound. The

mappings are implemented with arrays. Each time the size of
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Figure 3. Composition of the graph and partitioning structures. Boxes with
round corners are index spaces and all other boxes are mappings. The arrows
point to the key space of the mappings.

a space is increased by creating a new index, it is necessary

to also resize the arrays of all dependent mappings, which is

automated with an observer pattern. In order to minimize the

resizing overhead, the maps reserve larger arrays and the space

notifies the maps only when the smallest reserve is depleted.

More advanced spaces, for example subsets and graphs, are

implemented by using RangeSpace and helper mappings.

Figure 3 gives an overview of the structures necessary to

represent the graphs, vertex partitions, and weights that are

used by the graph partitioning algorithm. During the search

step, none of these data structures will be modified. To apply

the best move, the set of partitions, the mapping from vertices

to their current partition, and the partition weights of the

source and destination partition will be modified.

III. SOFTWARE-LEVEL CACHE COHERENCE

The MESH framework [14] provides basic facilities for

shared memory and shared objects. Its implementation uses

the TACO framework [12] to coordinate memory allocation

and consistency events. The first subsection describes how we

supply MESH with shared memory on the Intel SCC. The

second subsection introduces software-level consistency for

shared objects and discusses three SCC-specific implementa-

tions. Finally, the interactions between shared objects, index

spaces, and mappings are discussed in the last subsection.

A. Shared Memory on the Intel SCC

The memory management of MESH is based on separate

allocators for shared and core-private physical memory pages

and a global allocator for logical pages with aligned addresses

over all cores. While most of these allocators are platform

independent, a SCC-specific allocator for shared physical

memory is necessary. The SCC consists of 32-bit Pentium

cores and, thus, each core can address only 4GB of memory.

A translation table (LUT) between each core and the on-

chip network translates from physical to system addresses

that provide a larger address space and contain the network

destination (e.g. select one of the four memory controllers).

The LUT has 256 entries of 16MB blocks and around 40

entries provide 640MB of private memory for each core.

To acquire direct access to shared memory, it is necessary

to make some of each core’s private memory accessible to

all cores by remapping unused entries in all LUTs. Intel’s

POPSHM kernel extension provides information about private

memory that can be used for this purpose. We tested which

LUT entries can be used for the remapping. This approach

makes it possible to share 2.5GB of memory between all cores.

The SCC variant of the shared page allocator also provides

means to map pages in cached (DCM), non-cached (NCM) and

write-through (MPBT+WT) mode. Pages in DCM mode use

the core’s L1 and L2 caches and require manual coherence

management. In contrast, the WT mode uses just in the L1

caches and SCC’s write combine buffer to collect writes to a

line before sending the modifications to the main memory.

B. Shared Objects with Consistency Management

Special constructors are used to create shared objects. These

return a sharing pointer that contains the address of the actual

object and the address of its consistency controller objects. The

object is allocated in shared memory but the controllers are

allocated in core-private memory at each core. Sharing pointers

can be passed between cores using remote method calls or

shared memory, because the object resides at the same logical

address on all cores and the controller has an instance at the

same logical address on each core. Immediate access to shared

objects is prohibited. Instead, a temporary access proxy has to

be created, which triggers consistency events on construction

and destruction. The reader proxies provide access only to

non-modifying (const) methods of the shared object, while

writer proxies allow access to all methods. The consistency

events are methods of the consistency controller.

For cache coherence on the SCC it is necessary to invalidate

stale data in the caches manually when acquiring read or

write access. To ensure that modified data is written back to

the main memory before other cores read it, a cache write-

back is necessary when releasing write access. Obviously,

write-back and invalidation is necessary only when the shared

object was actually modified. The next paragraphs present

three approaches to implement this coherence management.

They support multiple concurrent readers, but only a single

non-concurrent writer. Thus, applications have to ensure this

concurrency restriction on their own. The structure of our

graph partitioning algorithm already guarantees this.

The Broadcast (BC) controller has a needs-flush flag on

each core. When acquiring access to its shared object and the

flag is set, the object’s memory range is invalidated in the

cache. When releasing write access, the cache is flushed to

write back all modifications to the main memory and a TACO

collective operation sets needs-flush on all other cores. To save

time the flushing and the collective operation overlap.

In case flushing is much faster than the broadcast, some

time can be saved by starting the broadcast earlier. The Over-

lapped Broadcast (OV) controller achieves this by initiating

the broadcast already when write access is acquired. As a

side-effect, the broadcasts of several modified shared objects

can overlap. However, with this approach additional state data

for the pending broadcast has to be stored in the consistency

controller and the controller could not skip the broadcast if

the object was not actually modified.
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A completely different invalidation mechanism similar to

[19] is used by the Timestamp (TS) controller. Each shared

object has a timestamp (generation counter) that is stored in

the on-chip SRAM of the SCC and the consistency controller

on each core has a copy of the last seen value. When

releasing write access, the object is flushed to write back all

modifications and the object’s counter is incremented.

C. Sharing Index Spaces and Mappings

The graph data is implemented with index spaces and map-

pings (c.f. Section II-B). However, allocating RangeSpace

as a shared object is not sufficient because it contains a

resizable array of pointers to observers (the dependent map-

pings). This array is invisible to the consistency controller

and would be missed when flushing the caches partially.

To solve this, shared objects can inherit from the special

class SharingAware that instructs the consistency controller

to also call type-specific consistency management methods.

RangeSpace uses these to flush the internal observer array.

The mappings use internal data arrays similar to

RangeSpace. They are managed using SharingAware.

Furthermore, all mappings have to register themselves as

observer at their key space by providing a sharing pointer

to themselves. Because a normal shared object does not

know its own consistency controller, the SharingAware

base provides a method to get such a sharing pointer. SCC’s

small 32-bit address space makes it expensive or difficult to

increase the size of arrays. To overcome this, our mapping

implementations split the data array into 4kB chunks and use

a small lookup array to address these chunks. This allows to

increase the maps by adding chunks without moving data.

Three variants of mappings were implemented: The

ChunkedMapDCM uses cached shared memory for all chunks

and the lookup table. The overhead of flushing the relatively

large data chunks is avoided by the ChunkedMapNCM variant,

which still caches the lookup table but not the data chunks.

The third variant, ChunkedMapWT, caches the data chunks

only on the L1 cache using SCC’s MPBT+WT memory mode.

Any communication by message passing will automatically

invalidate cached chunk data and force the write combine

buffer to write the modified data back to the main memory. The

latter two implementations specialize the writer access proxy

to allow write access to the mapping data without triggering

unnecessary consistency events.

Composition, that is shared objects using other shared

objects, yields an interesting situation: Creating a usual access

proxy to the composed object and then calling its methods

will be inefficient because each call would have to acquire

and release access to the other shared objects, triggering a

multitude of consistency management events. To avoid this,

we specialize the access proxies of such objects and move the

methods from the object into the access proxy. For example,

the graph reader access proxy provides the usual methods to

navigate through the graph, but it acquires read access to all

necessary components just once when the proxy is constructed.

Table I
ACCESS LATENCIES TO SCC’S MEMORY (IN CYCLES).

on-chip SRAM off-chip DRAM
NCM MPBT NCM MPBT+WT DCM

w 5 29 11 35 98
g 51–84 78–108 106–137 130–161 107–123
r 58–91 67–97 117–145 123–153 150–174
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Figure 4. Approximate read overhead as observed by a core with concurrent
read accesses to the same controller.

IV. PERFORMANCE EVALUATION ON THE INTEL SCC

The first experiments as presented in the next subsection

concerned the impact of the underlying hardware. The second

subsection presents and discusses scalability results obtained

with the globally greedy vertex moving algorithm on a small

and a large graph. All measurements are based on the clock

configuration with 800MHz cores, 1600MHz on-chip network,

and 1066MHz DDR memory.

A. Shared Memory Performance

Table I summarizes measurements of the memory access

latencies following the WGR cost model [13]. The write over-

head w is the time to issue a write, the write gap g is the time

until the next write can be issued and the read overhead r is

the time it takes to fetch data from the memory. For NCM the

latencies where measured with scalar values (byte, short, int),

while for MPBT, MPBT+WT, and DCM whole cache lines

were used. For DCM write performance measurement the lines

were read before writing to them because the SCC’s caches

have no allocate-on-write. Access to the off-chip memory takes

around two times longer than to the on-chip memory.

To congest a memory controller, an increasing number of

cores read concurrently from the controller. Figure 4 shows

the impact on the read latency and congestion is visible above

three concurrent readers. Up to three cores do not interfere

with each other and, above that, the read overhead increases

linearly. Thus, when spreading the data evenly over all four

memory controllers, at least 12 cores are necessary to utilize

the memory bandwidth. In comparison, the on-chip SRAM can

handle more than 15 cores before congestion is visible [13].

The SCC has no hardware mechanism to flush the L2 cache.

Thus, a system call has to be used to evict lines by reading

other data. The costs of flushing unmodified and modified data

are shown in Figure 5. Up to 128 lines the costs increase

linearly with 8 000 cycles for one line and 300N + 7500 for

N lines. Flushing a 4kB page (128 lines) takes around 47 100

cycles and the entire cache needs 582 000 cycles. Writing back

a modified line requires around 80 additional cycles.
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For comparison, a TACO collective operation over all cores

of the SCC usually completes within 8 000 cycles [13]. Thus,

this cache flushing always takes much longer than the inval-

idation broadcasts and, therefore, the differences between the

three consistency controllers of Section III-B are negligible.

B. Globally Greedy Vertex Moving

For a varying number of cores, the algorithm was applied on

a relatively small graph that represents world trade relations

in the year 1999. The graph has just 66 vertices and 4290

edges [20]. The local search took 64 steps and we measured

the overall time of these steps without the program initializa-

tion and reading the data file. The measurements considered

the three map implementations DCM, NCM, and WT from

Section III-C and a Mix variant, which uses DCM static data

(e.g. vertices, edges, weights) and WT for maps that are

modified by vertex moves (e.g. partitions, partition weights).

To compare the measurements, Figure 6 shows the speedup

factors relative to the DCM variant on a single core. Only the

results with the Broadcast consistency controller are shown,

because the other two controllers were similar. Using only

DCM maps, the local search scales really poorly. This is

probably caused by the huge cache flushing overhead at the

master and the worker cores. With NCM maps better speedups

are achieved because almost all of the cache flushing is

eliminated. However, this variant does not use any caching and

indeed seems to utilize the memory bandwidth when reaching

12 cores. The WT maps improve on this because they use

the L1 caches and achieves speedup 6 with 13–14 cores. The

Mix variant produced the best results with speedup 7 at 15

cores. More importantly, for small core counts the speedup

was consistently better than with the other variants.

Amdahl’s law provides an upper bound to the achievable

speedup. It is based on the parallel runtime T (P ) = Ts+Tp/P
and the speedup T (1)/T (P ), where Ts is the sequential work,
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Figure 7. Speedup with the Patents graph. All speedup factors are relative
to single-core DCM-BC.

e.g. applying the best vertex move, and Tp/P is the parallel

work with P cores, e.g. evaluating the modularity gains of all

vertices. However, overheads impact the speedup, leading to

T (P ) = Ts + Tp/P + Twb + Tinv + αP + β log2(P ) .

After each vertex move, the master worker has to write back

all modifications to the main memory, which costs Twb in

total. Then, all workers invalidate these memory ranges in

their caches with overhead Tinv . Because this flushing is done

in parallel, it can be attributed once to the sequential costs.

The workers might perform some work that is effectively

sequentialized by memory bottlenecks. This can be modeled

by αP because this sequential work increases with the number

of workers. Finally, the workers are invoked in each step

by using a multicast tree, which introduces a logarithmically

growing coordination overhead β log2(P ).
Fitting linear models on the measurements indicated that

the coordination overhead β log2(P ) is negligible, while αP
is necessary to explain the low slope at low core counts. The

NCM, WT and Mix variants eliminate Twb + Tinv , and WT

and Mix reduce αP through caching. To improve the speedup

bound, it is necessary to reduce αP by increasing the memory

bandwidth or reducing the cache misses. The latter requires

caching of more data by using DCM maps, which is only

efficient if the flushing overheads Twb +Tinv can be reduced.

With 66 vertices, the world trade graph is quite small, e.g.

each worker is responsible for just 5 vertices when using 12

workers. Thus, we repeated some of the measurements with

the much larger NBER U.S. patent citations graph, which

has 240 547 vertices [21]. Figure 7 compares the runtime of

the first 500 steps. Here, the task size was large enough to

dominate even the flushing overheads of the DCM variant.

V. RELATED WORK

Two other shared memory mechanisms are available on the

SCC. POPSHM provides a simple put/get copy-based interface

to access shared memory. It does not remap unused LUT

entries but uses a few as read/write buffer in NCM mode. The

SMC library supports allocation of shared pages, changing the

access modes, and provides release consistency with config-

urable consistency domains. Both libraries do not use remote

method invocation mechanisms, which limits their flexibility.

In contrast, we implemented the shared memory management

and consistency control together with the application on top

of a common messaging subsystem.
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Implementing scaleable cache coherence protocols is still

challenging because directories grow with the cache size and

the number of cores [5]. Some try to balance parameters to

reduce the directory size while also keeping the coherence

traffic low [22]. In comparison, we omitted the directories and

used broadcasts at very coarse granularity by exploiting the

algorithm’s structure. Other projects exploit typical sharing

patterns to compress the directories [23], [24]. Software-

level coherence is an interesting alternative because it can

incorporate knowledge about the application at design time

and can have better performance than hardware coherence in

some cases [7]. A promising mixture of both approaches is

the Cohesion memory model of Kelm et al. [6].

VI. CONCLUSIONS

We presented a framework for software-level cache co-

herence on the SCC. A simple parallel graph partitioning

algorithm was used to evaluate the impact of the software-

level cache coherence and the speedups achievable through

parallelization. The experiments showed that considerable

speedups are possible depending on the problem size despite

non-negligible cache flushing overheads. The results could

be improved by better hardware support for manual cache

control. The presented framework would benefit from a write-

back and a write-back-invalidate instruction on logical address

ranges. On architectures with a shared cache level, the write-

backs and invalidations would be necessary only on the

private levels. Porting the data structures from an existing

application was mostly straightforward, but the composed

structures had to be changed considerably to interact efficiently

with the consistency framework. From a software engineering

perspective this might actually not be a drawback, because

moving operations on shared data into the access proxies also

decouples independent types of operations. For example, the

graph initialization methods were implemented in a separate

access proxy.
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Abstract—One-Sided Communication functions have been de-
fined in the Message Passing Interface standard since version
2. Modern implementations of the interface, such as MPICH2,
support One-Sided Communication. This paper presents insights
to the MPICH2 architecture and the implementation of One-
Sided Communication in its low-level CH3 communication mod-
ules. Further, issues for using MPI’s One-Sided Communication
features on the Single-Chip Cloud Computer are presented and
resolved. The paper also presents a comparative scalability study
of an example application both on the SCC and on an InfiniBand
cluster.

I. INTRODUCTION

The Message Passing Interface (MPI) [1] is a com-

monly used programming API to implement parallel appli-

cations. Version 2 of the MPI Standard [2] specifies syn-

chronous, asynchronous, one-sided, and two-sided commu-

nication, where one-sided operations are defined as being

asynchronous by default.

MPI two-sided communication calls are due to the classic

send-recv scheme where each send call must have a match-

ing receive call at the destination. In contrast, One-Sided

Communication (OSC) defines a process interaction mech-

anism where only one process specifies the communication

parameters. The other process (called target) only has to

provide the memory area (called window) and is not required

to call any communication routine.

MPI-2-OSC separates communication from synchronization

and defines so called synchronization epochs. An arbitrary

number of communication calls can be synchronized within

a single epoch. This bundling reduces the need to make

synchronization calls for each transfer. MPI-2 provides several

API calls to open and close such an epoch. Figure 1 shows

some pseudo code of the typical use of one sided and two

sided communication.

The remainder of the paper is organized as follows: First,

an overview of the architecture of MPICH2 and the im-

plementation of MPI’s OSC method in the low-level CH3

devices is presented. Based on this discussion, issues in the

MPI implementation for the SCC are revealed and fixed. The

corrected implementation is then used in Section V to compare

the scaling of an example CFD application both on the SCC

using one- and two-sided communication as well as on an

InfiniBand cluster. The conclusion and an overview of related

work constitute the end of the paper.

Node A Node B

One-sided example:

MPI_Win_Create MPI_Win_Create

MPI_Win_Post MPI_Win_Start

<computation> <computation>

MPI_Put

<computation>

MPI_Win_Wait MPI_Win_Complete

Two-sided example:

<computation>

MPI_Irecv MPI_Isend

<computation> <computation>

MPI_Wait MPI_Wait

Fig. 1. Pseudo code examples of unidirectional asynchronous data exchange
via one-sided and two-sided communication.

II. MPICH2 ARCHITECTURE

MPICH2 is a portable MPI implementation [3]. Its modular

architecture is shown in Figure 2. The methods defined by

the MPI standard are implemented on top of third generation

of the abstract device interface (ADI3) [4]. This layer wraps

around the message transportation device of the target platform

and thereby provides hardware-independence. A downside of

this interface is the huge amount of functions that have to

be implemented for new platforms. To facilitate the adaption

on new hardware platforms the CH3 device was introduced.

This device implements the ADI3 and presents a much sim-

pler interface to so-called channels. The channels implement

the CH3 interface and are responsible to receive and send

messages from resp. to the hardware.

Within an CH3 channel implementation several require-

ments and conventions from the higher layers have to be

considered. First, all MPI processes are considered to be

connected by virtual connections which do not have to man-

ifest in physical connections. Device specific information for

a connection between two processes, a socket e.g., can be

attached to the according virtual connection. If a message is

going the be sent to a remote process, the upper layers pass

a request to the CH3 channel which activates the according

virtual connection. If it is not possible to satisfy the request
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Fig. 2. MPICH2’s layered architecture

immediately, that is the message was not transferred at all or

only a partial transfer was possible, the channel is responsible

to try a retransmission of the unsent part at a later time. This

can be done by adding the request to a queue associated to

the virtual connection.

To send outstanding messages, the CH3 device invokes a

so-called progress engine which must be implemented by the

channel. The implementation checks whether requests have

been enqueued and if so, it tries to send these messages or

even fragments. With the invocation of the progress engine,

the channel must also check for new messages that have been

received by the hardware.

If the channel has detected a new message, it asks upper

MPICH2 layers to create a new receive request based on

the received data. As soon as more data for this request is

received by the channel, it must check whether the request

has been completed by the incoming data. To do so, call-

back functions are invoked. Besides a default completion call-

back function, a request may provide its specific routine that

has to be called by the channel. This notification scheme also

applies to the requests created when sending messages. Due

to the callback mechanism, the decision whether the request

has been completed successfully is not up to the channel itself,

but to the higher MPICH2 layers. The channel implementation

must therefore be aware of changes in the send resp. receive

requests.

III. OSC WITH CH3 DEVICES

MPICH2 does not require a CH3 channel to implement

any specific function to support one-sided communication.

Instead, the only requirements for a fully-functional channel

is to implement some book-keeping functions, four methods

to start sending a new message resp. processing a send request

and one function that represents the progress engine. As the

latter one is responsible for receiving new messages, there are

no explicit receive methods.

With these minimal requirements, a CH3 channel is able to

process send and receive requests issued by point-to-point op-

erations like MPI SEND and MPI RECV as well as collective

routines such as MPI BCAST or MPI GATHER. Moreover,

the functions to be implemented by a channel also enable

the usage of one-sided communication. This is made possible

by the CH3 device which provides an implementation for

the OSC-related functions of MPI resp. the ADI3 layer. This

implementation is based on point-to-point operations. Thus, a

channel device is not required to implement OSC-functions,

since the CH3 device breaks the according calls down to an

appropriate call sequence of point-to-point primitives.

The implementation of the OSC functions in the CH3

device basically relies on a queue. The operations is-

sued by communication calls like MPI PUT, MPI GET

and MPI ACCUMULATE and initial locking methods like

MPI WIN LOCK are stored in the queue. By calling a

final synchronization method, like MPI WIN UNLOCK, the

enqueued operations are sent to the target process by the same

mechanism used for point-to-point communication.

The synchronization calls use this mechanism as well. For

locking a window with MPI WIN LOCK, for example, a

request to lock the window is sent to the target process. After

that, the progress engine is invoked until a message is received

which grants access to the lock.

To address hardware that offers support for OSC, e.g. by

remote direct memory access (RDMA), the CH3 device allows

channels to overwrite the default OSC implementation. This

flexibility is achieved through function pointers within the

internal structure that represents a remote memory access

(RMA) window. During the window creation, any of these

pointers can be overwritten by the CH3 channel implementa-

tion. Thereby, MPICH2 can be instructed to use the channel’s

implementation of OSC synchronization or communication

calls.

IV. OSC SUPPORT ON THE SCC

MPICH2 had been ported to the Single-Chip Cloud

Computer (SCC) by implementing three different CH3 chan-

nels. The port is named RCKMPI and is based on MPICH2

1.2.1p [5]. All of the SCC-specific CH3 channels use shared

memory which is either backed by the message passing buffer

(MPB), the external memory or both. For the latter case,

the memory used for the messages is switched at a constant

threshold. Although the memory used for message transport

differs, the implementation is basically similar: The memory

is partitioned into sections such as each process resp. core

offers dedicated write areas for every other MPI process.

Regarding bandwidth, the channel that uses the MPB delivers

best performance.

As all channels implement the functions required by the

CH3 device, all communication methods are expected to

work. On the one hand, this is actually true for point-to-point

operations. On the other hand, one-sided communication is

not usable with the original RCKMPI implementation. For

instance, the SCC-specific CH3 channels only cover some

basic cases of the MPICH2 test suite. That way, RCKMPI

applications are likely to crash if this communication paradigm

is used.

There are several reasons for this issue. First, the RCKMPI

source code always calls the default message completion

handler defined by MPICH2. Thus, RCKMPI does not ac-

count the case where a special completion call-back function

has been associated with the send request. As those call-

backs are only defined when OSC-related messages should
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be transferred, applications based on RCKMPI will show

unpredictable behaviour when using OSC.

Even if the appropriate call-back is invoked on message

completion, the channel implementation is not aware of re-

quest modifications caused by upper MPICH2 layers. These

modifications are mainly applied when OSC messages are

transferred. As a consequence, even when invoking the com-

pletion method, OSC applications are again likely to crash.

Therefore, the following implementation issues were fixed

for the MPB CH3 channel implementation of RCKMPI: (a)

Invoke the message completion call-back function when send

and receive requests are assumed to be completed. (b) Check

that the call-back handler confirms the completion of the re-

quest. (c) If the call-back signals an incomplete request, further

process the unfinished request. (d) On message reception, copy

its payload back to the according user buffers. The fixed source

code is available to the MARC community [6].

V. EXPERIMENTAL RESULTS

Based on this work, a CFD-like cellular automaton [7] was

used to compare the applications scalability on the SCC with

an InfiniBand cluster. The cellular automaton is a 9-point-

stencil computation. We tested two different versions of the

application: one uses OSC and the other two-sided routines

from the MPI standard. The programs use the communication

patterns shown in Figure 1. The communication is performed

after each time step: every MPI process has to exchange

8 KB of data with its two neighbor processes. The according

messages are sent before the process starts to calculate the

inner values of its field fraction to gain optimal computation-

communication-overlap.

In the experiment, the application was executed with an

increasing number of nodes while the size of the computed

two-dimensional field was fixed. Since there are only 28 nodes

in the InfiniBand cluster, the scaling was only analyzed up to

a number of 28 nodes for both systems. Each node of both

the SCC and the InfiniBand cluster executed a single MPI

process. The runtime of the sequential version is divided by

the runtime of parallel program running on n processors to

obtain the speedup.

A. Experimental Environment

The InfiniBand cluster consists of 28 machines equipped

with two Intel Xeon 5520 CPUs each providing four cores

(Hyperthreading disabled). On each node, 48 GB of DDR3

main memory are installed. The InfiniBand connection is based

on 20 Gb/s Mellanox MHGH19-XTC ConnectXZ cards and a

Mellanox MTS3600R-1UNC switch. Further, OpenMPI 1.4.3

was used as an MPI-2 implementation that supports Infini-

Band. During the experiments, OpenMPI’s parameters were

choosen such that OSC functions use InfiniBand’s RDMA

features. It is therefore not expected that the OSC application

on the SCC scales better than on the InfiniBand cluster as

there is no RDMA support in RCKMPI.

On the SCC, a modified Linux 2.6.38.3 kernel was used

in conjunction with Busybox. For compiling the application

and RCKMPI, GCC version 4.5.2 has been chosen. On the
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Fig. 3. Speedup of the CFD application compared to its sequential version
on the SCC and the InfiniBand Cluster

InfiniBand cluster, Scientific Linux with Kernel 2.6.18 and

GCC 4.3.2 is installed.

B. Results on SCC

The obtained results are presented in Figure 3. The OSC

version on the SCC shows linear scaling, but it is outperformed

by the two-sided communication version on the SCC. The

speedup values are about one third smaller than the two other

versions and only one half of the optimal linear speedup.

The scaling of both the two-sided and the OSC version

of the application can be attributed to the low latency com-

munication network and the RCKMPI CH3 channel imple-

mentation. A downside of this implementation is the inherited

handling of OSC by the CH3 device implementation. That is

queueing all communication actions until a final synchroniza-

tion call is issued (see Section III).

By processing the queue entries messages are sent for

locking the window, transferring the data and finally unlocking

the window. Thus, at least three MPI message are sent to

the target process in a synchronous manner. Compared to the

single non-blocking communication call (MPI Isend) that is

used in the point-to-point version of the application two addi-

tional messages are required. On the SCC, the two additional

messages are sent with an handshake protocol between the

communication processes, whereas on the InfiniBand cluster

RDMA does not require any participation of the target process.

C. Comparison with InfiniBand Cluster

The OSC version running on the InfiniBand cluster reached

approximately linear speedup (see Figure 3). This shows

the benefit of an RDMA capable network which allows the

implementation of communication libraries which support

computation-communication-overlap.

VI. RELATED WORK

The authors of [8] report up to 30 % runtime improvement

for an atmospheric simulation, when using MPI-2 one-sided
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communication in combination with OpenMP instead of point-

to-point communication. It is not clear if the improvement is

due to the use of OpenMP or one-sided communication or the

combination.

Different implementation options for MPI2-OSC were anal-

ysed in the literature regarding the different capabilities of the

underlying networks [9]–[14]. While one would expect inef-

ficiencies of OSC over transports without support for remote

direct memory access (RDMA), interconnects like InfiniBand

are expected to offer similar or better performance for OSC

than for two-sided communication. However, asynchronous

two-sided communication still offers the best performance if

only a few number of communications are synchronised with

one epoch [9], [10], [15].

In [14] the authors observe that one-sided communication

performs much worse than two-sided communication for short

and medium-sized messages. The reason is spotted in the

overhead of synchronization functions.

The same observation is also made in [15], [16]. A compari-

son of two- and one-sided MPI2 communication over Gigabit

Ethernet [15] shows that the design of the MPI2-OSC API

is the key performance problem. The design of MPI2-OSC

was compared with another OSC API called NEON in [16]

on top of InfiniBand networks. While InfiniBand is an ideal

network for computation-communication-overlap, the MPI2-

OSC implementation again suffered from the additional over-

head and was outperformed by NEON. The authors show that

applications which use MPI-2-OSC suffer from the overhead

of the additional synchronisation message that has to be sent

in order to complete a remote memory access.

Currently, the MPI community discusses the MPI-3 stan-

dard [17]. The One-Sided communication interface proposed

by the MPI-3 RMA Working group retains all of the calls from

MPI-2, but adds new additional calls for window creation, syn-

chronisation, and communication. Some of the proposed new

features are implemented and investigated in [18]. Especially,

the new Request-Based operations seem to be promising to

achieve optimal computation-communication-overlap.

VII. CONCLUSION AND FUTURE WORK

In this paper, we gave insights on the implementation of

One-Sided Communication in MPICH2 which is the base

for the MPI implementation of the SCC – RCKMPI. Based

on this insights, we identified missing functionalities within

that implementation. These issues were fixed and the revised

source code was made available to MARC members.

Further, the scalability of a CFD-like application based

on the OSC implementation of RCKMPI was analyzed and

compared to both a two-sided version on the SCC and a one-

sided version on an InfiniBand cluster. It was revealed that all

variants scale in a linear fashion, while the two-sided version

on the SCC outperforms the two others. Moreover, the OSC

variant shows poor scaling behavior on the SCC. On the other

hand, the good scaling of the OSC version on the Infini-

Band cluster is obviously due to the opportunity to use the

RDMA features. This effect has already been observed when

comparing the MPICH2 implementation with the lightweight

OSC API called NEON both on Gigabit Ethernet [15] and

InfiniBand installations [16].

Future work goes into two directions: First, the scaling of

the OSC features of RCKMPI can be improved. As the SCC

offers hardware support for defining and accessing shared

memory areas, a MPI window for OSC might be defined

with help of the hardware features: A window may reside

in a shared memory which is backed either by the MPB or

the external DDR3 main memory. Further, accesses of a MPI

process resp. core could be supported by dedicated cores. For

example one core per tile could be responsible for performing

RMA operations while the other handles computational tasks

of an application [19]. That way, both RMA and overlap of

communication and computation would be made possible.

Second, it would be interesting to get experiences with

applications using the Global Arrays toolkit on the SCC.

This framework offers a ”virtual shared memory programming

interface.” Moreover, the implementation is based on message

passing libraries, such as MPICH2 and requires OSC features.

Especially, application from the field of quantum chemistry are

heavily using frameworks like Global Arrays [20].
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Abstract—This paper focuses on the design of an asynchronous
broadcast primitive on the Intel SCC. Our solution is based on
OC-Bcast, a state-of-the-art k-ary tree synchronous broadcast
algorithm that leverages the parallelism provided by on-chip
Remote Memory Accesses to Message Passing Buffers. In the
paper, we study the use of parallel inter-core interrupts as
a means to implement an efficient asynchronous group com-
munication primitive, and present the userspace library we
designed to be able to use interrupts in OC-Bcast and make
it work asynchronously. Our experimental evaluation shows that
our algorithm allows parallel broadcast operations to efficiently
progress concurrently and provides low latency for a single
broadcast operation. It highlights that parallel interrupts can
help implementing efficient group communication primitives on
many-core systems.

I. INTRODUCTION

Recent research in microprocessor design indicates that

the most promising way to achieve high performance while

lowering power consumption is to integrate many loosely-

coupled processors on a single chip [1]. A many-core chip

can be viewed as a distributed system, i.e. a set of cores

connected through a Network on Chip (NoC). The Intel Single-

Chip Cloud Computer (SCC) is a 48-core research prototype

of a many-core chip, designed to be operated as a message

passing system.

Group communications, such as broadcast, are of major

importance in message passing systems, and have been widely

studied in different contexts. Considering the low latency and

high throughput of a NoC, a many-core chip is very similar

to a parallel High Performance Computing (HPC) system.

However, results show that porting an HPC communication

library to the SCC requires rethinking the design of the

communication algorithms [10].

In this paper, we study the implementation of an asyn-

chronous broadcast primitive for the Intel SCC. Our previous

work, done in the context of Single Program Multiple Data

(SPMD) applications, studied synchronous broadcast opera-

tions [10]. It shows that leveraging specific features of the Intel

SCC, i.e., Remote Memory Access (RMA) to on-chip Message

Passing Buffers (MPB), helps improving the performance of

group communications by increasing parallelism in the data

dissemination. We adapt the resulting algorithm, called OC-

Bcast (On-Chip Broadcast), to work asynchronously in order

to be able to use it in a more general execution model. To do

so, we propose to use parallel Inter-Processor Interrupts (IPI).

The paper presents the following contributions:

• A study of the global interrupt controller (GIC) on the

Intel SCC, and the description of a library to simply

manipulate IPIs in userspace (Section IV).

• An asynchronous version of OC-Bcast based on paral-

lel IPIs that allows arbitrary interleaving of concurrent

broadcast operations (Section V).

• An evaluation of the proposed algorithm showing that it

manages to achieve both low single broadcast latency and

high concurrent broadcasts throughput, demonstrating

usefulness of parallel IPIs in implementing efficient group

communication on many-core chips (Section VI).

Before detailing the contributions, we describe the SCC in

Section II and focus on the related work on interrupt-based

communication and broadcast on the SCC in Section III.

II. THE INTEL SCC

The SCC is a general purpose many-core prototype devel-

oped by Intel Labs. In this section we briefly describe the SCC

architecture and inter-core communication.

a) Architecture: The cores and the NoC of the SCC

are depicted in Figure 1. There are 48 Pentium P54C cores,

grouped into 24 tiles (2 cores per tile) and connected through

a 2D mesh NoC. Tiles are numbered from (0,0) to (5,3). Each

tile is connected to a router. The NoC uses high-throughput,

low-latency links and deterministic virtual cut-through X-Y

routing [5]. Memory components are divided into (i) message

passing buffers (MPB), (ii) L1 and L2 caches, as well as

(iii) off-chip private memories. Each tile has a small (16KB)

on-chip MPB equally divided between the two cores. The

MPBs allow on-chip inter-core communication using Remote

Memory Access (RMA): Each core is able to read and write

in the MPB of all other cores. There is no hardware cache

coherence for the L1 and L2 caches. By default, each core has

access to a private off-chip memory through one of the four

memory controllers, denoted by MC in Figure 1. In addition,

an external programmable off-chip component (FPGA) is

provided to add new hardware features to the prototype.

b) Inter-core communication: To leverage on-chip RMA,

cores can transfer data using the one-sided put and get

primitives provided by the RCCE library [8]. Using put, a

core (a) reads a certain amount of data from its own MPB or

its private off-chip memory and (b) writes it to some MPB.

Using get, a core (a) reads a certain amount of data from some

MPB and (b) writes it to its own MPB or its private off-chip

memory. The unit of data transmission is the cache line, equal
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to 32 bytes. If the data is larger than one cache line, it is

sequentially transferred in cache-line-sized packets. During a

remote read/write operation, each packet traverses the routers

on the way from the source to the destination.

Cores are also able to notify each other using inter-process

interrupts (IPI), either by writing directly into the receiving

core configuration register or by using the Global Interrupt

Controller (GIC)1. In the latter case, the receiving core is able

to obtain additional information about the interrupt through a

set of GIC registers. We consider the GIC in this work.

III. RELATED WORK

In the SCC context, there are works on interrupt-based

message passing ([6], [7], [9], [11], [12]), as well as on the

implementation of collective operations ([4], [2], [8]). How-

ever, to the best of our knowledge, there is no work combining

the two, that is, leveraging IPIs for collective communication.

For this reason, we present the related work in two categories:

(i) papers that focus on the collectives, i.e. broadcast and (ii)

those that discuss interrupt-based communication.

A. Broadcast Algorithms

Despite several implementations of broadcast on the Intel

SCC, the only scenario considered so far is running HPC

applications. This assumes the SPMD model, in which each

core runs the same program and every core explicitly invokes

a routine to participate in a collective operation. As a conse-

quence of this assumption, polling can be used for notification

and asynchronous primitives are not necessary.

When it comes to the broadcast algorithms used,

RCCE comm [3], as well as RCKMPI [2] use well-known

algorithms based on two-sided communication – binomial

tree and scatter-allgather. On the other hand, OC-Bcast [10]

applies a tree based algorithm for broadcast directly on top of

put/get primitives, which dramatically improves both latency

and throughput by minimizing memory copy operations on the

critical path. The algorithm presented in this paper has been

directly derived from OC-Bcast, as described in Section IV.

B. Communication Based on Interrupts

The assumption of having only one program running at a

time, as well as synchronous communication among cores,

which holds for HPC applications, is not valid in general-

purpose distributed systems. Therefore, using interrupts for

1The GIC is available starting with sccKit 1.4.0 and is located on the FPGA.

asynchronous communication is a must for porting such sys-

tems to the SCC.2 Examples of SCC software relying upon

inter-core interrupts are numerous ([6], [7], [9], [11], [12]). In

the context of this paper, most interesting works are those that

give specific details on different ways of using interrupts and

their cost in terms of performance.

The SCC port of Barrelfish [9] uses IPIs to notify cores

about message arrivals. The round-trip message latency re-

ported by the authors was found too high for point-to-point

communication in such a system, despite running it on bare

metal with the minimum needed software overhead.

Another approach for leveraging interrupts, using the GIC,

has been applied in the SCC port of distributed S-NET [12], a

declarative coordination language for many-core chips. The

port is based on an asynchronous message-passing library:

Interrupts are trapped by the Linux kernel and then forwarded

to the registered userspace process in the form of a UNIX

signal, which is the idea reused in this paper. Using a similar

round-trip experiment as in [9], the authors confirm the high

latency of inter-processor interrupts. Moreover, the latency

they observe is even higher than in [9], mainly because of

a necessary context switch before delivering a signal to the

registered userspace process. A direct comparison with RCCE,

the native SCC message passing library based on polling [8],

has shown that IPIs are far less efficient in terms of latency

for point to point communication.

Despite being costly for point-to-point message passing,

IPIs can be used for asynchronous collective communication

with an acceptable cost, as we show in this work.

IV. BROADCAST BASED ON INTERRUPTS

This section describes the design and implementation of

our broadcast library based on inter-processor interrupts (IPI).

First, we give an overview of the underlying hardware mecha-

nism for sending parallel interrupts. Then we briefly describe

OC-Bcast, a polling-based broadcast algorithm for the SCC,

and explain how we have adapted it to use interrupts instead.

A. Interrupt Hardware on the SCC

Using the basic IPI mechanism on the SCC, a core can

send an interrupt to another core by writing a special value to

the configuration register of that core. This generates a packet

which is sent through the on-chip network to the destination

core. Although this mechanism is simple and straightforward,

it lacks some essential features. For example, the identity of

the notifier is unknown and it is possible to send only one

interrupt at a time.

Fortunately, the SCC has an off-chip FPGA, which allows

for adding new hardware features. An extension to the basic

IPI mechanism has been provided by Intel, which comprises a

set of registers for managing IPI (request, status, reset and

mask). As a consequence, a core can send an interrupt to

up to 32 other cores in just one instruction, by writing an

2Strictly speaking, it is possible to communicate asynchronously using a
dedicated polling thread, but this solution wastes CPU cycles and energy.
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Fig. 2: Latency of broadcasting an interrupt at the kernel level

appropriate bit mask to its request register3. The work of

generating interrupt packets is completely delegated to the

FPGA interrupt controller.

To test whether the FPGA interrupt controller actually

delivers multiple interrupts in parallel, we have performed the

following experiment: A core sends an interrupt to all cores

(including itself), by issuing two instructions which write a

mask of ”1”-s to its request register on the FPGA. Then, the

core measures the time until it receives its own interrupt. The

results, given in Figure 2a, indicate a significant difference

in latency observed by different cores, ranging from about

2000 to almost 6000 core cycles (cf. VI-A for setup details).

Further experiments have confirmed that this difference grows

as a function of the number of cores that the interrupt is sent

to – it is barely noticeable for less than 20 cores, but then

starts to increase rapidly.

The experiment presented above could lead us to the

conclusion that parallel notification using interrupts scales

poorly, but further investigation explains this result. Namely,

upon receiving an interrupt, there is a fixed set of steps a

core should perform. This includes reading from the status

register, to determine the sender, and resetting the interrupt

by writing to the reset register. Since all the registers related

to interrupt handling are on the FPGA, access to them is

handled sequentially. When an interrupt is sent to many cores

at once, they all try to access their interrupt status register at

the same time, but their requests contend and are handled one

after another, which explains the observed performance loss.

We believe that a proper on-chip implementation of interrupt

registers would eliminate this problem, since they could be

accessed in parallel. To confirm that the reason for bad scaling

of the interrupt mechanism is contention on the FPGA, we

have repeated the same experiment, but this time deliberately

avoiding the FPGA registers, except on the sending core. In

Figure 2b we see that the times measured across the cores are

very similar and close to 2000 core cycles. Slight differences

in latency are easy to explain. Namely, the FPGA is connected

to the mesh via the router between tiles (2,0) and (3,0) (cf.

Figure 1), so the round-trip time to the FPGA is shorter for

3The upper limit of 32 is merely a consequence of the 32-bit memory word
on the P54C

cores closer to this router. Next, it takes slightly more time for

cores 32 to 47 to receive their interrupt. This is because, as

already described, it is possible to send at most 32 interrupts

by issuing a single instruction. Therefore, when broadcasting

an interrupt, a core first broadcasts to cores 0 to 31 in the

first instruction, and then to the other cores, which results in

slightly higher latency.

Another set of experiments, as well as comparisons with

results of other authors [12], confirmed that the latencies

presented in Figure 2b are practically indistinguishable from

the latency of sending point-to-point interrupts (about 2000

cycles). This implies that the cost of notification using inter-

rupts is practically constant with respect to the number of cores

notified. However, as we have described, sequential access to

the off-chip registers for interrupt handling slows down the

whole process in the current implementation on the SCC.

Still, from Figure 2a we can see that even with this effect,

broadcasting an interrupt to the 48 cores is only about 3 times

more expensive than sending a point-to-point interrupt, making

this mechanism interesting for use in group communication.

B. OC-Bcast Based on Interrupts

Now we describe how the SCC interrupt hardware presented

above can be used to perform asynchronous broadcast. As the

base, we used OC-bcast [10], an optimized on-chip broadcast

algorithm built on top of one-sided put and get primitives.

The principle of OC-bcast is the following: a broadcast k-

ary tree is formed, with the sender as its root. The sender puts

the message in its MPB and notifies its k children, which then

copy the message to their own MPBs in parallel and notify the

parent that it can free its MPB. The children repeat this process

with their children, until all the cores have got the message.

The value of k is configurable. Obviously, higher values of k
offer more parallelism, but they can lead to contention on the

MPB, which can cancel out the gain obtained by the increase

in parallelism. This is not a problem for the SCC itself (OC-

Bcast with k = 47 even gives the lowest latency for some

message sizes), but can be an issue at large scale.

However, in its original flavor, OC-Bcast uses MPB polling

for notification. Each child has a flag in its MPB that it polls

when waiting for a message. This means that the children
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cannot be notified in parallel about the existence of a message,

since the parent can write only one flag at a time, which

was mitigated to some extent by using a special notification

tree. This problem can be addressed by parallel interrupts. The

modified algorithm can be summarized as follows:

1) The sender puts the message from its private memory to

its MPB and sends a parallel interrupt to all its children.

Then it waits until all the children have received the

message.

2) Upon receiving the interrupt, a core copies the data from

the parent’s MPB to its own MPB and acknowledges

the reception of the message to the parent by setting the

corresponding flag in the parent’s MPB.

3) The core then sends a parallel interrupt to notify its own

children (if any) and then copies the message from the

MPB to its private memory. Then it waits until all its

children have received the message.

4) When all core’s children have acknowledged the recep-

tion, the core can make its MPB available for other

actions (possibly a new message).

C. Implementation

To implement the modified OC-Bcast, we have developed

a userspace library for interrupt handling, following the idea

given in [12]. Namely, a userspace process can register itself

with a special kernel module. Every time an interrupt from

another core is received, the kernel module sends a real-time

UNIX signal to the registered process, which triggers a user-

provided handler. We have opted for real-time signals because

they can be queued if there is more than one signal pending.

This way, we ensure that every interrupt is converted to a

signal and the algorithm can be written entirely in userspace.

A drawback of this approach is a performance loss already

observed in [12], since it increases the end-to-end delay of

sending interrupts. Namely, the numbers presented in Figure

2b show only the latency until the receiver’s kernel handles

the interrupt. To propagate it to a userspace process in the

form of a UNIX signal, a context switch is necessary, which

significantly increases the cost. Nevertheless, we have adopted

this approach for two reasons. Firstly, such an implementation

changes only absolute numbers and does not prevent us from

observing changes in performance resulting from design-level

decisions. The same algorithm could be implemented in the

Linux kernel or directly on bare metal, which completely

avoids UNIX signals and context switching. Secondly, our

library is easy to integrate with RCCE and the accompanying

tools, which makes it convenient for other researchers willing

to use inter-processor interrupts without significant effort.

V. MANAGING CONCURRENT BROADCAST

OC-Bcast was initially designed in the context of SPMD

applications, where a core has to explicitly call the broadcast

function to participate in the collective operation. As a con-

sequence, a core is involved in only one collective operation

at a time. Using interrupts in OC-Bcast allows us to move

to a more general model where broadcast operations can

arbitrarily interleave at one core. In this section, we study

how to efficiently manage this aspect.

The algorithm described in Section IV-B has to be modified

to allow asynchronous broadcast operations issued by different

cores. Indeed, without modifications the algorithm would be

prone to deadlocks. A simple scenario can be used to illustrate

a deadlock situation. Consider two cores c and c′ that try to

broadcast a message concurrently, with c′ being a child of c
in the tree where c is the root and the opposite in the tree

where c′ is the root. Core c′ cannot copy the message that c
is trying to broadcast in its MPB because it is busy with its

own message. Core c′ will be able to free its MPB when it

knows that all its children have copied the message. However

c cannot get the message from c′ either, because it is in exactly

the same situation as c′. There is a deadlock.

To deal with this problem, a simple solution would be to use

a global shared lock to prevent multiple broadcast operations

from being executed concurrently. In this case, the problem

becomes equivalent to broadcast in the SPMD model and no

further modifications to OC-Bcast are necessary. However, this

would limit the level of parallelism and prevent us from fully

using the chip resources.

To avoid deadlocks without limiting the parallelism, we

adopt the following solution: If the MPB of some core c is

occupied when a notification about a new message arrives,

c copies the message directly to its off-chip private memory.

Additionally, if c has to forward the message, it is added to a

queue of messages that c has to forward. Eventually, when the

MPB is available again, c removes messages from the queue

and forwards them to the children.

Algorithm 1 presents the pseudo-code of this solution for

a core c. In the presented algorithm, we do not put any

requirements on the tree structure. We only assume that a

predefined deterministic algorithm is used to compute the

broadcast trees. Thus, during the initialization, each core is

able to compute the tree that will be used by each source

(line 7). Furthermore, if a message is larger than the available

MPB, it is divided into multiple chunks.

For the sake of simplicity, the pseudo-code is not

fully detailed. It only illustrates the important modifi-

cations that are made to avoid deadlocks. We define

three functions as an interface to the algorithm described

in Section IV: OCBcast send chunk(chunk, Tree) initi-

ates the sending of the chunk chunk in the tree Tree;

OCBcast receive chunk(chunk, buf, src) allows to get

chunk from the MPB of core src in buf , buf being either

the MPB of the caller or a memory region in its off-chip

private memory; OCBcast forward chunk(chunk, Tree)
is used to forward a chunk in the tree Tree. Contrary

to OCBcast send chunk(), OCBcast forward chunk()
assumes that the chunk is already in the MPB of the sender.

In the pseudo-code, a chunk includes not only payload, but

also some meta-data, i.e., the id of the core that broadcasts the

message (chunk.root) and the id of the message the chunk is

part of (chunk.msgID).

As mentioned before, we allow a core to receive chunks

directly in its off-chip private memory when its MPB is busy

with another chunk that is being sent (line 17). Thus, the
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Algorithm 1 Asynchronous broadcast algorithm (code for core

c)
Local Variables:

1: MPBc {MPB of core c}
2: MPBStatusc ← available {Status of the MPB}
3: chunkQueuec ← ∅ {Queue of chunks to forward}
4: set of trees Tree1, T ree2, ..., T reen {Treec is the tree with c as root}

5: initialization:

6: define deliver chunk() as the IPI handler
7: for coreID ∈ 0...n do compute TreecoreID

8: broadcast(msg)
9: for all chunk of msg do

10: broadcast chunk(chunk)

11: broadcast chunk(chunk)
12: MPBStatusc ← busy

13: OCBcast send chunk(chunk, Treec)

14: MPBStatusc ← available

15: flush queue()

16: deliver chunk(chunk, source)

17: if chunkQueuec is empty ∧ MPBStatusc = available then

18: MPBStatusc ← busy

19: OCBcast receive chunk(chunk, MPBc, source)
20: if c has children in Treechunk.root then

21: OCBcast forward chunk(chunk, Treechunk.root)
22: MPBStatusc ← available

23: flush queue()

24: else

25: let item be the memory allocated to receive the chunk
26: OCBcast receive chunk(chunk, item, source)

27: if c has children in Treechunk.root then
28: enqueue item in chunkQueuec
29: if msg corresponding to chunk.msgID is complete then

30: deliver msg to the application

31: flush queue()
32: while chunkQueuec is not empty do

33: dequeue chunk from chunkQueuec
34: MPBStatusc ← busy

35: OCBcast send chunk(chunk, Treechunk.root)

36: MPBStatusc ← available

sender can free its MPB. The chunks that the core is supposed

to forward to other cores, are stored in a queue (lines 25-28),

that is flushed when the MPB becomes available (line 15 and

line 23). Note that to ensure fairness, if the MPB is free at the

time the core receives an interrupt but some chunks are already

queued to be forwarded (line 17), the chunk is received in the

private memory and added to the queue. Thus, a chunk cannot

overtake another chunk that has been in the queue already for

some time. However, if no chunk is in the queue and the MPB

is available, the chunk is first copied in the MPB to limit the

number of data movements between the MPB and the private

memory that could harm the performance of the broadcast

operation [10].

VI. EVALUATION

In this section we evaluate our broadcast algorithm. After

describing the system parameters used for our experiments,

we measure the latency of the presented broadcast algorithm

and compare it with that of OC-Bcast. Then we show how the

algorithm behaves with different values of k and with more

cores broadcasting at the same time.

Message Size
(Number of cache lines)

1 32 64 128

OC-Bcast 44.0 µs 76.1 µs 112.6 µs 189.8 µs

Asynchronous broadcast 40.2 µs 75.5 µs 118 µs 196.7 µs

TABLE I: Comparing the latency of synchronous broadcast

(OC-Bcast) and asynchronous broadcast for different

message sizes.

A. Setup

We have performed the experiments under the default

SCC settings: 533 MHz tile frequency, 800 MHz mesh and

DRAM frequency and standard LUT entries. We use sccKit

1.4.1.3, running a custom version of sccLinux, based on Linux

2.6.32.24-generic. The kernel of every core runs the special

kernel module for converting interrupts to UNIX signals,

described in Section IV.

B. Experiments

The first experiment measures the latency when messages of

different sizes are broadcast from one core (core 0 in this case).

We fix the value of k to 47 (see Section IV), which enables

us to obtain the highest level of parallelism when sending the

interrupts and reading from the MPB. Due to space constraints,

we do not consider other values of k in this experiment.

Table I compares the obtained latency with that of OC-

Bcast4. The two algorithms have very similar latencies with

these settings. This confirms that the interrupt hardware on

the SCC is useful for designing asynchronous collective op-

erations, even though its latency is high for point-to-point

communication, as pointed out in other studies [9], [12].

It is interesting to notice that the latency of the asynchronous

broadcast algorithm increases faster as a function of the mes-

sage size. This is because of a higher level of MPB contention.

More specifically, it is pointed out in [10] that too much

parallelism in accessing the MPB can impair performance. In

OC-Bcast, notifications are propagated using a binary tree,

which results in less overlapping accesses to the MPB of the

sender than when a parallel interrupt is sent. This shows that

extremely high values of k might be inappropriate at large

scale because of the contention effect.

In the second experiment, we change the output degree of

the broadcast tree (k) and the number of sources, that is,

the number of cores broadcasting in parallel. Each source

repeatedly broadcasts a 4 KB (128 cache lines) message from

its private memory, without waiting for the other cores to

receive the message, thus creating a message pipeline. This

way we observe the throughput of the system, that is, the

amount of data broadcast in a unit of time.

The result of this experiment is given in Figure 3. With a

single source, the throughput decreases as k increases. The

reason is the cost of polling flags (there are at most k flags to

poll). To wait for an acknowledgment from its children, each

parent has to poll k flags in its MPB and reset them afterwards.

The variations in the performance can be explained by the fact

4The version of OC-Bcast considered here is slightly optimized with respect
to the original paper which presents it [10].
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Fig. 3: Throughput of the asynchronous broadcast algorithm

for different values of k and different number of concurrent

sources

that a core does not control when it will be signaled. In fact,

when a core is about to forward a received message to the

children, it can get interrupted to receive another message.

If this happens, the children have to wait, which introduces

sporadic performance drops.

With more than one source, the throughput increases. There

are two possible reasons for this. The first one is that when

a single node is broadcasting messages, the other cores are

sometimes idle waiting for the next message to be available.

With multiple sources, this idle time can be used to receive

messages from other sources. The second reason is that if a

core receives interrupts in different trees, it can often have

more than one interrupt waiting to be serviced by the kernel.

When this happens, all the pending interrupts will be serviced

(converted to signals) one after another, and only then will the

execution switch back to the userspace process. This actually

means that there will not be one context switch per interrupt,

but significantly less, resulting in performance increase.

We can also see that the difference in throughput when

broadcasting from 5 and 48 sources is not significant. This

is because the system gets saturated. Based on the model

presented in [10], the maximum bandwidth when copying data

from a core’s MPB to the off-chip memory is about 55 MB/s

(assuming cache line prefetching implemented in software as

in iRCCE [4]). Our algorithm achieves 68% of this maximum

bandwidth.

When it comes to the choice of k with multiple sources, the

trend is opposite to the single-source case. This is especially

visible for smaller values of k, where each increase by 1 evi-

dently increases the throughput. To understand this, recall that

the resources of every core are effectively used in this case,

in the sense that there is no idle time. However, performing

a broadcast operation consumes more resources on different

cores if k is lower since there are more interrupts to send.

Thus, the cores manage to do less useful work.

C. Discussion

The presented experiments show two important properties of

our asynchronous broadcast algorithm. First, in spite of being

built on more general assumptions, its latency is comparable

with that of the most efficient synchronous broadcast algo-

rithm currently available for the SCC. Second, the algorithm

manages concurrent broadcasts efficiently, even when all cores

are broadcasting at the same time.

VII. CONCLUSION

In this work we have presented a novel asynchronous

broadcast algorithm for the Intel SCC, which is based on

RMA and parallel IPI. Our algorithm is derived from OC-

Bcast, an optimized synchronous broadcast algorithm for the

SCC. The evaluation of our asynchronous broadcast primitive

demonstrates that the algorithm manages to efficiently deal

with concurrent broadcast operations to achieve low latency

and high system throughput. Comparisons with existing syn-

chronous broadcast primitives also show that parallel IPI are of

general interest to implement efficient group communications

on many-core chips.

As future work, we plan to study the use of IPI and on-chip

RMA operations for other group communication primitives on

the Intel SCC. Especially, we will focus on group communica-

tion primitives that provide ordering properties, to implement

replicated data structures.
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Abstract — This paper details our current research project on 

the efficient utilization of many-core systems by utilizing applica-

tions based on a novel kind of software pipelines. These pipelines 

form malleable applications that can change their degree of par-

allelism at runtime. This allows not only for a well-balanced load, 

but also for an efficient distribution of the cores to the individual, 

competing applications to maximize the overall system perfor-

mance. We are convinced that malleable software pipelines will 

significantly outperform existing mapping and scheduling solu-

tions.  

 
Index Terms — Parallel architectures, multicore processing, 

pipeline processing, multiprocessing systems.  

 

I. INTRODUCTION AND MOTIVATION 

unning multiple applications efficiently on a many-core 

system requires careful decisions about the distribution of 

the availablecores among the running applications becauseof 

the following reasons: an inefficient distribution of coresmay 

lead to an imbalanced load, thus leaving resources idle, or to a 

reduced system performance (even though the load may be 

perfectly balanced) when assigning few cores to demanding 

applications while giving more coresto applications that hardly 

benefit from them. Thelatter may be due to different applica-

tion efficiencies(i.e. the speed-up per core), which areex-

pressed bythe corresponding speed-up functions that describe 

how the performance of an application dependson the number 

of cores assigned to it.Thus, thesedecisions largely impact the 

overall performanceof many-core systems. Parallel applica-

tions often are not able to achieve a linear speed-up with the 

number of cores [1], i.e. the efficiency decreases. Consequent-

ly, when running multiple applications, it is crucialto distrib-

ute the cores in a way that the overall efficiency is maximized, 

which is illustrated in Figure 1 for the combined (system) 

efficiency when running two competing applications. 

There are three kinds of parallel applications: a) statically 

parallelizedapplications that are only able to execute on a 

fixed number of cores, b) moldable applications whose degree 

of parallelism can be defined at the start-up time of the appli-

cation,and c) malleable applications that can change their 

degree of parallelism (from now on, we will call this resizing) 

at runtime.With varying and/or dynamic workloads, malleable 

applications allow the highest overall system efficiency as the 

optimal number of cores could be assigned to each application 

whenever the system state changes [2]. 

However, the effort and the costs of resizing have to be con-

sidered because they may be manifold and include task migra-

tion and workload distribution, which may be especially hurt-

ful for many-core architectures with distributed memories [3]. 

Depending on the kind of application, resizing is not possible 

at arbitrary points. Today, malleable applications are often 

used in high-performance computing and grid-computing 

environments, often work on large datasets, and run for long 

periods of time (e.g., hours or days). Here, the absolute time 

required for the re-distribution of cores is of minor importance 

as the total system throughput in long periods of time is cru-

cial. However, due to this property, such applicationsare not 

suitable for highly interactive systems or mobile devices: here, 

systems need to be responsive, so the time spent for resource 

re-distribution needs to be minimal and theefficiency of the 

system needs to be improved quickly (and not in the long 

term) to satisfy user demands. In typical high-performance 

computing environments, large re-distribution timesare tolera-

ble whencompared to the total application runtime. Instead, 

we address systems where applications must beresized at a 

low overhead to allow frequent variations – e.g., when new 

applications enter the system,the system state changes, or a 

user starts interacting with the device. 

 

To make decisions about which application should be allowed 

to use how many resources, state-of-the-artresource manage-

ment schemes for malleable applications (such as [4, 5]) need 

to know how well the application will perform with these 

resources, i.e. thespeed-up function must be known. This 

knowledge could be obtained by offline profiling or online 
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Figure 1 - Combined efficiencies of two competing applications 
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monitoring. After distributing the coresamong the run-

ningapplications, the application itself has to balance the 

loadamong its assigned cores. 

Our novel contributions are malleable software pipelines 

that addressthe three issues of frequent malleability, unknown 

speed-up functions, and autonomous load balanc-

ing.Thisincludes: a) software pipelines that are malleable 

through decreasing and increasing their level of parallelism at 

runtime by fusingstages, i.e. combining multiple consecutive 

stages into one larger stage,  or splitting previously fused 

stages (we call this fission), b) an online monitoring frame-

work that decides upon the best option for fusion and fission 

operations, and  c) a compiler that creates those software pipe-

lines using an architecture specification and application profile 

with a maximum level of granularity. 

II. RELATED WORK 

There are multiple ways to create malleable applications, but 

basically they are based on the same principles. On shared 

memory architectures, creating malleable applications can be 

done by (e.g., compiler based [6] or library based [7]) exploi-

tation of thread and even loop-level parallelism. The costs for 

resizing the application are comparably low (because no data 

has to be migrated between private memories) and allow fre-

quent resizing of the application at the granularity of several 

hundred milliseconds. For distributed memory systems, where 

each core has its own, private memory, these approaches are 

not suitable because the overhead for resizing applications can 

be prohibitively high. Thus, approaches like Master-Slave 

parallelization are used [8]. Here, depending on the amount of 

available cores, more or less workers are created, i.e. resizing 

is possible at thread level, but the resizing costs are much 

higher than in a shared memory system.  

Consequently, the time between resizing decisions has to be 

long enough so the gain from the increased efficiency can 

exceed the corresponding overhead, which makes them very 

suitable for large scientific computing environments where 

applications run for hours or days, but less suitable for interac-

tive systems running on MPSoCs. Another possibility is a 

single program multiple data (SPMD) application architecture 

[9], where the data is partitioned depending on the available 

cores. Adjusting the data partition to changing system states is 

possible but comes at a high cost, which also only allows for 

seldom changes in the application size. 

Adaptive-MPI (AMPI) [10] provides a multitude of „virtual 
cores‟as the smallest level of parallel granularity, which are 

prepared at compile time and are mapped to physical coresat 

runtime. Typically, multiple virtual cores are mapped on one 

real core. AMPI is based on the Charm++ language [11] and 

utilizes the same runtime system for load balancing as applica-

tions written in Charm++. Resizing of applications imple-

mented with AMPI is transparent to the application itself as 

only the mapping of virtual to real cores has to be changed 

and, if necessary, the working set has to be transferred. There-

fore, AMPI cannot take advantage of application-specific 

knowledge (such as choosing optimal migration points be-

tween iterations of pipeline stages). AMPI is designed for 

large, distributed computing environments (e.g., datacenters) 

where the individual nodes have large main memories and fast 

cores. In contrast to this, we target architectures with compa-

rably slow individual cores where the access to (off-chip) 

main memory is very costly and must be reduced to a mini-

mum. 

 

 
Figure 2 – Basic operations of malleable pipelines 

III. OUR APPROACH 

Software pipelines present a widely used programming model 

which is especially suitable to parallelize sequential complex 

applications for many-core systems with distributed memories 

that may be private to each core. Multiple compilers, tools and 

frameworks exist that extract software pipelines from existing 

applications [12-14]. The presented malleable software pipe-

lines are software pipelines with the following properties: 

They support the basic operations of fusion and fission, as 

illustrated in Figure 2. A fusion of pipeline stages reduces the 

degree of parallelism, thus reducing the number of stages by 

combining two consecutive stages into one. Contrarily, fission 

increases the degree of parallelism by splitting fused stag-

es.Pipelines are created with a compile-time chosen finest 

level of granularity, from which no further fissions are possi-

ble. Stages can be fused until only one stage remains. In this 

case, the pipeline is equivalent to the sequential execution of 

the same algorithm.Malleable software pipelines use runtime 

monitoring to decide which stages to fuse or which stage to 

split. 

 
Figure 3 - Block diagram of system components 
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The system components are illustrated in Figure 3: The 

runtime system constantly monitors the system utilization and 

application efficiencies. An efficiency optimization compo-

nent periodically re-evaluates the current system state and may 

decide to change the distribution of the system‟s cores to the 
applications. Each application consists of one so-called Appli-

cation Master and one process per pipeline stage. These pro-

cesses are based on the same executable file and may run one 

or more consecutive pipeline stages. When running multiple 

stages on one core, no inter-core data communication for these 

stages is necessary. 

The Application Master includes an interface for the commu-

nication with the runtime system, a Fusion / Fission Engine, 

and a lightweight runtime predictor that predicts the potential 

performance increase of a fission operation and the potential 

performance decrease of a fusion operation, and an application 

level task migration component.  

The Interface is responsible for the communication with the 

run-time system and provides it with information such as the 

maximum level of parallelism (static) and the gradient of the 

speed-up function (dynamic).  

The Fusion / Fission Engineis responsible for conducting 

the fusions and fissions requested by the runtime system. The 

runtime system specifies which cores may be used or will be 

taken away from the application, while the Fusion / Fission 

Engine is responsible for identifying the stages to be fused or 

split.This decision is based on Runtime Monitoring of the 

computational and communication demands (from now on, we 

will call both computational and communication demands 

„resource demands‟) of each individual stage. Using a light-

weight Runtime Predictor, the Application Master decides 

which fusion will result in the least performance degradation 

and which fission will result in the highest performance in-

crease. To avoid bloated communication volumes and races 

for communication hardware (such as the Message Passing 

Buffer in Intel‟s Single-Chip Cloud Computer [15]), only 

consecutive stages are fused. When the number of cores as-

signed to an application changes, all pipeline stages of that 

application are recombined. 

The migration of the pipeline stages is very lightweight as 

they are migrated after completing an iteration, as software 

pipelines typically have a peak memory consumption while 

performing one iteration, and carry little state between itera-

tions. As the executable file is the same for each stage and 

may dynamically switch from executing one stage to execut-

ing several stages, only the state information of the corre-

sponding stages that is carried between iterations needs to be 

transferred. Consequently, the executable file needs to be 

transferred only when new cores are made available for an 

application and the stage fusions may be performed at runtime 

with very little overhead. In the presented case-study (see 

Section V), some stages were completely stateless (e.g., image 

enhancement or transformations which operate on each frame 

of the video stream individually) while others carried little 

state (e.g., information about identified objects in the previ-

ously processed image) in the worst-case of 38 kilobytes. The 

size of the state that needs to be transferred for each resizing 

decision depends on the executed application. However, we 

find that a typical property of software pipelines is that each 

stage carries comparably little state between iterations.. 

IV. RUNTIME SYSTEM 

The runtime system is responsible for optimizing the efficien-

cy of multiple applications running on a many-core system, 

thus competing for computational resources. This is performed 

by resizing the competing applications at runtime. To accom-

plish this, each application provides information about wheth-

er it could efficiently make use of more cores or if the already 

assigned cores are not used efficiently and a fusion of pipeline 

stages could be performed to free cores for other applica-

tions.If all possible applications and system states are known 

at design time, these decisions can be made at design time. 

This allows for optimal allocation, scheduling, and mapping of 

applications to cores. However, i.e. due to user interactions, 

changing input data, or unpredictable system state, an online 

resource management is required to efficiently utilize system 

resources.In [4], a distributed approach for managing mallea-

ble applications on many-core systems with hundreds or thou-

sands of cores has been presented. The scalability of the ap-

proach is achieved by avoiding the use of global knowledge or 

broadcast communication. The approach utilizes an applica-

tion performance model for parallel applications which con-

siders the theoretical speed-up of an application [1] and the 

relative placement of the cores of the application to make its 

decisions. 

In the following section we show how well the theoretical 

performance model and the performance of the real implemen-

tation of our malleable software pipelines match. By using real 

measurements of application performance and resizing over-

head (which is currently not exactly modeled in the decision 

making process) we will be able to enhance the previous ap-

proach and apply it to a real many-core system running our 

malleable software pipelines. 

V. CASE STUDY ANALYSIS 

We analyze a software pipeline that we generated from a 

complex, real-world robotic application. The presented soft-

ware pipeline captures stereo images from two pairs of stereo 

cameras, uses image enhancement and transformation algo-

rithms, calculates a three-dimensional depth map, and then 

detects and tracks objects. Due to bandwidth constraints, the 

images can only be captured sequentially, not in parallel. The 

application tracks a recognized object and moves the robot to 

follow it. The 18 individual stages of the pipeline are illustrat-

ed in Figure 4. The case study focuses on the behavior of that 

software. To obtain the results, each pipeline stage had been 

benchmarked individually on the Intel SCC to obtain the nec-

essary information to calculate the optimal fissions and fu-

sions for any given number of cores. 

When executing these stages on multiple cores, the speed-up 

function is largely sub-linear, as shown in Figure 5. A maxi-
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mum speed-up of 9.7x can be achieved when running the 

application on 18 cores. The efficiency drops when increasing 

the number of cores, while positive “jumps” in efficiency 
when increasing the number of cores from 9 to 10 or from 11 

to 12 are due to the fact that due to the increased number of 

cores, the fusions can be changed and otherwise heavily load-

ed cores have to carry much less load. The values represent 

stable states for different pipeline lengths. Dynamic effects 

(e.g., cache effects) that occur directly after resizing an appli-

cation are not presented in this case study as the runtime sys-

tem is still work-in-progress. 

The overhead of stage fusions is limited as only the state 

that is carried between iterations needs to be transferred. For 

the applications we have examined, the magnitude of the re-

quired data size ranges from a few bytes to few kilobytes (with 

38 kilobytes being the worst case), so the overhead of transfer-

ring this state is negligible in most state-of-the-art many-core 

architectures, which often have a high-bandwidth, low-latency 

inter-core communication fabric. The overhead of stage fis-

sion is purely dominated by transferring the executable file. 

 

 

 

VI. OUTLOOK 

The above argumentation urges that the efficiency of the utili-

zation of the computational resources of many-core systems 

may be greatly enhanced when using malleable applications. 

In contrast to the state-of-the-art malleable application models, 

malleable software pipelines are well-suited to MPSoC archi-

tectures with comparably slow individual cores, small on-chip 

memories and highly penalized access to off-chip storage. 

Shifting malleability to the application layer allows software 

pipelines to change their degree of parallelism for efficiency 

optimization without incurring significant overhead because 

only the state that is carried across multiple iterations needs to 

be transferred.We are currently implementing the required 

infrastructure and conduct experiments that compare our mal-

leable software pipelines to the state-of-the-art load balancing 

and task management systems. 
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Figure 4 - Pipelined robotic application 

 

 
Figure 5 - Speed-up and efficiency of the robotic application 
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Abstract—Autonomous underwater vehicles (AUVs) have be-
come indispensable tools for marine scientists to study the world’s
oceans. Real time examination of mission data can substantially
enhance the overall effectiveness of AUVs in oceanography.
However, current AUV technology only allows a detailed analysis
of data after completion of a mission. The ability to perform on-
board analysis of real time data is computationally intensive,
requiring an energy efficient programming infrastructure that
can be adapted to battery operated, energy constrained vehicles.

Intel’s 48-core SCC system exposes a collection of performance
and energy/power knobs that can be refined for dynamically
changing computation vs. energy tradeoffs. In this paper, we illus-
trate the potential benefits of these knobs for environment model-
ing and path planning. These applications are important for any
autonomous cyber-physical system. Our experimental case study
targets AUVs, particularly the Slocum glider. The results show
that selecting different core, network, and memory controller
speeds have a significant impact on the overall performance and
energy requirements of our applications. Furthermore, the best
selection is non-trivial and will depend on the available energy
and computational needs of other mission critical tasks executing
concurrently with modeling/path planning applications.

I. INTRODUCTION

Cyber-physical systems (CPSs) monitor events and con-

ditions in the physical world, process information acquired

through different sensors and input devices, and then de-

termine a set of possible actions in response to the ob-

served events and conditions. These systems often rely on

battery power for long periods of time, so energy-aware data

acquisition, data processing, and actuation is an important

issue for increasing the lifetime and/or effectiveness of the

overall system. There have been two major developments in

recent years that have influenced the design and use of such

autonomous systems; (1) the arrival of multi-core and soon

many-core systems in the context of battery operated devices,

and (2) the development and deployment of a variety of

sensors and input/output (I/O) devices for such systems. Both

trends are related since additional sensors or I/O require more

computational power, and more computational power enables

the use of additional, or more sophisticated sensors or I/O.

Multi-core systems have emerged that are designed to

work in battery-operated devices. Such multi-core platforms

provides substantial computational capabilities at low energy

costs, making the execution of applications possible in au-

tonomous environments that people did not believe possi-

ble only a few years ago. Recently, ARM announced the

big.LITTLE system to improve energy efficiency of high-

performance mobile platforms [1] while Intel has produced an

experimental 48 core system called the SCC [2]. This system

is not commercially available and has been designed to enable

scalability research, particularly in the context of energy-

aware computing. Allowing its cores, on-chip communication

network and memory controllers to be dynamically configured

with respect to supply voltage and/or frequency gives the SCC

a wide range of performance and energy tradeoffs to support

energy-efficient executions of mission critical applications.

In this work, we use ocean modeling (ROMS) and path

planning applications for a buoyancy-driven autonomous un-

derwater vehicle (AUV), the Slocum glider, to illustrate how

the energy-aware features of the SCC could be used to react

to changing energy vs. performance tradeoff requirements.

Changes to these requirements can be triggered by the compu-

tational needs of other applications which are considered more

mission critical resulting from the observation of an internal

or external event. Clearly, avoiding obstacles has high priority

when navigating through a busy shipping lane. Encountering

a physical phenomenon like an algal bloom could also trigger

the use of additional sensors and data processing applications.

In addition, later phases of a long duration mission may

have to deal with reduced battery power and energy budgets,

putting more severe constraints on the applications that can be

effectively executed. Our case study shows that

1) there are different performance/tradeoff points,

2) finding the best performance/tradeoff point during a

mission is non-trivial, and also may change for different

parts of a mission and their power caps, and

3) deploying a system such as the SCC in a battery-

operated environment like an AUV can provide crucial

computational capabilities.

Systems like the SCC could also be deployed in propeller-

driven or hybrid AUVs in addition to buoyancy-driven gliders.
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Fig. 1. One of our Slocum glider autonomous underwater vehicles equipped
with a double payload bay and an acoustic modem. The shown configuration
is 180 cm long and weighs about 90 kg.

Typically, propeller-driven systems have a significantly larger

energy budget and a maximal mission duration of days to

weeks, rather than weeks to months as the Slocum glider.

II. SLOCUM GLIDER

The Slocum glider belongs to a class of autonomous

underwater vehicles that make use of a buoyancy engine,

instead of a propeller, to traverse the ocean. The vehicle

is a commercial product, manufactured by Teledyne Webb

Research [3]. Buoyancy-driven flight, for the Slocum, is ac-

complished through the movement of a piston at the front

of the vehicle. Retracting the piston causes the vehicle’s

displacement of water to decrease, thus allowing the glider to

dive. Conversely, extending the piston increases displacement

and enables the AUV to climb. Flight pitch can be fine-tuned

through the movement of an internal battery pack. Along with

wings and a controllable fin, the glider is able to navigate

through the ocean at approximately 0.35 m/s [4]. A Slocum

glider AUV on a benchtop is shown in Fig. 1.

The success of the glider as a research platform will depend

on how well it can satisfy the increasing demands of ocean

scientists for more and increasingly complex sets of sensors.

Being capable of dynamically reacting to phenomena in situ

is also becoming more common place. These requisitions

necessitate increased computational capabilities. Current stock

Slocum gliders are only equipped with two 16 MHz Persistor

computers [5], one designated for the flight of the vehicle,

while the other collects scientific data from sensors. In pre-

vious work, [6] several Linux single board computers (SBCs)

were integrated and deployed within the AUV to track and

dynamically adjust the vehicle’s flight profile to fly within a

thermocline off the coast of New Jersey. A system such as the

SCC could be used in place of one of these SBCs to provide a

flexible architecture that can effectively balance computation

and energy requirements.

III. APPLICATIONS

Additional computational capabilities can save energy by

more effectively managing the use of energy expensive sen-

sors. The SCC is particularly well suited for this task because

multiple energy saving algorithm/programs can run simulta-

neously on the chip, each with their own power and energy

characteristics and tradeoffs. This section will provide an

overview of such applications.

Dead Reckoning - Localization is a critical challenge for

underwater operations. Typically, collected sensor data is

tagged with spatial and temporal coordinates. AUVs can use

GPS localization while at the surface, and dead reckoning

(DR) while diving. Unfortunately, DR can result in significant

localization errors in the presence of underwater currents. A

Doppler Velocity Log (DVL) can be used to remedy this

situation by performing bottom tracking, which allows the

vehicle to measure its relative speed, thereby improving DR.

However, operating the DVL sensor itself, and processing

the acquired data can be energy and computation intensive.

Without reliable localization many scientific missions are not

feasible, including under-ice deployments where acquiring a

GPS position at the surface is not possible.

Sensor Triggering - The Slocum glider does not currently

support fine-grained or cross-sensor adaptive sampling. Sen-

sors are typically turned on all the time, or active only on

dives or climbs. The effectiveness of some sensors can be

improved by making them part of a trigger chain, where low

cost sensors activate more costly, but more precise sensors.

Adaptive sampling may require significant physical modeling

efforts and data processing capabilities.

ROMS - The Regional Ocean Modeling System (ROMS [7])

comprises a traditional ocean forecast model complemented

by advanced variational data tools that allow the assimilation

of 4-dimensional data, and more importantly, the sensitivity

of the forecast to the present and future ocean state and

the observational sampling pattern. For example, ROMS can

be used to help optimize the path a glider takes between

waypoints, or to indicate the regions where new observations

would lead to the greatest improvement in forecast precision.

Charting the 3-dimensional and time varying pattern of

these anomalies in ocean temperature and salinity represents

an attractive test-bed for integrating ocean observation and

simulation through adaptive sampling and smart control on

a single platform. Optimizing the integrated system will ne-

cessitate trading off the sampling frequency, the sensors that

are active, the distance traversed by the AUV, the ocean model

computational effort, and communication, all of which make

demands on the available battery power and energy.

Path Planning - The task of the path planning algorithm

presented in this paper is to find a time-optimal path from a

defined start position to a goal position while evading all static

as well as dynamic obstacles in the area of operation, with

consideration of the dynamic vehicle behavior and the time-

varying ocean currents. The path planning algorithm, named

the Time Variant Environment (TVE) algorithm [8], is based

on a modified Dijkstra Algorithm [9]. A time-variant cost

function is calculated during the search to determine the travel
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times (cost values) for the examined edges of the graph. This

modification allows the determination of a time-optimal path

in a time-varying environment [8]. Proper path planning can

be crucial if an AUV must arrive at a target location to observe

a short lived phenomenon. It can also save time and energy

since it allows the vehicle to navigate through strong ocean

current fields.

IV. EVALUATION

As previously discussed, the SCC is particularly well suited

for parallel applications. For this reason, the ROMS and path

planning programs are targeted in our investigation to marry a

CPS with a parallel capable infrastructure, like the SCC, that

can provide the necessary knobs to tradeoff power and energy

restrictions with application runtime deadlines.

For our evaluations, we generate custom settings for the

SCC. These settings initialize the SCC with different core,

network and memory configurations. Because we envision

multiple programs communicating at the same time on the

SCC, we also studied non-standard mesh network speeds in

the hope that it could provide us with additional insights on

the tradeoff space of the SCC.

Both ROMS and the path planning application make use

of RCKMPI [10] for message passing which should provide

comparable performance to RCCE [10], [11]. The MPD pro-

cess manager, recommended for use with the SCC, is used

throughout the experiments. All cores boot a Linux 3.1.4

kernel image. Finally, power measurements were gathered

from the SCC infrastructure.

A. ROMS benchmark

We evaluated the feasibility of running ROMS on the SCC

using a sample benchmark provided with ROMS. The bench-

mark consists of 512x64x30 grid points and 200 time step

iterations. The main computation is a two-dimensional stencil

with nearest-neighbor communication. The grid is divided into

tiles, where the total number of tiles must match the number

of cores that are part of the computation. The grid’s tile

dimensions were chosen to maximize the size of grid points

calculated per core and to reduce the size of the halo/ghost

regions. Larger halo regions require more communication and

computation. We empirically validated that the tile dimensions

used are optimal for the grid size and the number of cores.

Our evaluation of the ROMS benchmark program is shown

in Fig. 2. A diverse set of configurations of CPU, mesh, and

memory were tested with both 24 and 48 cores. In most

cases, the runtime for 48 cores, Fig. 2(b), is lower than

the 24 cores (Fig. 2(a)) with the same setting. The fastest

configuration with 24 nodes performed nearly identically to the

second slowest configuration of 48 nodes, and outperformed

the slowest. In scenarios where soft runtime deadlines are

acceptable, numerous options and tradeoff points are available

for ROMS. A global application scheduler can consider these

alternatives during the arbitration of the next SCC setting.

The average power consumption during the execution of

ROMS is shown in Fig. 2(c) and Fig. 2(d) for 24 and 48 nodes,

respectively. Throughout the experiments, lower mesh speeds

reduced power by several watts. The most pronounced effect

on power were high tile frequencies. Battery operated CPSs,

like the Slocum glider, may need to observe power caps during

operation, since actuators and other systems can increase the

power load on the device. Therefore, it may not always be an

option to run the fastest configuration with the highest node

count.

Similar to the runtime, it is generally more energy efficient

to use 48 cores instead of 24 cores to run the benchmark.

The highest setting for the 24 nodes in Fig. 2(e) is, however,

similar to the lowest configuration of the 48 cores seen in

Fig. 2(f). When comparing their respective runtimes, the 48

node setting does outperform the 24. Across the figures,

the crossover points are very similar and are prospective

tradeoffs opportunities. Because of the dynamic nature of

AUVs, mission priorities can change often, emphasizing the

importance of a suitable arrangement for runtime, power and

energy.

B. Path Planning

We have ported both the serial (S-TVE) and parallel (P-

TVE) versions of the TVE path planning algorithm to the

SCC. The input parameters to both programs were identical

throughout the benchmark tests. Since parameter choice can

have an impact on the amount of parallelism the program

is capable of during execution, we have chosen a set of

parameters consistent with our previous work [12].

The opportunity for parallelism that was exploited and

implemented in P-TVE was to find the optimal dive profile

depths for the vehicle. Because the AUV can experience

different currents at various depths, it may be advantageous for

the vehicle to glide within a certain depth range for portions

of the flight. For each edge in the graph, this dive profile

calculation is evaluated for 20 distinct depths ranges.

Results of the path planning programs for the SCC config-

urations are show in Fig. 3. S-TVE results are only available

for one core since there is no parallelism involved. P-TVE has

a master/slave architecture where the master delegates work to

slaves that perform the dive profile task, so at least two cores

are required. The MPI-NOOP results measure the overhead

of the MPI infrastructure. It is a modified version of P-TVE

which initializes MPI and immediately exits.

The program runtime, Fig. 3(a), and dive profile search

time, Fig. 3(b), decreased as the number of cores increased for

P-TVE. There is an initial communication overhead for two

cores, when compared to S-TVE, as the master must delegate

work to the slave. The step-wise behavior is explained by the

number of iterations of work delegation that is performed by

the master. For example, with 11 cores, 10 slaves perform work

for two work iterations. In the case of 12 cores (11 slaves), the

second work delegation will leave one slave idle. Because of

the input parameter of 20 distinct depth range calculations, the

optimal number of nodes should be 21. This accounts for one

master with 20 slaves doing one iteration of work. Additional

nodes only provide overhead in P-TVE as indicated by the
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Fig. 2. ROMS evaluation results for various SCC settings. The execution times for ROMS using 24 (a) cores and 48 (b) cores. The average power , (c) and
(d), of the SCC during the execution of program. The energy required to run ROMS for 24 (e) and 48 (f) cores.

speedup of the dive profile search in Fig. 3(c). The speedup

for each setting is normalized to the S-TVE search time of the

same setting. If the number of profile searches is increased,

additional cores could be used with a concomitant increase in

benefit. Additional details are available in [12].

To reduce the power and energy of the program, idle slaves

are instructed by the master to enter into sleep mode. In sleep

mode, a slave performs an asynchronous receive call instead

of a blocking receive call. This allows the slave to sleep in
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Fig. 3. Evaluation results for the path planning program for various SCC settings. The runtime of (a) is the time required for the entire program to execute.
The search time, (b) is the time required to perform the search for the optimal dive profile. Speedups for each of P-TVE is relative to the S-TVE with the
same SCC setting. The energy required for the entire program execution (d) is based on (a).

between update checks of the asynchronous call. Although

this introduces latency for the first receive, it greatly reduces

the overall energy used by the slave. This latency is evident

in Fig. 3(c), especially when there are a high number of idle

slaves. For example, after 21 nodes, even the idle slaves that

will never perform any work experience the latency because

they wait for the termination message to be sent by the master.

The evaluation indicates that the path planning program

is more reliant on computation than communication as the

slowest core speed setting has the longest program and profile

search runtimes. Lowering the mesh speed does decrease the

speedup of the parallelization because it delays communication

between the master and its slaves. However, the effect it has

on runtime is not as significant as observed when changing

the CPU frequency.

The energy required for the planning programs are depicted

in Fig. 3(d); it shows opportunities for tradeoffs that could

be used when choosing an SCC configuration that will run

several programs simultaneously on the chip. Although the

runtime of the P-TVE is generally longer for the low mesh

speed configuration, the power saved by reducing the mesh

frequency translates to a comparable energy profile of the

highest speed SCC setting. After 21 cores, even the slowest

tile setting could be considered, as the energy difference is not

substantial. Similar to the runtime results, energy is wasted on

idle slave cores. We hope to address this issue in the future.

C. Discussion

The applications described, along with others, could be

required to run simultaneously on the SCC. Depending on the

current needs of the system the priority of tasks may change

periodically, or change based on observations of phenomena

in the environment.

Power caps can also restrict the selection of high power SCC

settings. A Slocum glider typically uses alkaline battery packs,

so the supply voltage drops as energy is consumed. A glider’s

fresh alkaline battery pack is rated as 1800 watt hours, while

the SCC’s power demands can range from 40 W to 80 W for
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our applications. As a comparison, the buoyancy engine of the

glider operates at 60 W or more during inflections at 200 m

depths. The vehicle must maintain a minimum voltage level

at all times to operate safely. The use of actuators, like the

buoyancy engine, and sensors, such as a DVL, will increase

the power needed by the AUV. It may not be possible to run

the SCC concurrently with some sensors, while other sensors

can be active at the same time as the SCC provided that the

chip does not exceed its allotted power.

Having knowledge of the tradeoff points for an application

is critical when choosing a configuration setting. For example,

at some point in a deployment, a vehicle’s path may need

to be resolved rather quickly. Ideally, the highest tile, mesh

and memory speed (Tile800 Mesh1600 DDR1066) should be

chosen and P-TVE is run on 21 nodes. However, there could

be a loose deadline to perform modeling and thus ROMS

must also be considered. If the highest setting exceeds the

allotted power, a small sacrifice could be made by lowering

the mesh frequency. The impact on the runtime and energy

of path planning is minimal. While the impact is greater for

ROMS, it may still fall within the soft deadline restrictions.

The ROMS tradeoff scenario described in Section IV-A

could also be made in the case of a power cap. If there is

no need for path planning, and the requirements are such

that ROMS should have nearly the same runtime and energy

profiles as the best setting for 24 nodes, then the program could

be run on all 48 cores at half the tile frequency. This allows

the program to not only be more runtime and energy efficient

but also greatly reduces the required power. The lowering of

the frequency, in this case, is what may be needed to bring

the power profile below the cap.

Although we have focused on power cap scenarios, other

tradeoff points which concentrate on energy and runtime can

be made. This is especially true if more applications, like

sensor triggering, are involved in the deliberation. Other cyber-

physical systems will have their own hardware and software

restrictions and priorities. The SCC can provide CPSs a

tradeoff space in which it can make decisions that involve

runtime, power, and energy.

V. CONCLUSION AND FUTURE WORK

In this paper, we have performed a set of benchmarks for

applications on the SCC that could be used in a battery-

operated Slocum glider or a battery-operated propeller-driven

AUV. The results of our evaluation indicated that the ap-

plications expose many knobs for different SCC tile, mesh

and memory frequency settings. These knobs can be used to

tradeoff program runtime, power, and energy use depending

the needs of the AUV and the overall mission. A deployment

of our SCC system within one of our Slocum gliders is not

possible due to the SCC’s particular form factor and system

configuration. Our case study shows that future many-core

architectures similar to the SCC can play a significant role in

making AUVs more effective, autonomous research platforms.

As part of future work, we would like to port our applica-

tions to invasive MPI (iMPI) [13]. In particular, based on our

evaluation of the path planning application, the overhead of

launching MPI processes can be significant using MPD. Sim-

ilar overheads were observed in [13] and were reduced using

iMPI’s process manager. We hope that this MPI alternative

will help to reduce the energy requirements of applications

running on the SCC.

We would also like to extend our evaluation with additional

SCC settings. The programs in our evaluation were run in iso-

lation. Performing a similar analysis for multiple applications

running concurrently on the SCC could be of interest. Having

several programs interacting with the chip may spur interesting

effects on the runtime and energy profile of the applications.
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Abstract—In this paper we propose and describe how we have
built a tool that enables a user to interactively monitor and
manage a many-core system like the 48-core experimental Single-
chip Cloud Computer (SCC), which was created by Intel Labs
targeting the many-core research community. We provide the
user with a visual representation of the current state of the system
on multiple levels of detail, such as chip, core and task. We allow
the user to create, start, pause and migrate tasks across different
cores. We also allow the user to easily adjust the voltage and
frequency of the chip. However this tool can run on any PC with
a screen and input devices, we have optimized the interface to
run on a multi-touch device for the best ease of use.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-

cessor [1] is a 48-core concept vehicle created by Intel Labs as

a platform for many-core software research. It provides an on-

chip message passing network, a non cache-coherent off-chip

shared memory and dynamic frequency and voltage scaling.

Unlike currently available multi-core systems, the SCC is

an on-chip distributed system. Even though efforts are already

made and still continuing on writing and porting operating

systems or virtualization layers that can manage the chip as

a whole [2], the most common use of the SCC system is

currently to have every core managed by its own instance

of a slightly modified version of the Linux kernel. As a

consequence, it gets harder for users to gain insight in the

current state of the system. Also, it is not trivial to map tasks

on the system while keeping the load balanced and energy

consumption low, without a complete understanding of the

state of the system.

We propose a management system for independent many-

core systems like the SCC, which enables users to interact

with the system. The user of the system must be able to:

1) Monitor the system:

• Current load, state and power consumption of the

chip.

• The current resource usage for each core.

• The resource usage per monitored process on a core.

• Task output.

• Overview of running, waiting, completed and pos-

sibly failed tasks.

2) Manage the system:

• Easily create a task.

• Start a task on a single specified core, or the best

core available (suggested by the system).

• Migrate tasks to other cores, either manually with or

without suggestions from the system, or potentially

automatically.

• Control frequency and voltage.

All of the above can easily be controlled from a user

interface running on a regular PC with mouse interaction, but

to improve the user experience and ease of use even more, the

system is optimized for use with a multi-touch system.

Manually managing a system like the SCC does not seem to

be very efficient in daily practice. For this purpose, it is better

to use an automated grid- and cluster management system.

However, we think that our system is very useful in both re-

search and education. It can mainly be used for experimenting

with task placement and voltage and frequency settings, while

having a clear understanding of what is currently happening

from a user friendly interface. The system can later be attached

to an automated task manager or grid engine.

In this paper we will discuss our experiences in building

such a management system for the SCC. We assume sufficient

knowledge of the SCC architecture and its memory system,

as this is broadly covered by both related work [1], [3]

as well as our previous work [4], [5]. Some related work

on visualization, but not on cluster management systems, is

described in Section II. We discuss which approaches and

tools we have used for the implementation in Section III.

In Section IV we evaluate these different approaches and we

conclude with a discussion and future work in Section V.

II. RELATED WORK

Since the beginning of the SCC research, a Performance

Meter has been available as part of the sccKit provided by

Intel (See Figure 1). This tool shows us the current load for

all the independent cores, as well as the overall usage and

power consumption of the system. It is a nice tool, but it will

not be sufficient for our proposed system, as there is no way

to actually manage the SCC.

QNX Software Systems [6] has developed software for

the visualization of many-core applications, which is used

mostly for the development of applications in embedded

systems. It is not considered for the management of a running

system. Other visualization frameworks such as IBM’s Tuning

Fork [7] are available to monitor the performance of a system.

Many visualization tools only operate on traces instead of a

running system. We have not found a system that combines

visualization and management on the same high level as we

want to.
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Figure 1: The SCC performance meter (sccPerf).

III. MANYMAN - THE MANY-CORE MANAGER

The many-core visualization and management tool has

been dubbed ManyMan, as in Many-core Manager. Many-

Man consists of two main parts, a front- and a back-end,

with a communication layer in-between. The reason for this

separation is twofold. First, the front-end could theoretically

be attached to a different many-core chip, or, the other way

around, a different front-end could be attached to this back-

end. This increases the usability of the tool, since it is not

restricted to just one chip or interface. The second reason for

this separation is of a more practical kind. At the University

of Amsterdam, the SCC is located in a server room where no

monitor could be easily attached to it.

BACK-END

The back-end has been written completely in Python, for

which there are two main reasons. First, Python is a relatively

easy programming language which allows for rapid develop-

ment. Second, Python provides good support for running many

threads, starting shells on remote machines using subprocesses

and TCP communication. The back-end performs multiple

tasks:

A. Monitoring

Monitoring the chip is half of the visualization and man-

agement tool. One would like to know the status and payload

of every core and task on the system. Unfortunately, the SCC

does not provide such information about the chip as a whole,

which means that it needs to be retrieved separately from each

core.

In order to access one of the SCC’s cores, one needs to

open an SSH connection to the core in question from the

MCPC. Since an SSH connection needs to be opened for each

task that runs on the SCC, SSH Connection Sharing is used.

This mechanism allows us to have only one TCP connection

to an SCC core, with one-time authentication. This master

connection has to be active while all subsequent connections

are, which makes the monitoring process the perfect candidate

to be that connection.

In order to obtain the payload information of each core,

the Unix top command is used. At adjustable intervals, top

provides information about all processes that are running on

the core and the total payload of the core itself. The fact that

this information is everything that has to be shown, makes

top the ideal monitoring solution. However, as top accesses

more information than just that information that is needed, it

might create some overhead.

It has to be noted that any resource usage of processes that

have not been started using ManyMan, as for example kernel

processes, will be marked as overhead. This overhead will be

visible in the total core payload, but, of course, not in the per

task payload. Because of that, the task payloads will not add

up to the total core payload.

B. Task creation

When a task needs to be created, a child connection is

added to the monitoring master SSH connection of the core

on which the user has decided the task should run. On this

child connection, the task is started with BLCR’s cr_run

command, and a small wrapper that enables us to obtain the

process identifier (PID) of the task on the remote core. When

the program starts to run, its output will be buffered. It will

be sent to the front-end upon request.

In case a user does not know which core to start a task on,

a smart-start function has been implemented. When smart-

starting a task, the core with the least CPU and memory

usage is selected. In this process, both the CPU and the

memory usage have the same weight. A possible growth in

CPU or memory usage is foreseen by also taking the number

of running tasks on a core into account. The more tasks are

running on a core, the smaller the chance a task will start there

gets. As soon as the best core to run the task on is found, the

task will be started on that core as usual. Note that this smart-

start function does not keep track of the history of core usage

or whatsoever, but it just looks at the current core state.

C. Task migration

To enable the migration of tasks, we make use of the

Berkely Lab Checkpoint/Restart library [8]. Using BLCR,

tasks can easily be stopped (checkpointed) and restarted later

while releasing all resources. Restarting a task can also be

done on other cores or even other compatible machines.

Besides the benefits, checkpointing also creates overhead, as

the BLCR library writes the complete state of the process to

the filesystem. A task that needs to be migrated will first be

checkpointed using the cr_checkpoint command from the

BLCR library. The location of the context file that is hereby

created will be stored in order to be able to restart the task later.

When checkpointing is complete, the task can be restarted on
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the desired core using cr_restart. When a user does not

want to restart the task yet, it will instead be moved to the

list of waiting tasks. Since all cores of the SCC mount the

same /shared directory, one does not have to worry about

sending context files among cores. These can just be found

on the exact same path as where they were originally stored.

At restart, the cr_restart command will be executed with

the -no-restore-pid flag to avoid PID collisions on the

remote core.

Just like the smart-start function, a smart-move function has

been implemented. Using this function, a task can be moved

to the best possible core, which is found the same way as it

is done when smart-starting, except for the fact that the new

core will never be the core the task is already running on.

D. Task pausing / resuming

Since checkpointing a task produces some overhead, tasks

can also be paused using the traditional POSIX STOP signal,

after which they can be resumed by sending the POSIX CONT

signal. It has to be noted that even though the process is paused

and will not use the CPU, it will not release resources such

as memory. Due to this fact, paused tasks cannot be moved

to other cores, as long as they are not checkpointed. Besides

that, not releasing memory might be a problem for the SCC

cores, since their private memory is limited (around 640MB).

For manually scheduling CPU intensive tasks however, this is

a great solution.

E. Communication

The communication between front- and back-end makes use

of a TCP connection. The connection is currently open and not

encrypted as both client and server are within the same access

restricted network. When the server needs to be available on

the public internet, some form of authentication has to be

implemented. Across the TCP connection, messages are sent

in the JSON format. This format is human-readable, which

allows for easy debugging and portability.

FRONT-END

The GUI part has been optimized for use with a (multi)touch

display. For the front-end we make use of Kivy [9]. Kivy is

an open source library for rapid development of applications

that make use of innovative user interfaces, such as multi-

touch applications. The same Kivy source code runs on Linux,

Windows, MacOSX, Android and IOS, providing us with the

best flexibility.

F. Chip overview

The chip overview as a whole is shown in figure 2. In

the middle part, the cores are presented in the order they

are physically arranged at on the chip. This order serves no

functional purpose, but has been chosen to provide the user

a realistic view of the chip and provide the same layout as

the sccGui does. The payload of each core is visualized

by a coloured overlay that changes in both colour and size.

The portion of the core that is taken by the overlay literally

Figure 2: ManyMan’s main window, the chip overview.

translates to the core’s CPU usage, where the colour changes

from green at 0% CPU to red at 100% CPU. Although the

information is only updated once a second, the overlay is

animated to fade to the new payload within that second. The

main window also notes the number of tasks per core.

On the left side of the window, a list of tasks is shown.

These tasks are currently not running on any core, but are

either not started yet (new) or have been stopped by the user

(stopped). In order to (re)start such a task, one can simply

drag it to the core he or she wants it to run at. If the user

does not care on which core the task will run, the task may be

smart-started by tapping the play button on the right side of

the task. By clicking the copy button on the left side of a task,

the task can be duplicated. This is especially useful when said

task is a benchmark program.

The right side of the window provides a list with tasks that

are either finished or have failed to complete. In this list, the

task’s output and statistics can still be viewed, but it can not

be dragged any more. The delete button will remove the task

completely from the ManyMan system.

Figure 3: ManyMan’s core view, containing information about

core 28.
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G. Core view

When tapping a core in the chip overview, a popup like the

one in figure 3 will open. On the left side, the history of the

CPU and memory usage is shown. In these graphs, the white

line indicates the total load of the core, which consists of all

tasks started by ManyMan, plus all overhead (i.e tasks not

started through ManyMan, and OS overhead). The coloured

lines in the performance graphs indicate the payload of the

tasks that have been started using the many-core management

system. The colours of these lines match the colours of the

tasks in the task list on the right side of the core view.

The tasks in the task list can be moved to a different core by

simply dragging them to the core a user wants them to run on.

When dragging a task, all open core popups will swerve out

of the way so that they do not block any core. The smart-move

option, along with some additional controls and information,

is located in the detailed task view. This task view can be

opened by tapping the information button on the left side of a

task. When a task is dragged to anything that is not a core, as

for example the task list on the side of the main view, it will

be checkpointed and moved to the chip overview’s task list.

In order to be able to compare the payloads of two or more

cores, multiple core views can be opened at once. The user

may drag them around to prevent them from lying on top of

each other. The popup can also be scaled to fit more of them

on the screen, or rotated for when the user wants to look at it

from a different angle.

Figure 4: ManyMan’s task view, on a task ’Count’.

H. Task view

The detailed task view (see figure 4) looks similar to

the core view. Again, the left side of the popup contains

information about the CPU and memory usage of the task.

On the lower right side of the window, the last 100 lines of

the task’s output are shown. This number is configurable, but

cannot be too large due to Kivy’s inefficient way of rendering

text. The complete output of a task is written to a file, so that

it can be accessed and processed later.

Above the output, the task control buttons are shown.

Tapping the stop button will signal the back-end that the task

needs to be checkpointed, after which the task will be moved to

the chip overview’s task list. When a user wants to temporarily

pause a task, he can tap the pause button. The back-end will

then send a POSIX STOP signal to the task, after which the

pause button will be replaced by a resume button. Tapping

this button will cause the task to be resumed by sending it

the POSIX CONT signal. Finally, tapping the move button

will smart-move the task to the best available core other than

itself.

Figure 5: The task create popup along with the on-screen

keyboard.

Just like the core views, multiple task views may be opened

at once to compare their performance. It is even possible to

have both multiple core and task views open at the same time.

I. Task creation

When tapping the Add task button in the main window,

a popup will open in which a command and optionally a name

can be entered. This popup is shown in figure 5. For multi-

touch support, an on-screen keyboard can be used to enter

the name and command of the task. A command is either a

known shell command or the location of a binary accessible

on the cores (for example in the /shared directory). After

the create button is pressed, the task will be added to the chip

overview’s task list. A better way of creating a task would be

by selecting a binary using a file browser. Unfortunately, the

front-end does not run on the SCC’s MCPC, which means that

one cannot easily open a graphical file browser and navigate

to the file.

J. Voltage and Frequency Scaling

Using the Set Frequency button, ManyMan is able to

set the frequency divider for each tile. Currently, we only

change frequencies at voltage domain level, and set the voltage

according to the minimal value for that frequency. See table I,

obtained from [10], for the corresponding values. As figure 6

shows, one can set the frequency for each of the power

domains, or for the chip as a whole. In the main window,

the power consumption of the complete chip is visualized in

a graph.
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Figure 6: Frequency and Voltage settings, easily adjustable.

Frequency divider Frequency Voltage

2 800 1.16250
3 533 0.85625
4 400 0.75625
5 320 0.69375
6 267 0.66875
7 229 0.65625
8 200 0.65625

16 100 0.65625

Table I: SCC supported frequencies and required voltage.

Based on [10], where frequencies between 100-200 are left

out on purpose.

IV. EVALUATION

A. Running latency

In order to be able to stop a task in mid-execution, tasks

are started using the cr_run command, which might cre-

ate overhead. In order to test this, experiments have been

performed using a program that calculates the sum of some

million random numbers. The Unix time function has been

used to time this program when it is executed both with

and without the cr_run command. On the SCC, the time

function is unreliable for measuring the wall-clock time, due

to the possibly varying frequencies of the cores where the

kernel does not correct for by default. In a period that the

frequency does not change, however, this function can be used

to measure relative times. We measured an overhead of about

0.2% for this task with a running time of about 55 seconds.

In practice, it boils down to less than 0.1 second of overhead

per execution.

B. Checkpoint/Restart latency

Checkpointing can create a lot of overhead, as the BLCR li-

brary writes the complete state of the process to the filesystem.

On the SCC, the only (persistent) filesystem is NFS mounted

from the MCPC. This allows easy migration of tasks across

cores, but also introduces a large latency for task migration.

Figure 7 shows the latency for checkpointing and restarting

processes with increasing memory usage. The testing program

Figure 7: Latency for checkpointing and restarting using the

BLCR library on SCC core 0.

that has been used here simply allocates a specified number

of megabytes of memory. This memory is then filled with

random data, after which the sum of this data is calculated.

While calculating the sum, the process will be checkpointed.

It is made sure that all requested memory has been allocated

and filled with random data at that time. This way, problems

with lazy allocation of memory pages will not be encountered.

The measurements in this experiment were done by adding a

timing mechanism in the BLCR source code. At the beginning

and end of the main function, the time stamp counter (TSC) is

read and the values are subtracted. To convert to seconds, the

resulting value is divided by the core frequency. As expected,

the time required for checkpointing scales linearly with the

amount of allocated memory.

Figure 8: Latency for checkpointing and restarting using the

BLCR library on core 0. Writing to NFS compared to writing

to RAM.

Besides the test where context files were written to NFS on

the MCPC, an additional test has been performed where the

context files were written to the filesystem in RAM (/tmp).

The results of this experiment can be found in figure 8. It

shows that the time required for checkpointing can be reduced

with approximately 4.5%. When restarting a task from RAM,

the difference is much bigger. A task now restarts almost twice

as fast, with a speedup of 49.3%. This giant difference is due

to the fact that loading data from NFS into RAM is a very

time consuming task. When context files are written in RAM,
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there is a problem when tasks need to be migrated. As multiple

cores do not share their RAM, the context files would have to

be copied between cores. This could possibly be done by using

Copy Cores or shared memory (memory remapping). However,

relocating context files would slow down and complicate the

restarting process again and probably not be beneficial.

C. Connection Sharing time gain

In order to speed up each access to a core, SSH Connection

Sharing is used. We measured the average time it takes to open

an SSH connection to SCC core 10, both with and without

using Connection Sharing. In order to obtain these results, an

ssh command was used to open a connection to core 10,

on which immediately the exit command was executed. We

measured an average speedup of 0.61 seconds when using

Connection Sharing.
In order to make sure these results were not distorted

due to immediately closing the connection using the exit

command, additional experiments have been performed in

which a sleep of 10 and 20 seconds has been executed.

For these experiments, the average time gains were 0.62 and

0.61 seconds respectively, by which the initial measurement

is confirmed.

D. Energy Consumption

We performed a very small power consumption measure-

ment in which we calculate the number of (floating point)

operations in an iterative estimation of π. The results of this

test can be found in table II. We can go from as low as 21 W

at 100 MHz to 110 W at 800 MHz. As we count the number

of operations per watt, we see that 320-400 MHz is the most

efficient in power consumption. For an idle system, we can

easily scale back to 100 MHz and only consume 18 Watts.

Freq. Volt. FLOP/s Power FLOPs / Watt Idle

800 1.16250 2232382092 110W 20294383 64W
533 0.85625 1517496998 48W 31614521 30W
400 0.75625 1138837303 35W 32538209 24W
320 0.69375 912457180 28W 32587756 22W
267 0.66875 760936186 25W 30437447 21W
229 0.65625 653551028 24W 27231293 20W
200 0.65625 570407521 23W 24800327 19W
100 0.65625 285427629 21W 13591792 18W

Table II: SCC power consumption

E. Usability test

In order to test the usability of the front-end, a few Com-

puter Science students and a couple of students from non-

computer related disciplines were asked to perform a number

of tasks. After these tasks had been completed, the students

were asked a number of questions about the usability of the

software. The tasks that had to be performed and the questions

that have been asked can be found in [11], together with a

more detailed analysis of the results.
The general opinion of both the Computer Science and the

non-Computer Science students was that the tool looked great.

They all found the way tasks have to be started very intuitive
and really liked the detailed core overview. During these tests,

some remarks were made by the participants of which most

have been added to the application.

V. CONCLUSION

The proposed application provides any user (either a com-

puter scientist or not) with a total insight of the resource usage

on a many-core system like the SCC. The current design of

the system is modular, which means that we can easily adapt

the font-end to work with a different many-core system than

the SCC, but we can also use the back-end for other purposes.

The current system may also be usable to manage a cluster of

independent (unix) machines with a shared file system, as we

currently consider the SCC as a cluster on chip.

The work described in this paper can be extended with

some more additional features. Examples of those can be

support for MPI tasks including core selection, or automated

task scheduling and migration. This scheduler should then be

able to automatically adjust voltage and frequency based on

the load of the system and possible deadlines. One can also

investigate the options for replacing the BLCR library with a

more sophisticated cluster management system.

The software created in this project is available for down-

load under the GPL3 license at [12], where we also provide

more information about the project, screenshots and a demon-

stration video.
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Abstract—The Intel SCC manycore processor supports energy-
efficient computing by dynamic voltage and frequency scaling
of cores on a fine-grained level. In order to enable the use
of that feature in application-level energy optimizations, we
report on experiments to measure power consumption in different
situations. We process those measurements by a least-squares
error analysis to derive the parameters of popular models for
power consumption which are used on an algorithmic level. Thus,
we provide a link between the worlds of hardware and high-level
algorithmics.

I. INTRODUCTION

Energy consumption by computers is continuously growing,

and thus energy-efficient computing — sometimes embellished

as the wider field covered by the buzzword green comput-

ing — gains more and more interest. The Intel Single-chip

Cloud Computer (SCC) manycore processor chip supports

energy efficiency by allowing the user to scale the clock

frequency and the supply voltage of the cores (in groups

of 2 and 8, respectively) and the on-chip network during

runtime, providing many levels for both. Howard et al. [1]

provide some data on power consumption of Intel SCC, but

do not focus on energy efficiency. Albers provides a survey

on algorithmic-level techniques for energy-efficient computing

[2]. Those techniques rely on a parameterized model of power

consumption by cores. Thus, in order to be able to exploit the

algorithmic techniques known in the art on the SCC, it seems

helpful to derive the model’s parameters.

In order to obtain those parameters, we devise microbench-

mark programs and machine settings for the Intel SCC and

measure the power consumption. We subject the differences

between those measurements and the power model to a least-

squares error analysis and thus derive the model parameters.

In this way we provide a missing link between the abstract

algorithmic-level treatment of power consumption and the

hardware-oriented view of power consumption for SCC.

The remainder of this article is structured as follows. In

Section II, we briefly review the model of power consumption

used on an algorithmic level. In Section III, we present the

experimental setting, the measurements and their analysis.

Section IV discusses related work. Section V provides a

conclusion and outlook on further work.

II. POWER CONSUMPTION MODEL

Viewed from an abstract level, the dynamic power consump-

tion of a semiconductor device (such as a processor core) is

dependent both on the frequency with which the device is

clocked, and on the supply voltage. Thus, for a specific device

we might model its dynamic power consumption at frequency

f (assuming a fixed supply voltage) by

pdyn(f) = b · fa , (1)

where b and a are device-specific constants. Typically, a is

assumed to lie between 2 and 3 [2]. A semiconductor device

normally is also assumed to have a frequency-independent

static power consumption pstat = s, where s is a device-

specific constant. The total power consumption of the device

at a fixed supply voltage then sums up to

p(f) = pdyn(f) + pstat = b · fa + s .

The static power consumption is ignored in most studies

as it used to be only a minor fraction of the total power

consumption. However, its importance is growing due to

shrinking feature size, even in embedded systems [3].

A similar formula can be derived for the dependency on

the supply voltage, given a fixed frequency. However, the

two parameters voltage and frequency are not independent,

as the minimum and maximum possible frequencies depend

(among other things) on the supply voltage. To simplify our

investigation, we will concentrate on the clock frequency

in accordance with [2]. To still incorporate the voltage, we

assume that for each frequency, the least possible supply

voltage is used. This leads to more efficient energy use and

to a more accurate model while still sticking to only one

operating parameter. As the static power consumption is linear

in the supply voltage, given that one does not approach the

threshold voltage too much [4, Eq. 10] and as the minimum

possible supply voltage for a given frequency on SCC can be

approximated by a linear relationship, we get

p(f) = pdyn(f) + pstat = b · fa + s · f . (2)

In order to compute the energy consumption during a time

interval [t1; t2], we can either multiply the power consumption

with the length t2 − t1 of the time interval if the power

consumption remains constant during that interval, or we have
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to split the interval into sub-intervals with constant power

consumption and sum up the energy consumptions of the sub-

intervals otherwise. As the power consumption turned out to

be approximately constant during our experiments of fixed

length, energy and power consumptions are proportional, and

thus only power is considered further.

The algorithmic techniques reviewed by Albers [2] either

assume that frequencies can be scaled continuously, or that

a finite number of discrete frequency levels are available.

Also, some techniques use the features that cores can be put

into energy-saving mode or even switched off if not needed.

While frequency change is normally considered to happen

atomically, i.e. without a time or power penalty, switch-off of

cores implies both. Yet, we will restrict ourselves to frequency

scaling and not consider switch-off in our current investigation.

The Intel SCC consists of 24 dual-core tiles, i.e. 48 cores.

The cores are organized in 24 frequency islands, one for

each tile with 2 cores, and 6 voltage islands each comprising

8 cores, for the purpose of dynamic frequency and voltage

scaling. In order to change the frequency and voltage during

the runtime of a program, the RCCE library, which is provided

with the SCC, offers some power management functions. It is

possible to change the frequency and voltage of the different

islands separately. Another and, for our experiments, more

important possibility is to change only the frequency of the

cores and let the voltage automatically scale to the lowest

stable state. In this case there are only 6 so-called power

domains, which are equal to the voltage islands [5]. For

changing the frequency, one has to set a frequency divider

between 2 and 16 for each power domain. The frequency

divider is an integer value with which the global reference

clock frequency of 1.6GHz is divided.

Thus we can vary the frequency (and voltage) as depicted

in Tab. I.

TABLE I
TILE FREQUENCIES, RCCE FREQUENCY DIVIDERS AND VOLTAGES [6,

PP. 39-40]

Tile Frequency RCCE Frequency Divider Voltage
(MHz)

800 2 1.1
533 3 0.8
400 4 0.7
320 5 0.7
266 6 0.7
228 7 0.7
200 8 0.7
178 9 0.7
160 10 0.7
145 11 0.7
133 12 0.7
123 13 0.7
114 14 0.7
106 15 0.7
100 16 0.7

The cores are interconnected by an on-chip network, which

also connects them to 4 on-chip memory controllers. Both on-

chip network and memory controllers are frequency islands of

their own. At system start, the on-chip network can be scaled

at frequencies 1.6GHz and 800MHz [6, p. 22]. The memory

controllers’ frequency normally is not scaled because of their

connection to the off-chip memory banks that need a fixed

operating frequency. Thus in the following, we assume the

memory controllers’ power consumption to be static. This is

a simplifying assumption, as the power consumption not only

depends on voltage and frequency, but also on the application.

If the cores and network are scaled down, while the memory

controllers keep their frequency, then from the controllers’

perspective the application changes, i.e. does fewer accesses

[1].

In the following, we will denote by indices c, n and

m functions or constants belonging to cores, network, and

memory controllers, respectively. Thus, if the 6 power domains

are run at frequencies f1 to f6 and the on-chip network at

frequency f0, then the power consumption of the Intel SCC

would be modelled as

pscc(f0, . . . , f6) = pn(f0) + pm +

6∑

i=1

8 · pc(fi)

= bn · f
an

0
+ 8 ·

6∑

i=1

bc · f
ac

i

+ sn · f0 + sm + 8 ·
6∑

i=1

sc · fi .(3)

The experiments of the following section are designed to

experimentally derive the numerical values of bn, bc, an, ac,

sn, sm, and sc. Normally, algorithmic power models [2] only

consider the power consumption of complete chips. Therefore,

we reduce the number of parameters by assuming an = ac.

III. EXPERIMENTAL ANALYSIS

In each experiment, we fix the frequencies f0, . . . , f6, run

a microbenchmark program with one of four different settings

on the SCC, and measure the power consumption one thousand

times during the run of the program. For our measurements we

use the FPGA on the Rocky Lake Board, which supports the

direct measurement of voltages and currents of the domains.

The program can read the actual voltage/current values through

FPGA register access. Also, each experiment is repeated five

times. We then compute the average power consumption from

all measurements in each repeated experiment. When we

put the frequency values and the measured power value into

Eq. (3), we get a non-linear equation with the six unknowns

bn, bc, an, sn, sm, sc.

We devise a large number of frequency settings as explained

below, and thus get a corresponding number of equations. We

compute approximate values for the unknowns with a least-

squares error analysis. Put shortly, for a set of values cn to

sc and a set of values f0 to f6, the power consumption pscc
computed by Eq. (3) differs from the power consumption pexp
measured in the experiment, and thus produces a squared error

(pscc − pexp)
2. The analysis derives a set of values cn to sc

such that the sum of the squared errors from all experiments

is minimized.
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Note that in our preliminary experiments, we did not vary

the network frequency f0, and thus the term pn(f0) can also

be considered static, which reduces the number of unkowns,

and results in the following equation.

pscc(f1, . . . , f6) = 8 ·

6∑

i=1

(bc · f
ac

i + sc · fi) + s̃ , (4)

where s̃ = pn(f0) + sm.

We will explain below how to split s̃ into its components

with the help of power measurements from [1]. In order to

compute the parameters as accurately as possible, we decided

to use a large range of frequencies. In order to restrict the

number of experiments, we split the cores into two groups of

sizes 8k and 48−8k each (k = 0, . . . , 6), where one group has

a higher frequency and the other group has a lower frequency.

The cases k = 0 and k = 6 are special cases in which all

cores have the same (higher or lower) frequency. We choose

the frequencies 800MHz, 533MHz and 400MHz for the high-

frequency groups and 200MHz and 100MHz for the low-

frequency groups. This results in 5 ·3 ·2+5 = 35 experiments.

As a microbenchmark program we implemented a RCCE

program whose execution can be divided into two steps that

are detailed further below. In this program, one of the 48 cores

is the coordinator, which coordinates the groups and measures

the power consumption, while the other ones are the slaves.

It is important to note that in every power domain only one

core, the power domain master, can change the frequency and

voltage of the corresponding domain. Hence, there are 6 power

domain masters and one coordinator, which is one of the power

domain masters.

The user starts the microbenchmark program with four

parameters: the number of high-frequency domains, the high-

frequency divider, the low-frequency divider and the setting

for the microbenchmark. The settings allow to have several

microbenchmarks, that differ in the use of caches, and intensity

and regularity of memory access. There are four settings in

total (cf. table II). In the first setting only one integer variable

is used, which is initially set to 0. In the other settings we

use an array with one million elements. These elements are

initially set to 0 for the second setting, to the maximum integer

value for the third setting and to the index of the element in

the fourth setting.

TABLE II
DIFFERENT BENCHMARK SETTINGS

Benchmark Description

0 Step 1: One variable, initially set to 0
Step 2: Variable is incremented by 1

1 Step 1: array[size 106], initially set to 0
Step 2: array elements added up successivly

2 Step 1: array[size 106], initially set to max int
Step 2: array elements added up successivly

3 Step 1: array[size 106], initially set to index
Step 2: array elements added up in the following order:

(7· index + rank) mod array size

In the first step of the program all cores verify if they are a

power domain master or not, and send the result (my rank

if they are a power domain master, −1 otherwise) to the

coordinator. The coordinator saves the ranks of the power

domain masters in an array and sends to each power domain

master its array index, incremented by 1. In this way, we make

sure that each power domain master has a unique domain-

master rank between 1 and 6. Thus each power domain master

can, from the user-defined number of high frequency domains,

find out to which group its power domain belongs to. After

that, the power domain masters of both frequency groups scale

the frequency (and thus also the voltage) to the user-defined

frequency. At the end of step 1, all cores are synchronized by

a barrier to make sure that all frequency and voltage scalings

for both groups have finished and all cores can begin with the

second step simultaneously.

In the second step we use a time controlled loop and simu-

late an expensive calculation on each core for 10 seconds. The

calculation depends on the chosen microbenchmark setting.

In the first setting the integer variable is incremented by 1

within the loop. This represents a microbenchmark with use

of ALU and caches, and few memory accesses. The second

and third settings add up the array elements successively.

This represents microbenchmarks with cache and memory

accesses, and different ALU use (adding up zeroes, adding up

ones). The last setting uses a more unstructured access pattern

(cf. table II) to add up the array elements, which represents

higher cache miss rate and thus higher memory traffic. While

working in the loop, the coordinator also measures the power

consumption of the whole SCC every 10th millisecond. Thus

we get an averaged result over 1000 measurement points for

each microbenchmark setting. In this way we obtain many

results for different situations and can compare these results

to each other.

Figure 1 shows the results of the four microbenchmark

settings for a high frequency of 800MHz and the low frequen-

cies of 100MHz and 200MHz, respectively. We can see that

the results of the different microbenchmark settings are very

similar to each other. The results for the other core frequencies

(533MHz and 400MHz) differ only in that with decreasing the

high frequency the power consumption also decreases with an

increasing number of high frequency domains. Thus we only

show the results for 800MHz as an example for all results that

we obtained. Also the workload over the 1000 measurement

points within each experiment is quite stable. It mostly varies

in a range of 2 Watt. There are less than 5 outliers on each

experiment.

Figure 1 depicts the average power consumption from each

of the 35 experiments. By a least-squares error analysis of

equations obtained by inserting the frequency values and a

fixed value of 3 for ac into Eq. (4), we obtain the values

bc ≈ 2.015 ·10−9 Watt/MHzac , sc ≈ 10−6Watt/MHz and s̃ ≈
23Watt. The average error is 1.95Watt, which is 5.58% of the

average power consumption (averaged over all experiments).

The relative error ranges from -14.66% to 24.73%. Thus, our

model matches the experimental data quite well.

The comparison between measured and modelled power
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Fig. 1. Power consumption of the SCC for all microbenchmark settings with a different number of high-frequency domains, for the frequency 800MHz.
The low frequency is kept at 100MHz (top) and 200MHz (bottom), respectively.

consumption is depicted in Fig. 2. In this figure each curve

or peak represents the results of one microbenchmark for the

different numbers of high frequency domains. There are totally

24 peaks, which are organized clockwise as follows: On the

right side of the circle each pair of four peaks are the results of

the four microbenchmarks with a high frequency of 800MHz,

533MHz and 400MHz (from top to bottom) and with a low

frequency of 100MHz. On the left side of the circle the peaks

are represented in a reverse order (from bottom to top) and

with a low frequency of 200MHz.

Note that the measurements for all cores running at the same

frequency (k = 0 or 6) correspond quite well to the numbers

reported in [1, Fig. 13]. There cannot be an exact comparison

as we do not know their benchmark program.

According to [1, Fig. 14], the network and memory con-

trollers consume between 18.4Watt (at cores 125MHz, net-

work 250MHz) and 35.7Watt (at cores 1GHz, network

2GHz). As we do not change the frequencies for network

and memory controllers in our experiments, the value for the

static power consumption of around 23Watt seems to match an

interpolation between those values quite well. One has to take

into account that the frequency for the network and memory

controllers in our experiments is fixed to only 800MHz for

both. Thus the voltage of these components is around 0.75V
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Fig. 2. Comparison of measured and modelled power consumption after least-squares error analysis.

and the static power consumption is as expected nearer to

the lower bound of 18.4Watt. As we can only measure the

power consumption of the complete chip, we cannot avoid to

incorporate measurements done by the chip manufacturer [1].

IV. RELATED WORK

Ioannou et al. [7] consider dynamic voltage and frequency

scaling for the SCC and implement a hierarchical power

management with phase prediction to minimize energy con-

sumption, balancing the trade-off between energy consumption

and execution time for the various computation phases of

MPI programs at runtime. Their approach is not based on

using an explicit power model derived off-line, but on iterative

adaptation of frequency and voltage within a performance win-

dow to react to changed computation patterns. The dynamic

adaptation takes into account information for the local power

domain as well as for groups of multiple power domains. They

report on average improvements of 11.4% in the energy-delay

product, with an average increase in execution time by 7.7%

compared to running constantly at maximum frequency.

Putigny et al. [8] propose a performance and power model

for SCC based on the core frequency. The model can be used

for predicting the behavior of regular code such as dense linear

algebra kernels that can be suitably characterized by a few

statically accessible parameters. Their power model does not

consider static power and does not model the network power.

The constant coefficient of the dynamic energy consumption is

not derived, and the scenario used here of combining voltage

and frequency is not mentioned.

Gschwandtner et al. [9] investigate the impact of core fre-

quency and voltage on the performance and power consump-

tion of three major benchmark applications on SCC. They find

that the benefits of core frequency and voltage scaling depends

on the program, in particular whether it is compute-bound.

They also demonstrate that, depending on the application, the

energy-optimal frequency for an entire application can be at

an intermediate level, both lower than the maximum possible

frequency (which yields minimum execution time) and higher

than the minimum possible frequency (which yields minimum

power usage). In contrast to our approach, their work is based

on measurements for entire applications and does not derive

an energy model that could be used for predictions to support

optimizations at a fine-grained level.

Kiertscher et al. [10] present an energy saving daemon

for clusters called cherub, which can interact with different

resource management systems to make them energy-aware. In

this daemon they use the most important modes from standards

and specifications like the Intelligent Platform Management
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Interface (IMPI) or the Advanced Configuration and Power

Interface (ACPI) specification to save energy. The cherub

daemon polls the state of the cluster in regular intervals to

gather the state of the different nodes and the load situation.

With this imformation it can execute some actions to switch

the states of the nodes and also distribute their load to other

nodes. In this way cherub makes the use of a cluster more

efficient in terms of workload and energy.

V. CONCLUSIONS AND FUTURE WORK

Our research provides the SCC-specific parameters for

power consumption models used in algorithmic research on

energy efficiency, thus providing a missing link between both

worlds.

For the future, we plan to include changes of the network

frequency to get more accurate measurements and analyses,

and to use the insights gained in the present experiments

to derive a power-optimal algorithmic mapping of streaming

applications onto the Intel SCC.

We also plan to extend the model to include situations where

cores can be switched off completely, which may be possible

in future architectures [2].

Finally, we would like to refine our timing measurements

to derive time penalties for changing voltage or frequency to

widen the algorithmic applicability of our results.

Our power model considers the SCC at a quite high level

only, and makes some simplifying assumptions to reduce the

model complexity. A more detailed model constructed from

microarchitectural simulation or analysis would be beyond

the scope of our work that focuses on algorithmic level

power modeling. Instead, a complementary, microarchitecture-

agnostic approach could start from a generic but detailed

algorithmic power model that includes many possibly rele-

vant terms, involving parameters both from the algorithmic

and architectural level, and which may or may not be so

obvious from a high-level view onto the chip itself and its

environment. The coefficients of this model could be calibrated

by regression analysis (or other machine learning techniques)

over training runs of benchmark programs with different

characteristics, such as the Berkeley Dwarfs [11, Sect. 3]

or similar computational kernels. This process automatically

creates a SCC-specific power model from training data that

can be used for algorithmic-level power predictions instead

of our simplified model, for instance when deciding between

different applicable algorithmic variants, resource allocation,

choice of tunable parameters, or optimizing transformations

for a computation. Similar techniques have been used for

automatic model construction in other contexts, e.g. by Steinke

et al. [12] for instruction-level energy modeling of an ARM7

processor or by Brewer [13] for algorithmic-level execution

time modeling.

Another way of algorithmic-level power modeling can be

applied after refactoring applications as combinations (such

as serial, parallel and hierarchical composition) of a small

set of algorithmic building blocks representing characteristic

computational patterns [14] (where generic patterns are also

known as skeletons in the literature [15]). For each such

skeleton, a power model might be defined by interpolation

of measurement tables or auto-calibration of a given generic

model, and hence the power model for the overall application

would be composed accordingly from the skeletons’ power

models
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Abstract—Developing software for non SMP multi-core sys-
tems such as the 48 core Intel-SCC or the TI-TMS320C6678
is a complex task, and will become even harder with the
emerging heterogeneous multi-core systems combining different
architectures on a single chip. To tackle this issue, Altreonic
has adopted a formalized approach to embedded systems de-
velopment. Of particular interest is the formally developed
OpenComRTOS, that allows one to program distributed systems
ranging from single node microcontrollers, over multi-core to
networks of heterogeneous networked processing nodes, in a fully
transparent way. The current implementation can theoretically
handle 224 nodes. Together with its tools it provides the core of
OpenComRTOS Designer.

This paper reports the results of porting OpenComRTOS to
the Intel-SCC, i.e. code size and performance figures comparing
them with other ports, with a focus on the TI-TMS320C6678.
Furthermore, it describes the basic structure of the OpenComR-
TOS Intel-SCC port, focussing on the inter-core communication.

I. INTRODUCTION

Users of embedded systems continuously expect more fea-

tures. At the same time processors are becoming cheaper

and more powerful. However, user expectations rise faster

than the progress of the hardware. Hence, the evolution to

multi/many-core architectures while being enabled by technol-

ogy advances, is also a solution to achieve more performance

at less energy costs. The question is, how to program them?

OpenComRTOS [1], [2] was designed from the start to

address this issue. Building on the concepts of CSP [3],

Hoare’s Process Algebra and the experience with a previously

developed parallel RTOS (Virtuoso) [4], formal modelling

was used. The top level requirements were to achieve a

transparent concurrent programming model for real-time em-

bedded systems. This was called the “Virtual Single Processor”

programming model. At the API level, a program is composed

of ”tasks”, each having a private workspace and priority. Task

synchronise and communicate using instances of “Hubs”. As

such, Hubs are instantiated to the traditional RTOS services

like Events, Semaphores, FIFO, Resources, etc.

OpenComRTOS is build as a scheduler on top of a priori-

tised packet switching and communication layer. It is designed

to run on heterogeneous systems thus a heterogeneous set of

nodes, connected using a heterogeneous set of communication

means (shared memory, fast point-to-point links, or switching

networks). To support this the programming approach sep-

arates the network topology from the application topology,

allowing cross development or simulation on single node

systems (like a PC). Once a program has been developed

its entities (Tasks and Hubs) can be remapped to a different

topology without source code changes. Only a recompilation is

needed and maybe some I/O drivers will need to be modified.

This is achievable because the hubs, used by tasks to interact,

are decoupled from the tasks.

The Intel-SCC [5] is an experimental system which consists

of 48 Pentium cores which are inter-connected over a routing

network. This routing network also connects the cores to

the four on-chip memory controllers, which support up to

64GB of memory in total. Texas Instruments provides the

TMS320C6678 [6], which is a commercially available 8 core

DSP where the cores and the peripherals are interconnected

using a bus called TeraNet. In the following we will refer

to this chip as TI-C6678. In this paper we compare the

performance figures of OpenComRTOS on both architectures.

The rest of the paper is organised as follows, Section II de-

tails the architecture of OpenComRTOS, and how applications

are developed for it. This is followed by the implementation

details of the OpenComRTOS port to the Intel SCC in Section

III. Section IV compares the Intel-SCC port with other ports

of OpenComRTOS. The paper closes with Conclusions and

Further Work in Section V.

II. OPENCOMRTOS PARADIGMS

OpenComRTOS uses the two following paradigms: “Inter-

acting Entities”, discussed in Section II-A and “Virtual Single

Processor” which is discussed in Section II-B.

A. Interacting Entities

OpenComRTOS has a semantically layered architecture.

Table I provides an overview of the available services at the

different levels. At the lowest level the minimum set of Entities

provides everything that is needed to build a small networked

real-time application.

There are two types of Entities in OpenComRTOS: active

and passive Entities. Active Entities are Tasks (having a private

function and workspace), passive Entities are Hubs, used to

synchronise and communicate between Tasks (see Figure 1).
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Fig. 1. OpenComRTOS-L0 view

While there are different types of Hubs in OpenComRTOS,

the most fundamental one is the Port. The Port-Hub acts like

a channel in the sense of Hoare’s CSP, but allows multiple

waiters and asynchronous communication.

One of the Tasks is a Kernel Task which schedules the other

Tasks in order of priority, manages Hub-based services, and

routes Packets. Driver Tasks handle inter-node communication.

Pre-allocated as well as dynamically allocated Packets are

used as carriers for all activities in the RTOS, such as:

service requests to the kernel, Hub synchronisation, data-

communication, etc. Each Packet has a fixed size header and

a data payload with a user defined but global data size. This

significantly simplifies the Packet management, particularly

at the communication layer. A router function transparently

forwards Packets in order of priority between the network

nodes. The priority of a Packet is the same as the priority

of the Task from which the Packet originates, except when

the priority inheritance algorithm changes the priority of the

task after the package was sent.

In the next semantic level Services and Entities were added,

similar to those found in most RTOSs: Boolean events, count-

ing semaphores, FIFO queues, resources, memory pools, etc.

The formal modelling lead to the definition of all these Entities

as semantic variants of the common and generic ”Hub” entity.

In addition, the formal modelling also helped to define “clean”

semantics for such services, whereas ad-hoc implementations

often have side-effects. Table II summarises the semantics.

The services are offered in a non-blocking variant ( NW),

a blocking variant ( W), and a blocking with time out variant

( WT). All services are topology transparent and there is no

restriction in the mapping of Task and kernel Entities onto the

network. See Tables II and III for details on the semantics.

Using a single generic Hub entity leads to more code reuse,

therefore the resulting code size is at least 10 times less

than for an RTOS with a more traditional architecture. One

could of course remove all such application-oriented services

and just use Hub based services. Unfortunately, this has the

drawback that services loose their specific semantic richness,

e.g. resource locking clearly expresses that the Task enters a

critical section in competition with other Tasks. Also erroneous

run-time conditions are easier to identify at application level.

During the formal modelling process, we also discovered

weaknesses in the traditional way priority inheritance is imple-

mented in most RTOSs. Fortunately, we found a way to reduce

the total blocking time. In single processor RTOS systems

this is less of an issue, but in multi-processor systems, all

nodes can originate service requests and resource locking is a

distributed service. Hence, the waiting lists can grow longer

and lower priority Tasks can block higher priority ones while

waiting for the resource. This was solved by postponing the

resource assignment until the rescheduling moment. Finally,

by generalisation, also memory allocation has been approached

like a resource locking service. In combination with the Packet

Pool, this opens new possibilities for safe and secure memory

management, e.g. the OpenComRTOS architecture is free from

buffer overflow by design.

For the third semantic layer (L2), we plan to add dynamic

support like mobility of code and of kernel Entities. A po-

tential candidate is a light-weight virtual machine supporting

capabilities as modelled in pi-calculus [7]. For this purpose

we developed the Safe Virtual Machine [8], which currently

allows to dynamically load and execute tasks.

B. Virtual Single Processor Programming Model

The Virtual Single Processor (VSP) programming model

of OpenComRTOS, provides the user with the ability to

treat a complex network of processors like a single one. An

OpenComRTOS project consists of the following elements,

defined in a graphical modelling environment.

1) Topology — A topology in OpenComRTOS defines the

hardware of the system: processing Nodes, the commu-

nication Links between them and peripherals. Each Node

has an unique name. Furthermore, in the topology the

Node specific settings are defined, such as the compiler

to use, and the configuration of device drivers. At any

time of the development process it is possible to modify

the number of Nodes in the Topology. Thus the user can

start using just one Node, and later on gradually increase

the number of Nodes.

2) Application — Here the user specifies which Entities are

used in the project and what interactions they perform.

Each Entity (Tasks and Hubs) has an unique name in the

system and is mapped onto one Node of the topology.

This mapping can be changed at any time during the

development process, as long as no Node-dependencies

were inserted. A typical node dependency is a Task that

directly accesses peripherals of a specific Node. The
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TABLE I
OVERVIEW OF THE AVAILABLE ENTITIES ON THE DIFFERENT LAYERS

Layer Available Entities

L0 Task, Hub (instantiated as Port)
L1 Task, Hub instantiated as: Port, Boolean Event, Counting Semaphore, FIFO Queue, Resource, Memory Pool

or user defined
L2 Mobile Entities: all L1 entities are moveable between Nodes.

TABLE II
SEMANTICS OF L1 ENTITIES

L1 Entity Semantics

Event Synchronisation on a Boolean value.
Semaphore Synchronisation with counter allowing asynchronous signalling.
Port Synchronisation with exchange of a Packet.
FIFO queue Buffered, asynchronous communication of Packets. Synchronisation on queue full or empty.
Resource Event used to create a logical critical section. Resources have an owner Task when locked.
Memory Pool Linked list of memory blocks protected with a resource.

TABLE III
SERVICE SYNCHRONIZATION VARIANTS

Services
variants

Synchronising Behaviour

NW Non Waiting: when the synchronisation fails the Task returns with a RC Failed.
W Waiting: when the synchronisation fails the Task waits until such event happens.
WT Waiting with a time-out. Waiting is limited in time defined by the time-out value.

logical behaviour of the system is independent of the

mapping of the Entities, only the latency may change.

The unique name of an Entity is used for addressing the En-

tity in the system. Internally an Entity-ID gets used to interact

with an Entity. This Entity-ID consists of two components:

the global Node-ID, and a local ID, both ID’s get generated

at build time, by the code generators. When remapping an

Entity, to a different Node, the Entity-ID will change, while

the unique name stays the same. This addressing scheme and

the use of Packets to represent Task interactions (service calls),

results in a programming model where the Entities can be

placed anywhere. The OpenComRTOS kernel Task acts as a

switch, sending the Packets to their destination. Note, that the

same mechanism is used for local as well as remote Entities. It

is this packet switching nature of OpenComRTOS that makes

it so scalable. All code is multi-processor by default. Note

also that the user is largely relieved from the tedious effort of

writing all data structures and initialisation routines. This is

largely generated from higher level descriptions and topology

metamodels in the graphical OpenComRTOS Designer mod-

elling environment.

III. PORTING OPENCOMRTOS TO INTEL SCC

Due to its architecture, with a a clean separation between

the HAL (Hardware Abstraction Layer) and the operating

system services OpenComRTOS is fairly easy to port to a new

platform. We have done basic ports (single Node with periodic

timer) to new architectures, such as to the NXP-CoolFlux [9],

and the TI TMS320C6678 [6] within two weeks. The most

difficult part of the porting effort is usually to integrate the

toolchain to compile the code with it. This assumes of course

that adequate documentation and tools are available.

In case of the Intel SCC it took longer than the usual

two weeks due to the experimental nature of the development

support. Nevertheless, even while only having remote access

to the hardware, once the chip’s hardware was understood

and the basic functionality was implemented, development was

straightforward.

A. SCC-Bringup

We use the Bare Michael framework [10] as underlying

library to bring up the individual cores of the Intel-SCC.

Once execution reaches the main() function OpenComRTOS

initialises the Tasks, and starts the communication drivers,

before starting the Kernel-Task.

B. Inter Core Communication

OpenComRTOS is designed to allow the development of

distributed heterogeneous systems. This means that it provides

the capability to build systems consisting of multiple CPUs

interconnected over various communication means, such as

RS232, Ethernet, shared memory and now also the Intel-SCC

Message Passing Buffers (MPB). The communication between

different Nodes of the system is handled by so-called transfer-

packets, which have system wide the same structure. The

transfer-packet consist of a 32 B header and a variable amount

of payload data. When a Task issues a service request to a Hub

that is located on another Node, then the kernel-task routes

the service request packet to the corresponding Link Driver to

transfer it to its destination Node. The routes are precalculated

during the build process and do not change during run-time,

relieving the application from any explicit routing.

In the Intel-SCC each tile, which consists of two cores,

provides a 16 kB large Message Passing Buffer (MPB). In the

link driver implementation we assigned each core of the tile
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8kB of this buffer which it uses as an input port for the link

driver. This means that each core reads the messages meant

for it from its part of the MPB. To send a message each

core writes the message directly into the MPB of the core the

message is intended for, i.e. we establish a full mesh on the

Intel-SCC, leaving all the routing decisions to the underlying

routing network. Inside the MPB the data is organised using

a lock free ring buffer implementation, where the writer and

reader task do not need to lock each other out. However, it is

still necessary to prevent that more than one writer tries to gain

access to the MPB in parallel, thus there is one locking oper-

ation involved. The lock is represented by an atomic variable,

and we use the acquire_lock() and release_lock()

functions, provided by Intel, to manipulate it. Having an RTOS

means that it is necessary to inform the reader core that new

data has arrived, this is achieved by the writer-node issuing an

Interrupt Request (IRQ) to the reader-node, using the function

interrupt_core(). Upon receiving the IRQ, the reader-

node reads out the data, translates the transfer packet into

a local packet and and then passes it to the kernel-task for

processing.

IV. MEASUREMENT RESULTS

OpenComRTOS has been ported to quite a number of

different CPU architectures already. In this section we compare

codesize and performance figures of the Intel-SCC port with

the figures of selected other ports. All measurements with the

Intel-SCC system were done using the following configuration:

core: 533 MHz, memory: 800 MHz, mesh: 800 MHz. To

allow the cache to initialise on the Intel-SCC the first mea-

surement in each of the following benchmarks was ignored.

A. Code Size

Table IV gives detailed code size figures, in byte, for our

currently available ports of OpenComRTOS. The Intel-SCC

port has a typical code size for a 32 bit instruction set

machine, similar to the MicroBlaze, Leon3, XMOS, and TI-

C6678 ports we have done in the past.

B. Performance Figures

Next we consider the runtime performance. Table V states

the elapsed time to perform what we call a semaphore loop

(two task signalling each other in a loop using two semaphore

hubs, [1] gives an explanation, Figure 2 shows the application

diagram). This test gives a very good indication of the latencies

introduced by the OS and gives a good indication of task

scheduling and service request latencies as each loop consists

of 4 context switches, and 4 service requests with a total

of 8 Packet exchanges. The measurements were performed

by measuring the loop time 1000 times, using the highest

precision timer available in the system, in case of the NXP

CoolFlux the cycle counter of the simulator was used. In

all cases we tried to achieve top performance, thus available

caches were utilised. Furthermore, interrupts were disabled,

except the one for the periodic timer tick. The column ‘Context

Size’ of the table gives the number of registers that has to

Fig. 2. Application Diagram of the Semaphore Loop Benchmark

be saved and the size of these registers, for a user triggered

context switch. The context saved when handling an interrupt

has a different size.

C. Interrupt Latency Measurements

Another important performance figure, for an RTOS, is

the interrupt latency. We differentiate two types of latencies:

IRQ (Interrupt ReQuest) to ISR (Interrupt Service Routine),

and IRQ to Task. The first one measures how long it takes

after an automatic reload counter issued an IRQ until the

first useful instruction can be performed in the ISR, this

means that all context saving has been performed already.

The IRQ to Task latency represents how long it takes until

a high priority task can perform the first useful instruction

after an IRQ has occurred. However, these are no single

figures because it depends on what the CPU is currently

doing. Thus we collected a few million measurements, and

performed a statistical analysis of them. Table VI gives the

minimal, maximal and the median (50% value of all measured

latencies).

For the Intel-SCC and the TI-C6678 system we presently

have only the minimal figures for an unloaded system. We

have the following interrupt latencies for these platforms:

• Intel-SCC:

– IRQ to ISR: 656.78 ns (349 cycles)

– IRQ to Task: 10.32 µs (5501 cycles)

• TI-C6678:

– IRQ to ISR: 136 ns (136 cycles)

– IRQ to Task: 1.37 µs (1367 cycles)

Both the Intel-SCC and the TI-C6678 have a larger interrupt

latency, in number of cycles, than e.g. the ARM-Cortex-M3,

however they are clocked at a much higher clock speeds thus

the absolute times are better. However, it is clear that the Intel-

SCC was not designed for realtime applications, unlike a micro

controller such as the ARM-Cortex-M3. The ARM-Cortex-M3

does a lot of the necessary task saving and restoring, as well

as interrupt dispatching operations, using dedicated hardware,

while in case of the Intel-SCC and the TI-C6678 it has all to

be done in software.

A point regarding the TI-C6678: this processor has multiple

cascaded interrupt controllers (for a potential total of about

1000 interrupt sources), which have been taken out of the

equation as we just measured the latency of C66x core internal

interrupt controller, which provides 16 interrupts, of which 12

can be freely used for external interrupts.
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TABLE IV
OPENCOMRTOS L1 CODE SIZE FIGURES (IN BYTES) OBTAINED FOR OUR DIFFERENT PORTS

Service MLX16 MicroBlaze ESA-Leon3 ARM Cortex M3 XMOS TI-C6678 Intel-SCC

L1 Hub shared 400 4756 4904 2192 4854 5104 4321
L1 Port 4 8 8 4 4 8 7
L1 Event 70 88 72 36 54 92 55
L1 Semaphore 54 92 96 40 64 84 64
L1 Resource 104 96 76 40 50 144 121
L1 FIFO 232 356 332 140 222 300 191
L1 PacketPool NA 296 268 120 166 176 194

Total L1 Services 1048 5692 5756 2572 5414 5908 4953

TABLE V
OPENCOMRTOS LOOP TIMES OBTAINED FOR OUR DIFFERENT PORTS

Clock Speed Context Size Memory Location Loop Time Cycles

ARM Cortex M3 50 MHz 16× 32 bit internal 52.5 µs 2625

NXP CoolFlux NA 70× 24 bit internal NA 3826

XMOS 100 MHz 14× 32 bit internal 26.8 µs 2680

Leon3 40 MHz 32× 32 bit external 136.1 µs 5444

MLX-16 6 MHz 4× 16 bit internal 100.8 µs 605

Microblaze 100 MHz 32× 32 bit internal 33.6 µs 3360

TI-C6678 1 GHz 15× 32 bit L2-SRAM 4.5 µs 4500

Intel SCC 533 MHz 11× 32 bit external 4.9 µs 2612

TABLE VI
OPENCOMRTOS INTERRUPT LATENCIES ON AN ARM-CORTEX-M3 @

50MHZ

IRQ to ISR IRQ to Task

Minimal 300 ns (15 cycles) 12 µs (600 cycles)

Maximal 2140 ns (107 cycles) 25 µs (1250 cycles)

50% 400 ns (20 cycles) 17 µs (850 cycles)

D. Inter Core Communication

To measure the application level inter core communica-

tion throughput, i.e. the usable task-to-task bandwidth when

developing an application we performed the following mea-

surements. The benchmark system consists of two tasks:

a SenderTask and a ReceiverTask, communicating using a

Port-Hub. Figure 3 shows the application diagram of the

system. The SenderTask sends an L1-Packet to the Port-

Hub from which the ReceiverTask receives it. The Port-Hub

interactions are done using waiting semantics, which means

that the SenderTask has to wait until the Receiver-Task has

synchronised with it in the Port-Hub. The Port-Hub copies

the payload data contained in the L1-Packet from the Sender-

Task to the L1-Packet from the Receiver-Task, and then sends

acknowledgement packets to both Tasks. We measured how

long it takes the ReceiverTask to receive 1000 times a data

packet of a specific size. To perform the initial synchronisation

the ReceiverTask waits for a first communication to take

place before determining the start time. Please note that the

SenderTask and ReceiverTask synchronise in the Port-Hub,

thus the SenderTask can only send the next packet, after it

has received the acknowledgement packet that the previous

transfer was performed successfully.

1) Intel-SCC: When distributing the Tasks over different

Nodes in the system, the data will be transferred between the

two nodes using link drivers and using the on-chip communi-

Fig. 3. Application Diagram for the Throughput Measurement

cation mechanism. These link drivers translate the L1-Packet

to a Transfer-Packet, and transfer only the used part of the data

part of the L1-Packet. We measured the following different

system setups, with different payload sizes:

• Single-Core: In this setup all Tasks and the Hub are on the

same core. Thus no inter core communication is involved.

• Multi-Core: Afterwards the benchmark was distributed

over two nodes, in the following way:

– Node1: SenderTask

– Node2: ReceiverTask and Port-Hub

In this setup we measured with different numbers of Hops

(see [5] for details) between the two cores:

– No-Hop: Node1 on core 10 and Node2 on core 11

– 1-Hop: Node1 on core 10 and Node2 on core 8

– 8-Hops: Node1 on core 10 and Node2 on core 36

Figure 4 gives the measured results for the different systems.

What sticks out is that the single core example goes into

saturation at around 20 MB/s, while the distributed versions

achieve a higher throughput of up to 33 MB/s. These figures

are similar to the ones reported by Lankes et. al. in [11].

There is also a strange jump in throughput from payload sizes

128 B to 256 B, for the distributed version, which we do

not observe in the single core version. Furthermore, we see a

strong influence of the routing network which nearly halves

the throughput between the No-Hop and the 8-Hop versions,

thus the location of the Nodes and their distance matters on

the Intel-SCC.
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Fig. 4. Intel-SCC Throughput over Packet Payload Size

The curve labelled ‘Virtual Core 10 to 11’ is moving the

data, by transferring the ownership of a shared buffer from

core 10 to core 11. This is done by transferring the buffer

information (address, size, resource-lock-id) from core 10 to

core 11 using a port-hub. Once core 11 has this information

it locks a resource, to avoid unintentional access, copies the

data, and then releases the lock. The achieved throughput is

about half of what we achieved in the single core version. The

reason for this is that the buffer is placed in shared memory

which halves the achievable throughput. The throughput of

the bare version, i.e. without OpenComRTOS running, just a

main and bare michael, drops from 17.4 MB/s, when copying

from private memory to private memory, to 10.3 MB/s when

copying from shared memory to private memory.

2) TI-C6678: The TI-C6678 evaluation board available to

us was clocked at 1 GHz, thus all measurements were done

at this frequency. Another point to mention is that none of

the DMA units provided by the TI-C6678 have been used for

these measurements, thus the DSP-Core had to spend all its

cycles to move the data.

Figure 5 gives the throughput measurements for the TI-

C6678 @ 1 GHz, for both the single core (‘Core 0 to 0’)

and the distributed version (‘Core 0 to 1’). A few words

regarding the measurement setup. In case of the single core

measurement, the data and the code where completely within

the 512 kB large L2-SRAM of core 0. This is possible because

the architecture permits to use the L2 cache as SRAM. For

the distributed version we used the Queue Management Sub

System (QMSS) queues [12] to transfer descriptors of transfer

packets between the cores. The queues 652 and 653 were used,

generating an interrupt when data is pending on them. The

shared transfer packets were located in the Multicore Shared

Memory (MSM), constituting 4 MB of fast memory shared

between the cores. This memory is part of the Multicore

Fig. 5. TI-C6678 Throughput over Packet Payload Size

Shared Memory Controller (MSMC) [13], which interfaces

the eight cores to external DDR-SRAM. For the single core

version we achieve a top throughput of 2695 MB/s using

packets with 32 kB payload. The distributed version achieved

a maximum throughput of 1752 MB/s with the same payload.

In both cases we have not yet reached the saturation of the

system, thus the total throughput will be higher, if we increase

the packet payload size.

Like for the Intel-SCC we’ve also implemented a measure-

ment of the virtual bandwidth, using a shared buffer. With a

buffer size of 32 kB we achieved a throughput of 772 MB/s
@ 1 GHz , when the shared buffer is located in the MSM, and

we copied to the L2-SRAM of core 1 (‘Virtual Core 0 to 1,

MSM to L2’). If the shared buffer is located in the L2-SRAM

of core 0 (‘Virtual Core 0 to 1, L2 to L2’), the throughput we

achieve is 45 MB/s @ 1 GHz. Currently we investigate why

the copy between the L2-SRAM of the cores does provide so

little throughput.

When utilising the experimental driver for the EDMA3

peripherals of the TI-C6678, and EDMA3 unit EMDA3CC0,

we achieve a throughput of 4041 MB/s with a buffer size of

128 kB, transferred between two buffers in the L2-SRAM of

core 0. The advantage of using the DMA unit over using the

CPU for copying or movind data is that during the transfer

the CPU can perform other tasks, thus the transfer happens in

parallel to the processing.

3) Comparing Intel-SCC and TI-C6678: The best achieved

throughput in single core measurements on the Intel-SCC was

with a packet payload size of 4096 B where it achieved

a throughput of 19.80 MB/s @ 533 MHz. The TI-C6678

achieved with the same packet payload size a throughput of

1148.52 MB/s @ 1 GHz.

For the distributed system version the Intel-SCC throughput

is 33.57 MB/s @ 533 MHz with a packet payload size of

4096 B. The TI-C6678 achieves 512 MB/s @ 1 GHz.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Transparent Programming of Many/Multi Cores with OpenComRTOS 57



V. CONCLUSIONS & FURTHER WORK

The first part of this paper introduced the two paradigms

of OpenComRTOS, Interacting Entities, and Virtual Single

Processor, and illustrated how they enable to develop truly

distributed heterogeneous deeply embedded systems. Both

paradigms enable it to build small systems as well as large

systems without having to change the programming model

at all. It is also possible to start with a small system and

expand it over time if the need arises or the other way

around. This is what is meant with the term scalability. Due

to being build around the concept of packet switching the

performance degradation caused by additional middleware

layers are avoided in OpenComRTOS systems. This not only

results in a better performance, but also in smaller memory re-

quirements, and thus less power consumption. The architecture

of OpenComRTOS is ideally suited for the multi/many cores

systems such as the Intel-SCC and the TI-C6678, because it

makes it very easy to use all processing power without having

to worry about the details of the underlying hardware.

What has become clear in the performance measurements is

that both the Intel-SCC and the TI-C6678 are complex archi-

tectures requiring a lot of attention to achieve best performance

and predictable realtime behaviour. The developer must be

very careful in placing data and code in memory and selecting

the communication mechanism. In case of the Intel-SCC the

access to the DDR3 memory has a very long latency with

a minimum of 86 wait states, and is only available over the

system wide shared routing network, which causes additional

wait states. The approach taken in the TI-C6678 with a

dedicated switching network (TeraNet) provides a much better

throughput to the shared memory resources. Additionally, each

core has it’s own 512 kB of L2-SRAM which can be used to

store code and local data, an approach not possible in case of

the Intel-SCC. A local RAM of 512 kB might sound little but

for OpenComRTOS it is more than sufficient, due to its small

code size of around 5 kB. This leaves in many cases sufficient

space for user applications and device drivers.

The tests have also shown that shared memory presents

some pitfalls, similar to the ones global variables represent

in multi-threaded environments. Not only makes it the bus

structure very complex, it also makes it very slow compared

with the speed of the CPUs and it poses more safety and se-

curity risks, e.g. the cache must also be invalidated at the right

time. Therefore, having large and local low wait state memory

for each core with a fast dedicated communication network

set up in a point-to-point topology with DMAs improves

performance, and improves reliability when this memory can

be marked as private to the core, thus preventing external

cores from accessing and potentially corrupting it. This is an

important issue for safety and security critical systems. Finally,

multi/manycore designers should be aware that concurrency

even on a single core combined with low latency is beneficial

as it allows to reduce the grain size of the computations

without suffering much overhead. It also increases throughput

by overlapping computation with communication.

The communication infrastructure provided by the TI-

C6678, with its packetisation and hardware-queue support,

is similar to the internal architecture of OpenComRTOS,

whereby all interactions are implemented using packet ex-

changes.

A. Further Work

While the basic port has been done, the integration into the

OpenComRTOS ecosystem i.e. adapting the code generators

and importing the multi-core topology as a library component

is on-going. In parallel further optimisations are applied. Given

the abundancy of hardware resources on modern multicore

chips, research is focusing on dynamic resource scheduling,

whereby a resource is not just CPU time but can also be

any of the hardware capabilities. This is using an extended

version of the distributed priority inheritance algorithm in

OpenComRTOS.
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Abstract—The focus of this paper is the efficient implemen-
tation of our compact operating system kernel as a bare-metal
hypervisor for the SCC. We describe source, functionality, and
the operation of our kernel, as well as the interaction with the
already published communication layer. Furthermore we give a
detailed insight into the boot procedure of the SCC from reset
to the starting point of our light-weight operating system kernel.
This procedure is performed by a bare-metal framework, which
is part of the MetalSVM project. Programmers can use our
framework as a springboard for bare-metal programming on
the SCC, which goes along with the first release of MetalSVM.
Finally, we evaluate the performance of a paravirtualized Linux
guest on the SCC hardware and present results of context switch
latencies for Linux and MetalSVM hosts.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-

cessor [1] is a concept vehicle created by Intel Labs as a

platform for many-core software research, which consists of

48 cores arranged in a 6 × 4 on-die mesh of tiles with two

cores per tile. The intended programming approach for this

cluster-on-chip platform is based on message passing [2].

For the parallelization of data-intensive algorithms, espe-

cially with irregular access pattern a shared memory pro-

gramming model like OpenMP which is based on memory

coherence offers an attractive and efficient alternative. If future

many core processor architectures have to waive the memory

coherency implementation in hardware, MetalSVM can enable

shared memory programming on those architectures using

virtualization.

One logical, but parallel and cache coherent virtual machine

runs on top of a virtualization layer. With a Shared Virtual

Memory (SVM) system this implements a classic approach

for the realization of memory coherence in software in a

bare-metal hypervisor. The virtualized Linux instance, called

guest, will have the impression of being executed on a sym-

metric multiprocessor system. As a result, standard shared

memory parallelized applications can run on future many-

core platforms. Since the shared memory paradigm shows

advantages in many scenarios, we are convinced that it is

valuable to transparently provide memory coherence even on

an architecture without according hardware support.

This paper is structured as follows: In Section II, we

motivate the realization of MetalSVM1 and summarize related

1http://www.metalsvm.org

work of our project. Afterwards, we present in Section III

the structure and implementation details of the first version of

MetalSVM. We describe the Boot process of the hypervisor

kernel on the SCC platform in Section IV. Additionally,

we compare context switch overhead and the hypervisor

implementation performance between Linux and MetalSVM

in Section V. In Section VI, we explain the benchmarks used

for the evaluation of our kernel and present the respective

performance results. The final Section VII summarizes this

paper and gives an outlook to our next research goals.

II. MOTIVATION AND RELATED WORK

Initially by forking eduOS, we started the further develop-

ment of MetalSVM. eduOS is a very minimalistic operating

system used for educational purposes at the RWTH Aachen

University. It is inspired by Unix but does not aim to be

fully POSIX compliant as, for instance, the Linux kernel or

the MINIX kernel, which are also used for operating system

courses and research [3].

In fact, the simplicity of eduOS leads to an easy customiz-

ability and tasks running in kernel space are executed near

bare-metal. As a lightweight and small monolithic kernel,

it provides adequate functionality for running user space

programs. Figure 1 shows the basic kernel structures of eduOS.

Application Programming Interface

IPC

semaphore

mutex

mailbox

scheduler timer I/O

driver

running task

ready tasks

blocked tasks

Hardware

Fig. 1: Kernel structure of eduOS

MetalSVM, the further development of eduOS, represents a

highly optimized codebase for running applications near bare-

metal on the Intel SCC. Programmers can use our framework

as a springboard for bare-metal programming on the SCC. In

[4], we presented a first prototype, and in [5] further improve-

ments of an SVM system, based on our framework. Here,
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Fig. 2: Basic Concept of MetalSVM [4]

a shared memory application uses special SVM functions

explicitly for shared memory allocation. A transparent use of

the SVM layer by unchanged software will be enabled by a

virtualization layer on top of the functionality of the MetalSVM

kernel (see Figure 2).

From the application programmer’s view, Linux user space

applications have limited control over the preemption time,

which is affected by context switching and interrupt handling.

Consequently, this can be a good reason to run applications

bare-metal to avoid this kind of overhead. However, one may

be not interested or be able to take care of the rest of the

necessary low-level work, which is the common reason for

using an operating system. Since MetalSVM is configurable,

the possibility exists to switch off infrastructure, for instance

the hypervisor or the communication layer, which makes our

framework comparable to bare-metal frameworks presented at

the Intel Communities page [6], [7].

In [8], we evaluated the synchronization and communication

hardware support of the SCC for inter kernel usage. For

the integration of iRCCE into MetalSVM, this included an

extension in the form of a mailbox system in combination

with optimized synchronization support. The result is fast

synchronous and asynchronous communication between user

and kernel tasks of MetalSVM [9].

Besides MetalSVM, several projects handle the integration

of an SVM system into virtual machines, for an easy appli-

cation of common operating systems and development envi-

ronments without changes. An example for such a hypervisor-

based SVM system is vNUMA [10] that has been implemented

on the Intel Itanium processor architecture. In [11] one founder

of vNUMA proposed to extend this concept for Many-Core

Chips. For x86-based compute clusters, the so-called vSMP

architecture developed by ScaleMP2 allows for cluster-wide

cache-coherent memory sharing. This architecture implements

2http://www.scalemp.com

a virtualization layer underneath the OS that handles dis-

tributed memory accesses via InfiniBand-based communica-

tion. In some respects, these approaches are similar to our

hypervisor approach. Both implement the SVM system in an

additional virtualization layer between the hardware and the

operating system.

The main difference between these approaches is that

vSMP and vNUMA explicitly use message-passing between

the cluster nodes to transfer the content of the page frames,

whereas our SVM system can cope with direct access to

these page frames. In fact, we want to exploit the SVM

system with SCC’s distinguishing capabilities of transparent

read/write access to the global off-die shared memory. This

feature will help to overcome a drawback of other hypervisor-

based approaches regarding fine granular operations. A recent

evaluation [12] of ScaleMP’s vSMP with synthetic kernel

benchmarks as well as with real-world applications has shown

that vSMP architecture can stand the test if its distinct NUMA

characteristic is taken into account. Moreover, this evaluation

reveals that fine granular operations such as synchronization

are the big drawback of this kind of architectures. Our aim is to

avoid this shortcoming by using the distinguished capabilities

of transparent remote read/write memory on the SCC.

RockyVisor [13] is the name of another project for the

realization of a hypervisor based symmetric multi-processing

support for the SCC. In contrast to MetalSVM, this project

targets the integration of its hypervisor into Linux and not on

the base of a minimalistic kernel. Therefore, on the top of all

Linux instances runs a virtualized Linux, which assumes that

the SCC is an SMP system. From our point of view, such a

Linux on Linux approach implies unneeded overhead.

III. KERNEL FEATURES

The intended usage for an SVM management system in-

fluences the hypervisor kernel. In this section, we detail the

implementation of this monolithic kernel including interrupt

handling, device drivers, file system, and hypervisor. Addition-

ally, we give reasons for specific design decisions by concrete

applications.

The focus in this paper is the kernel implementation for

the SCC. However, we compare this implementation to dif-

ferent hardware architectures supported by MetalSVM, whose

concept is divided in a hardware dependent and independent

part.

A. Hypervisor

The fact that a guest kernel is aware that it runs as a

guest and uses hypercalls to do privileged operations is called

paravirtualization [14]. Using an existing hypervisor solution

from the Linux kernel has been the first choice for the inte-

gration into MetalSVM [15]. This way we can avoid changes

on the Linux kernel code, since interaction between host and

guest is based on a de facto standard virtualization interface.

lguest is an appropriate match in this context, because its about

5000 lines of code keep it quite simple. Despite its small
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size it provides all required features for the realization of the

MetalSVM project [16].

For development and testing purposes, we use QEMU3,

which is a generic and open source machine emulator and vir-

tualizer. To simplify our tests of standard kernel components,

we integrated a driver for the Realtek RTL8139 network chip,

which is also supported by QEMU as an emulated device.

B. Device Drivers

Communication between the SCC cores running MetalSVM

is not limited to the iRCCE library and its mailbox extension.

With the integration of lwIP, a light-weight TCP/IP library,

the flexibility is increased [17]. Consequently, BSD sockets

are made available to user space applications to establish

communication between the SCC cores and the MCPC. In [4],

we demonstrated the convincing performance of the resulting

network layer.

The network capabilities besides other devices of MetalSVM

will be forwarded to the guest operating system through

the hypervisor via virtio. Virtio is Rusty Russell’s draft to

create an efficient and well-maintained framework for IO-

virtualization of virtual devices commonly used by different

hypervisors [18]. In our scenario, for instance the network

capabilities of MetalSVM are used as a backend by just

forwarding the requests of the Linux guest operating system

to the hypervisor.

C. Interrupt Management

The SCC platform includes 48 P54C cores. As a second

generation of Pentium cores, the P54C is the first processor

which is based on an on-chip local Advanced Programmable

Interrupt Controller (APIC). This local APIC is used to

program the local timer interrupt, which can be used to trigger

the scheduler periodically. MetalSVM uses a simple priority-

based round-robin scheduler, described in detail in Section V.

Beside the timer interrupt, the local APIC possesses two

programmable local interrupts (LINT0 and LINT1). Interrupts

achieve an important role, because the SCC does not use

the traditional way to integrate I/O devices (IO-APIC) or

to send inter-processor interrupts (IPIs). Therefore, a core

configuration register exists for each core of the SCC, which

is mapped to the address space of all cores. A special bit in

these registers triggers a LINT0 or a LINT1. As a result, core

x is enabled by the memory-mapped configuration registers to

trigger an interrupt on core y. However, with this mechanism

the receiving core is now able to determine the origin of the

interrupt.

The update of Intel sccKit to version 1.4.0 includes a Global

Interrupt Controller (GIC), which provides a more flexible

way to handle interrupts [19]. If an interrupt is triggered by

the GIC, the receiver is able to determine the origin of this

interrupt. MetalSVM uses the GIC especially for inter-core

communication via iRCCE or our mailbox system [5]. Here,

the information about the origin of an interrupt increases the

scalability.

3http://www.qemu.org/

D. File system

Since the SCC provides no non-volatile storage, a file

system is physically limited in use. Nevertheless, MetalSVM

has an elementary inode file system with an initial population

loaded from a ramdisk file. This file system can be manipu-

lated at runtime.

The integration of newlib4, which is a C library in-

tended for use on embedded systems, extends the usage of

MetalSVM. Regarding the mode to run user-space applications

on MetalSVM arises the possibility to access custom character

devices by the provided /dev directory. These can be imple-

mented very comfortably using a well defined interface.

IV. BOOT ON THE SCC

MetalSVM is Multiboot5 compliant. This means that the

project framework creates an ELF kernel file and an initial

ramdisk image file. A boot loader like GRUB can easily use

these files to boot MetalSVM on commodity x86 hardware.

Because the available SCC hardware is a research prototype,

the booting process differs from commodity hardware. Differ-

ences to commodity hardware are the absence of BIOS support

and the lack of stand-alone memory initialization of this

experimental platform. The only possibility to bootstrap the

SCC cores is preloading their memory content into a bootable

state. Thus, the general system initialization is realized by a

standard PC (MCPC) with direct access to the memory of the

SCC and its configuration registers.

In the following, we describe the function of our framework

to bring the SCC Platform into a Multiboot compliant state.

As a result, an entry point for our 32 bit minimalist Multiboot

kernel is created. Additionally, we describe the interaction with

the common sccKit tools to boot up the SCC platform with

MetalSVM.

Initially, the boot procedure starts by pulling the reset

pins of the SCC cores. Next, its Lookup Tables (LUT) are

initialized and the memory is set into a bootable state for

each core. After a reset pin release the instruction pointer of

each core holds the hardwired address 0xfffffff0. As the

SCC does not provide any form of boot loader, our framework

provides minimal assembler code for this purpose, which

needs to be located at this position. Starting the operation

in real mode, this code initializes the stack pointer, installs

a rudimentary GDT, switches the processor to protected mode

and subsequently to 32 bit mode. As a last step, this setup

procedure jumps to the alignment value of the MetalSVM

kernel, address 0x100000.

The compiler has to support the pentium architecture for

the generation of ELF format output of our minimalist kernel

for the SCC. ELF, as the standard binary file format for

Unix systems, is currently not supported by the sccKit tools.

Therefore, the utility objcopy is used to generate a directly

loadable, raw binary kernel file by discarding all symbols

and relocation information. The previously described startup

4http://sourceware.org/newlib/
5http://www.gnu.org/software/grub/manual/multiboot/
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routine, from real to protected mode, a data struct, containing

information which is generally provided by the bootloader,

and the kernel itself are composed to a single image by

sccMerge.

Next, sccMerge creates rules for the configuration of the

LUTs and one object file per memory controller of the SCC

platform. Subsequently, sccBoot loads the generated object

files into the off-die memory and finally sccReset is used

to release the reset pins of the SCC cores.

V. SCHEDULING

Requirements to a scheduler of the presented hypervisor are

lower compared to schedulers of popular modern operating

systems. Specifically, the intended use for the scheduler is

to handle a few tasks, such as the guest kernel, daemon and

monitoring tasks. Hence, a simple but fast algorithm is applied

to manage tasks. The scheduler keeps an array with as many

items as priority steps exist. Per priority there is one linked

list of tasks waiting for execution. Between two timeslices the

scheduler appends the previous task to the end of its priority

list and selects the head of the current processed priority level

list for execution.

The small set of implemented priorities in MetalSVM pro-

vides the possibility to apply optimization. One optimization is

already implemented in the networking layer. Network packet

traffic is handled in a special kernel task whose priority can

be changed. This way it is possible to balance between high

network throughput and overall system latency.

Version 0.1 of MetalSVM supports 32 different priority lev-

els. This small number allows MetalSVM to create a bitmap of

used priority queues in one 32 bit integer. Consequently, with

one assembler instruction (msb) is it possible to determine the

highest used priority queue, which promises an extremely low

overhead. Before leaving any interrupt handler, the handler

checks, if a task with higher priority is able to run and calls

the scheduler if required. In our scenario, a reduction of the

latency of the network stack can be achieved, by holding the

network thread at a higher priority than the computation tasks.

A. Hardware Context Switch

Early versions of MetalSVM used the x86 hardware task

switching by default for a context switch. Here, a context

switch is performed by a JMP to a TSS descriptor, which has

the advantage of a very simple application. Therefore, the TSS

(Task State Segment), which stores the state of a task, except

the FPU state, is restored.

A disadvantage of this method is the lack of selection which

registers are saved and restored [20]. Furthermore, the number

of TSS entries in the segment table is limited to 8192 [21].

Due to portability reasons most modern operating system

implementations use software task switching.

However, a basic component of the SCC is the classic P54C

core, which could result in an increased scheduling perfor-

mance of hardware context switching. Besides a benchmark

of the hypervisor layer, we evaluate this assumption in the

next section.

VI. BENCHMARKS

Benchmark results of different subsystems of MetalSVM,

excluding the kernel, have been already published. An evalu-

ation of the synchronization support, including different spin

lock and barrier implementations is presented in [8]. In [4],

the network layer and a first prototype of the SVM layer are

evaluated. Further optimizations of the SVM layer and the

mailbox extension of iRCCE are presented in [5].

In this section of this paper, we analyze advantages of

a bare-metal implementation of MetalSVM. We compare the

context switch overhead of sccLinux 2.6.38 to MetalSVM 0.1

on the SCC platform. Additionally, we compare the lguest

implementation of MetalSVM to the implementation of the

Linux kernel 2.6.32 and 2.6.38.3. For a comparison of the

results, the benchmark application is the single process running

on sccLinux.

For the benchmark in this section, we obtained measure-

ments by running a single instance of the selected host oper-

ating system on a single core of the SCC platform6. Because,

sccLinux in a version 2.6.32 is currently not available in a

configuration with lguest support, we used an Intel Celeron

550 test system with a frequency of 2 GHz, to benchmark the

context switch latencies.

A. Context Switch Latency

For the measurement of context switch latency, two tasks

are running on a single core with a high priority. Each task

periodically reads the time stamp counter in a loop and stores

the result at a shared memory location. Measured gaps, which

are shorter than a timeslice and longer than an iteration without

interruption, are recorded as an indicator for the latency of a

context switch and visualized as a scattered plot in Figure 3.

This method is comparable to the hourglass benchmark [22].

But in contrast to our benchmark, the hourglass benchmark

tests the general preemption time and gives no information

about the context switch latency.

Thus, the benchmark results from Figure 3 can be used for

a comparison of context switch latencies between sccLinux

and MetalSVM. As reported by Figure 3a, sccLinux has a

minimal context switch overhead of about 6400 processor

cycles. Figure 3a indicates a certain noise, which has no

clear signature and changes from time to time. The picture

is different for MetalSVM, which generates a minimal context

switch overhead of 2100 processor cycles. This is more than

3 times faster. However, Figure 3b shows a second level of

about 5000 ticks for context switch latencies. This effect is

caused by the process of the lwIP driver, which is running

with a high priority.

The scale-up from Figure 3b visualizes the differences

between hardware and software context switch for MetalSVM

on the SCC platform. Here, no significant effect of the context

switch method to the context switch latency, except a constant

offset, can be identified.

6core/mesh/memory frequency: 533 MHz/800 MHz/800 MHz
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B. Hypervisor Performance

The hypervisor plays an important role to establish a

transparent shared virtual memory environment. Obviously, its

overhead has a significant impact on the performance of its

guest machine, for instance concerning memory management,

context switches and process handling.

Measurements of three representative latencies identify a

reduced virtualization overhead of lguest in combination with

MetalSVM. The context switch from guest execution to host

execution is performed at each hypercall and at the majority

of interrupts. Page faults in a guest application can involve up

to 3 guest-host roundtrips. Therefore, a fast resolving is aimed

for. We measured the duration of system calls, exemplary

for getpid, fork, vfork, and pthread_create. Here,

getpid indicates the overhead of a system call, since its

payload execution time is very low. Due to optimizations

in interrupt delivery, getpid does not involve a host-guest

context switch. The difference of 400 ticks between Linux and

MetalSVM as the host operating system can be explained by

cache effects. fork and vfork are used to show the amount

of ticks needed for the creation of a task and the copy operation

of a whole page directory of the original task. A huge

difference between Linux and MetalSVM for the execution

time of pthread_create is noticeable. This effect can

be explained by the coarse granularity of the current timer

implementation of MetalSVM. Here, the processor frequency

has a direct impact.

As a real-life example we used a floating point operation

intensive application in the form of the jacobi solver algorithm.

We measured the overall execution efficiency within the virtual

guest machine. Additionally, a second setup indicates the

overhead of a task plus floating point context switch by

running two instances of the solver.

TABLE I: Benchmark results for the Intel Celeron platform

(Linux 2.6.32)

Benchmark
Hypervisor Ratio

MSVM
LinuxLinux MetalSVM

Host-guest context switch 1 406 1 347 96 %

Page fault 40 426 31 978 79 %

getpid() 1 039 626 60 %

fork() 446 224 301 831 68 %

vfork() 163 421 117 536 72 %

pthread_create() 3 678 968 40 022 838 1 088 %

Jacobi solver (128x128 Matrix) 156 · 109 99 · 109 63 %

Jacobi solver (2 instances) 317 · 109 199 · 109 63 %

Values in processor ticks

The 3 tables (I, II, and III) show the tick count of both

hypervisor implementations, Linux and MetalSVM, for differ-

ent stages of the development. The light weight MetalSVM

kernel results in a successful reduction of overhead for our

implementation in combination with memory handling code

optimizations of the hypervisor (cf. Table I). However, these

measurements were taken at an earlier development stage of

the hypervisor.

Table II shows benchmark results of MetalSVM version 0.1

and a more recent Linux kernel (2.6.38.3), which is available

with sccKit 1.4.1 for the SCC platform. The Linux kernel has

undergone performance improvements from version 2.6.32 to

2.6.38.3, which affects the benchmark results. However, we

see a major advantage of a light weight solution, concerning

customizability and transparent performance analysis.
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TABLE II: Benchmark results for the Intel SCC platform

(Linux 2.6.38.3)

Benchmark
Hypervisor Ratio

MSVM
LinuxLinux MetalSVM

Host-guest context switch 2 042 2 113 103 %

Page fault 918 679 867 676 94 %

getpid() 191 191 100 %

fork() 3 216 767 3 101 387 96 %

vfork() 220 317 236 207 107 %

pthread_create() 16 256 988 10 883 839 67 %

Jacobi solver (32x32 Matrix) 3.74 · 109 3.74 · 109 98 %

Jacobi solver (2 instances) 7.51 · 109 7.48 · 109 98 %

Values in processor ticks

TABLE III: Benchmark results for the Intel Celeron platform

(Linux 2.6.38.3)

Benchmark
Hypervisor Ratio

MSVM
LinuxLinux MetalSVM

Host-guest context switch 3 020 2 590 86 %

Page fault 40 388 43 985 109 %

getpid() 607 595 98 %

fork() 351 907 371 381 106 %

vfork() 132 142 137 366 104 %

pthread_create() 1 020 630 40 049 784 3924 %

Jacobi solver (32x32 Matrix) 2.04 · 109 2.03 · 109 99 %

Jacobi solver (2 instances) 4.08 · 109 4.13 · 109 101 %

Values in processor ticks

VII. CONCLUSION AND OUTLOOK

In this paper we presented a bare-metal hypervisor, with

the roots of a Unix-like monolithic kernel, used for educational

purposes. Our framework extends the software package sccKit

of the many-core platform to run our configurable light-weight

bare-metal programming environment. Performance evaluation

of the context switch latency proves the assumption that kernel

tasks can be executed close to bare-metal. Thus, broad func-

tionality like interrupt handling and inter core communication

in a synchronous as well as asynchronous manner is provided.

This meets the requirements for the integration of an SVM

system perfectly, which we have already shown in [4] by using

an adapted shared memory application. Here, the light-weight

kernel benefits from the efficiency of its subsystems.

The benchmark results of selected system calls for a Linux

guest system underline the potential of a bare-metal hypervisor

implementation. Considered as a whole, it features a conve-

nient development base for research due to its simplicity and

limited base of supported hardware architectures.

For transparent execution of shared memory parallelized

applications, we plan to boot and connect multiple instances

of the presented kernel and run a single paravirtualized Linux

instance on top of the hypervisor layer.

ACKNOWLEDGMENT

The research and development was funded by Intel Cor-

poration. The authors would like to thank especially Ulrich

Hoffmann, Michael Konow and Michael Riepen of Intel

Braunschweig for their help and guidance.

REFERENCES

[1] SCC External Architecture Specification (EAS), Intel Corporation,
November 2010, Revision 1.1. [Online]. Available: http://communities.
intel.com/docs/DOC-5852

[2] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the intel scc many-core
processor,” in Proceedings of the 2011 International Conference

on High Performance Computing and Simulation (HPCS 2011),
Istanbul, Turkey, July 2011, pp. 525 –532. [Online]. Available:
http://dx.doi.org/10.1109/HPCSim.2011.5999870

[3] A. Tanenbaum and A. Woodhull, Operating Systems: Design and

Implementation, 3rd ed. Prentice Hall, 1997.
[4] S. Lankes, P. Reble, C. Clauss, and O. Sinnen, “The Path to

MetalSVM: Shared Virtual Memory for the SCC,” in Proceedings

of the 4th Many-core Applications Research Community (MARC)

Symposium, Potsdam, Germany, December 2011. [Online]. Available:
http://communities.intel.com/docs/DOC-19214

[5] S. Lankes, P. Reble, C. Clauss, and O. Sinnen, “Revisiting Shared
Virtual Memory Systems for Non-Coherent Memory-Coupled Cores,”
in Proceedings of the 2012 International Workshop on Programming

Models and Applications for Multicores and Manycores (PMAM

2012) in conjunction with the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP

2012), New Orleans, LA, USA, February 2012. [Online]. Available:
http://doi.acm.org/10.1145/2141702.2141708

[6] ET International, “ETI’s SCC Development Framework available,”
August 2011. [Online]. Available: http://communities.intel.com/thread/
17643

[7] M. Ziwisky, “BareMichael baremetal framework,” April 2012. [Online].
Available: http://communities.intel.com/thread/28001

[8] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl, “A Fast Inter-
Kernel Communication and Synchronization layer for MetalSVM,”
in Proceedings of the 3rd MARC Symposium, KIT Scientific

Publishing, Ettlingen, Germany, July 2011. [Online]. Available:
http://communities.intel.com/docs/DOC-6871

[9] C. Clauss, S. Lankes, T. Bemmerl, J. Galowicz, and S. Pickartz,
iRCCE: A Non-blocking Communication Extension to the RCCE

Communication Library for the Intel Single-Chip Cloud Computer,
Chair for Operating Systems, RWTH Aachen University, July
2011, Users’ Guide and API Manual. [Online]. Available: http:
//communities.intel.com/docs/DOC-6003

[10] M. Chapman and G. Heiser, “vNUMA: A Virtual Shared-Memory
Multiprocessor,” in Proceedings of the 2009 USENIX Annual Technical

Conference, San Diego, CA, USA, Jun 2009, pp. 349–362.
[11] G. Heiser, “Many-Core Chips — A Case for Virtual Shared Memory,”

in Proceedings of the 2nd Workshop on Managed Many-Core Systems

(MMCS), Washington, DC, USA, March 2009, p. 4 pages.
[12] D. Schmidl, C. Terboven, A. Wolf, D. an Mey, and C. Bischof,

“How to Scale Nested OpenMP Applications on the ScaleMP vSMP
Architecture,” in Proceedings of 2010 IEEE International Conference

on Cluster Computing, September 2010, pp. 29 –37.
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Abstract—The many-core Intel SCC processor is one of a
class of emerging, highly parallel computer architectures. Intel
provides a modern Linux kernel which, running on the SCC
as a separate instance per core, is able to load and launch
user applications. However, there is a lack of open-source tools
to facilitate development of “bare-metal” SCC applications –
applications that are run directly on the chip without the support,
overhead, or restrictiveness of an underlying operating system.

To help fill this void, we present BareMichael, a minimalistic
framework for compiling, loading, and launching mixed C and
assembly code on the bare-metal Intel SCC. The framework also
includes MikeTerm, a one-way pseudo-terminal for displaying
output from an application as it executes on the chip. We share
our solution in the hope that it will lower the barrier for others
to begin development in a bare-metal environment on the SCC.
Furthermore, we demonstrate the utility of BareMichael through
two applications: supporting the use of the RCCE message-
passing library, and serving as the foundation for a port of the
Embedded Xinu operating system.

I. INTRODUCTION

The Single-Chip Cloud Computer (SCC) experimental pro-

cessor is a “concept vehicle” created by Intel Labs as a

platform for many-core software research [1], [2]. It features

48 processing cores based on the P54C architecture and a 256

Gb/s bisection bandwidth mesh network-on-chip (NoC). The

chip is organized into 24 tiles, each of which contains two

cores, a router, and 16 kB of shared memory that is accessible

to all cores via the NoC. This fast, on-chip memory is referred

to as the “message-passing buffer” (MPB).

Intel provides support software for SCC development in-

cluding SCC Linux, a modern Linux kernel, and sccKit, a

suite of tools for interacting with the chip via an attached

“management console PC” (MCPC). While the environment of

SCC Linux offers many convenient features, such as access to

common Linux system services and the ability to interact with

cores via an ssh session, it is also a restrictive environment,

forcing developers to either run their SCC applications within

a low CPU privilege level, or to modify the kernel itself to

enable more advanced functionality.

It is thus desirable to be able to run applications in a “bare-

metal” environment with neither the support nor the overhead

and restrictions of an operating system. However, the barrier

to get bare-metal C code running on the SCC and to get

feedback from its execution is a significant one. We have

overcome this barrier, and we share our solution, BareMichael,

in the hopes that it will spare others the tedium and difficulty

of coding the initialization and support routines necessary to

begin development of bare-metal SCC applications.

The BareMichael framework enables a developer to execute

bare-metal code on the SCC with supervisor-level access to

all aspects of the chip. The framework is lightweight, mini-

malistic, and open-source. In the remainder of this paper, we

describe the framework’s platform initialization process, list

the tools upon which it relies, describe a couple of applications

for which we have used the framework, and discuss the other

offerings for bare-metal SCC development.

II. THE BAREMICHAEL FRAMEWORK

BareMichael is a minimalistic framework to support bare-

metal programming on the SCC. It is primarily a boot loader,

not an operating system. Thus, it does not provide operating

system functionality, but it may serve as a foundation upon

which an operating system (or any other program) may be

built. Along with a series of routines for initial configuration

of an SCC core, BareMichael is packaged with libxc, a

subset of the standard C library originally implemented for the

Embedded Xinu kernel [3]. Upon the framework, developers

may implement bare-metal code in C, x86 assembly, or a

combination of the two. The framework also includes some

SCC-specific helper functions and definitions to do things

like reading the local core ID, reading mesh and tile clock

frequencies, addressing MPBs and configuration registers,

acquiring and releasing tile lock registers, and triggering inter-

core interrupts. As BareMichael is an open-source tool, the

implementations of all of these functions are exposed to the

developer who is free to modify, remove, or reimplement them

at will.

A. Platform Initialization

The following is a brief walkthrough of the code path

BareMichael steps through to initialize an SCC core. This

description, accurate for the latest versions (4, 5, 6, and 7) of

the framework, illuminates the BareMichael startup process

so that a developer may understand both how it works and
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boot/startup.S

startup:
  # define & load GDT
  # initialize stack
  # clear bss
  call platforminit
  call main

system/platforminit.c

void platforminit() {
  init_idt();
  init_APIC();
  enable_caching();
}

boot/initPaging.c

void initPaging() {
  // priv mem cached
  // MPB cached + PMB
  // rest uncached
}

boot/getprotected.S

getprotected:
  # define & load GDT
  # get into 32-bit
  #   protected mode
  call initPaging
  # jump to startup

boot/reset_vector.S

backabit:
  # load seg regs
  # jump getprotected

_start: # @0xFFFFFFF0
  jmp backabit

text/main.c

void main() {
  // your code here
}

Fig. 1. Per-core initialization procedure of BareMichael.

how it may be modified to suit particular needs. Paragraph

headers identify the location of the code being discussed, and

a schematic representation of the entire process is illustrated

in Figure 1.

a) boot/reset vector.S: Based on the Intel P54C, each

SCC core boots in “real mode,” and consequently has access

to just a 20-bit address space. In spite of this limitation, the

first instruction a core executes after its reset pin is released

is loaded from memory address 0xFFFFFFF0, sixteen bytes

from the end of a 32-bit address space. We put a short relative

jump instruction here, which takes us back just far enough to

initialize the core’s segment registers and stack pointer, then

far-jump down to a getprotected() routine located within

the first mebibyte of memory.

b) boot/getprotected.S: The getprotected() routine

takes the processor into 32-bit “protected mode” by setting up

the necessary CPU configuration data structures and registers,

including a global descriptor table (GDT) to define flat code

and data segments. Then a page table is created for virtual

memory management.

c) boot/initPaging.c: The default look-up table (LUT)

for an SCC core, which maps core addresses into a larger

system address space, splits the core’s address space into

sections including private memory, shared memory, message

passing buffer space, and configuration register space. Our

page table flatly maps all of this space with cache disabled for

all but private RAM and message passing buffers. Message

passing buffer pages also have the PMB flag set to enable

special caching features of the SCC [2]. With the page table

configured and enabled, the core jumps to the startup()

routine.

d) boot/startup.S: The startup() code gets linked

together with libxc and the rest of the developer’s bare-

metal code to create the main image, which may be located in

private memory wherever the developer chooses (specified via

a Makefile variable). The startup() routine defines and

loads a new (but identical) GDT within the main image to

allow for easier addressing of the data structure should the

developer wish to access it later. Space then is allocated for

an interrupt descriptor table (IDT) which will be loaded with

descriptors momentarily. After initializing a stack, clearing the

bss section of the image, and initializing the floating point

unit, the core calls platforminit().

e) system/platforminit.c: Among the duties of the

platforminit() routine are calls to initialize and en-

able the local advanced programmable interrupt controller

(APIC), load the IDT with some default descriptors, and

enable caching. As of version 3, the framework includes

real-time clock support using the local APIC timer. If this

feature is enabled (via a definition in include/conf.h),

its initialization function is called here. Interrupt vectors 0x00

through 0x1F are reserved for CPU faults and exceptions, and

the default handlers BareMichael assigns to these vectors print

out information about the state that the system was in when

the interrupt occurred. Such information is useful for debug-

ging. After platforminit() returns, BareMichael calls the

main() function in text/main.c, which is assumed to be

the starting point of the developer’s code.

To summarize, we now describe the state of an SCC

core after BareMichael initialization. The setup routine brings

the SCC core to 32-bit protected mode at privilege level 0

(supervisor level). Virtual memory management is enabled

with page table entries present only for the core addresses

that are mapped to actual system addresses by the default

LUT configuration. Private memory is configured to have

cache enabled, MPB-mapped pages have cache enabled and

the SCC-specific PMB flag set, and all other sections have

cache disabled. The local APIC is enabled and, by default,

its periodic timer is set up to trigger a handler (found in

system/clock.c) every millisecond. If the framework is

configured for RCCE support (see Section III), the core’s MPB

space is initialized to zeros and a heap is initialized to allow

dynamic management of private memory.

B. MikeTerm

BareMichael applications can print text back to the MCPC

through a call to printf(). This function simply writes

data to a circular buffer in memory where it can be seen and

retrieved by the MCPC via the SCC’s system interface. Each

core has a different buffer allocated for this purpose. Running
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[00]: Hello, World -- I'm core 0!

[01]: Hello, World -- I'm core 1!

[05]: Hello, World -- I'm core 5!

[24]: Hello, World -- I'm core 24!

[47]: Hello, World -- I'm core 47!

[00]: I'm going to trigger core 47's LINT0 now.

[47]: I've been interrupted!
[47]: (SCC has been booted for 2 seconds)

[00]: Now I'm toggling core 47's LINT1.

[47]: Another interruption!
[47]: (SCC has been booted for 5 seconds)
^C
Thanks for flying MikeTerm!

Fig. 2. Sample output from MikeTerm. In this sample program, each booted
core says “Hello.” Then, after a short delay, core 0 toggles each of core 47’s
APIC interrupt pins with a delay in between. Core 47 has set these interrupt
vectors to point to handlers that print out the total time passed since boot up.
That time is kept track of by the real-time clock which operates based on the
APIC timer and the tile clock frequency.

on the MCPC, a utility called MikeTerm acts as a one-way

pseudo terminal, periodically polling each of the 48 buffers

and printing any text found therein. All output from MikeTerm

is preceded by a core identifier. Because MikeTerm scans the

shared memory buffers sequentially, it is not guaranteed that its

output will be printed in the order in which the cores wrote to

their respective buffers. The output from any given core will be

delivered in the order in which the core printed it, but ordering

of output between any two cores is not necessarily preserved.

Additionally, if a core is writing to its buffer faster than

MikeTerm is retrieving it, old data will be overwritten and lost

without being printed. No protections are built in to prevent

this. The default configuration of the framework allocates

64 KiB buffers which get polled by MikeTerm roughly once

per second, so data is likely to be lost when output rates are

greater than about 64,000 characters per second. BareMichael

currently offers no mechanism for interacting with running

SCC programs by feeding data in the other direction, from

the MCPC to the chip.

C. Build Environment and Dependencies

1) Dependencies: BareMichael leverages some open-

source utilities for image compilation, image loading, and

delivering output through MikeTerm. The framework uses

the i386-unknown-linux-gnu cross-compiler tools from

gcc version 3.4.5 to produce flat binary object files. sccKit is

a suite of utilities, provided by Intel, that run on the MCPC

and interact with the SCC. BareMichael is compatible with

sccKit version 1.4.1, and it uses the bin2obj, sccMerge,

sccBoot, and sccReset tools for loading binaries into

SCC memory and toggling reset pins of individual cores.

MikeTerm uses sccDump and sccWrite to access print

buffers in shared memory.

2) Compilation and Execution: Compilation of both

MikeTerm and the SCC image is managed using Makefiles

written for the GNU make utility. MikeTerm is written in

C++ and located in the miketerm directory. To compile it,

simply change to that directory and invoke make.

BareMichael expects the directory containing sccKit bina-

ries to be included in the user’s PATH environment variable.

Paths to the cross-compiler and bin2obj tool must be

specified in the framework’s Makefile, which is located at

compile/Makefile. The Makefile also includes a config-

uration variable for specifying a list of cores to boot. After

defining these few variables, compiling and running a bare-

metal application is very simple and straightforward. The

default make target builds the image; the run target loads

that image into SCC memory and releases the resets of the

specified cores. The main() function in test/main.c is

the entry point for the developer’s code, and if all of the

developer’s code is contained in that file (or in any set of files

already in the framework), a simple ‘make; make run’ is

all that is needed to get the code running on the SCC. Follow it

up with ‘../miketerm/miketerm’ to view output from

the cores. If additional source files need to be linked, one must

add them to one of two lists in the Makefile: C source files

get added to the C_FILES list, while assembly files belong

in the S_FILES list.

3) Advanced Capabilities: Though most developers proba-

bly will be satisfied with the default configuration of the build

environment, additional customization is possible. One simple

example is changing the memory address to which the main

image gets loaded onto the core. This is easy to modify as it

is already defined by a variable (IMG_ADDR) in the Makefile.

However, the framework has other potential capabilities – such

as loading and booting different images on different cores –

that are possible to realize but not as simple to exploit. For

this reason, we disclose the roles of a few files that the build

process creates along the way to creating a loadable SCC

image.

Initially, the source is compiled into three flat binary

object files: the reset vector, the “get protected” and

paging initialization code, and the main image. The file

compile/load.map is created and populated with the

names of these three objects, each preceded by the mem-

ory address (32-bit core address, not a memory controller

address) to which it is to be loaded. This file serves as

the input to the bin2obj tool, which creates a text file,

compile/battle.obj, that represents a composite of the

three objects. The sccMerge tool decides where to load the

composite image into SCC memory and how to set initial core

LUT configurations. The tool makes these decisions based

on three arguments: the number of cores to be served by

each memory controller (12 by default), the size per memory

controller in GiB (8 by default), and the contents of a .mt in-

put file. BareMichael creates the file compile/battle.mt
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and populates it with 48 lines, each of which identifies a

core, a memory controller, a “memory slot” (between 0 and

47, inclusive), and a .obj file. By default, this file assigns

to each core: the nearest memory controller; a memory slot

between 0 and 12, which is assigned in increasing numerical

order to the 12 cores sharing a memory controller; and the

object file that was built earlier, compile/battle.obj.

The output of sccMerge is a directory, compile/obj/,

and files therein that define the SCC memory contents and

the LUT configurations. This directory is provided as an

argument to sccBoot, which does the actual loading of SCC

memory and configuring of LUTs. Finally, the framework is-

sues the command ‘sccReset -r <list of cores>’

to release the reset pins of the desired cores.

Clearly, the build procedure may be altered in a few ways

– most notably through modifications to the .mt file – to

customize how SCC memory gets loaded and distributed

among cores. As an example, one may arbitrarily assign .obj

files to cores in the .mt file to boot heterogeneous images

among the cores. Of course, this requires building multiple

.obj images, so multiple load maps must be defined and fed

to bin2obj. Implementation of such alterations is left to the

interested developer.

III. INTEGRATION WITH RCCE

RCCE [4] is a message-passing software library that Intel

Labs designed and implemented in conjunction with the SCC

hardware. The current version of the library, V2.0, may be

compiled for use in SCC Linux, a kernel port also supplied

by Intel, or for use in a bare-metal environment. However,

because bare-metal RCCE is a library and not an environment

itself, it does not provide the execution framework needed to

run bare-metal applications on its own. In addition to a CPU

initialization process, RCCE demands:

• POSIX functions mmap() and munmap() for virtual

memory management,

• file operations such as open(), flush(), and

fprintf(),

• malloc() and free() for dynamic memory manage-

ment, and

• various additional C library functions.

These gaps are filled by the v6 release of BareMichael,

allowing the developer to use the unmodified bare-metal

RCCE library with BareMichael “out of the box.” While some

features such as dynamic memory management are properly

implemented for general use, others, including virtual memory

management functions and file operations, are tailored to be

compatible with RCCE, though not fully implemented to fulfil

their intended duties. These functions are not necessarily safe

for use outside of the purpose of supporting RCCE V2.0.

We now present some performance results for RCCE V2.0

running in the BareMichael environment. The simple “ping-

pong” benchmark [5] was run on cores 0 and 1 with the SCC

mesh and memory running at 800 MHz and core clocks of

533 MHz. As seen in Figure 3, the benchmark exhibits nearly

identical performance regardless of whether it is run within
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Fig. 3. Ping-pong benchmark results for RCCE and iRCCE running in SCC
Linux and BareMichael environments.

SCC Linux or BareMichael. The same is seen when running

the benchmark with the pipelining send and receive functions

of iRCCE V1.2 [6] in both environments.

IV. IMPLEMENTATION OF XIPX OS

Due to its minimalistic nature, BareMichael is a suitable

foundation not only for running individual parallel applica-

tions, but also for launching operating system kernels. We

demonstrate this with Xipx, an SCC port of the Embedded

Xinu operating system that leverages the BareMichael frame-

work for hardware initialization [7]. The following section

presents the Xipx MPB device, which stands as an asyn-

chronous alternative to the RCCE/iRCCE way of managing

the SCC’s message passing hardware.

A. The Xipx MPB Device

Xipx exposes the SCC message passing buffers via the

standard Xinu device API [8]. Several instances of an MPB

device are created at boot time, and each one acts as a

two-way message passing channel. As an asynchronous and

interrupt-driven driver, the Xipx MPB device facilitates inter-

core communications in a way that is fundamentally different

than RCCE. The basic RCCE API uses a symmetric name

space model, meaning all cores access shared variables in the

same way – using a variable name and the core ID of the

MPB where the variable is stored. In order to preserve this

symmetry, certain RCCE routines must be encountered jointly

by all cores involved in the system. These routines are referred

to as “collective operations,” and saying they are “encountered

jointly” means that they get called in the same order with

respect to each other on all cores in the system. For example,

the RCCE_malloc(size) routine, which allocates size

bytes in the local MPB, is a collective operation – any core

calling RCCE_malloc(size) is counting on all other cores

to do the same in the same order with respect to other

collective operations. This ensures that all cores are returned

a pointer with the same offset from the beginning of their
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respective MPBs, and they can therefore safely assume the

correct location of the corresponding variable in any other

remote MPB.

The symmetric name space of a RCCE application is a

convenient and efficient way to manage MPB space for a

single application, but it is not capable of supporting multiple

simultaneous applications on the SCC. With multiple parallel

applications running at a time, one cannot guarantee the order

in which the applications will get CPU time on each core,

and therefore cannot guarantee that collective operations are

encountered jointly by all cores. As a simple example, consider

two different applications running on the SCC. One of them

runs on cores 0 and 1, the other on cores 0 and 2. Because core

0 is involved in both applications, but cores 1 and 2 are only

involved in one each, any collective operation core 0 performs

in one application is not performed by its communicating

partner in the other, therefore the name space symmetry is

broken.

In order to support an arbitrary graph of communicating

threads on SCC cores, the Xipx MPB device does not assume

a symmetric name space. Instead, Xipx treats each MPB as a

FIFO buffer. Messages are written to the receiving core’s MPB

with a header to indicate the core and channel from which it

was sent, the channel to which it should be delivered, and

the length of the payload. These messages can arrive from

any core in any order, and the presence of a new message

is signalled by an interrupt. The handler for this interrupt

searches through the local MPB devices to find one that is

open on the channel indicated by the message header. It then

copies the message to a pre-allocated buffer and sends a signal

to the thread that owns the device so that a subsequent (or

pending) call to read() will retrieve the data.

Figure 4 illustrates the performance of the Xipx MPB device

for a number of scenarios. All benchmarks were run with the

same hardware configuration as described in Section III. In

addition to the basic ping-pong benchmark, we executed the

“ping-ping” benchmark in which two cores each simultane-

ously send a message to each other and then simultaneously re-

write()

read()
write()

read()

Core A Core B

(a) Ping-Pong (b) Ping-Ping

Core A Core B

write()

read()

write()

read()

time
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Fig. 5. Comparison of the communication patterns for (a) the ping-pong
benchmark and (b) the ping-ping benchmark.

trieve the message they were sent. The communication patterns

of the ping-pong and ping-ping benchmarks are illustrated

in Figure 5. In a two-to-one ping-X test, one core runs two

simultaneous ping-X benchmarks, each with a different partner

core. The measured bandwidth is total data flow in and out

of the shared core. For comparison, the RCCE ping-pong

performance is duplicated here and iRCCE ping-ping data is

introduced.

The Xipx MPB device achieves about 70% of the bandwidth

of RCCE and iRCCE in ping-pong and ping-ping benchmarks,

respectively. Xipx kernel threads slightly outperform user

threads due to the overhead associated with user thread system

calls. Though the Xipx device does not match the two libraries

in raw bandwidth, the two-to-one benchmarks it performs are

not even possible with those libraries. As we have already dis-

cussed, this is because the collective communications on which

the libraries rely prohibit their use in two concurrent programs.

Furthermore, the absence of a RCCE ping-ping benchmark is

due to the fact that the library’s synchronous semantics render

it incapable of implementing that communication pattern.

B. Porting an OS with BareMichael

Xipx is, in fact, the precursor of BareMichael; the frame-

work was extracted from Xipx as the initial set of operations

that set up a C execution environment in 32-bit protected

mode. Due to this development history, the authors cannot

comment on the effort required to port another x86-based OS

to the SCC using BareMichael as an aide. However, Xipx

diverges from BareMichael beginning in the startup()

routine, and we believe that the execution path preceding

that point is generic enough to be useful for other operating

systems as hardware initialization code. The initPaging()

routine may be replaced or modified to set up an appropriate

initial pagetable. Furthermore, regardless of the build process

used to generate the OS image, the build environment of

BareMichael should be useful for merging that image with

the framework’s initialization code and loading the resulting

composite image into SCC memory.

V. RELATED WORK

Microsoft has released a Visual Studio add-in and bare-

metal environment package for the SCC [9]. The source
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code for the minimalistic bare-metal environment is provided,

thereby allowing developers to modify the environment to suit

their needs. However, development options are limited as the

Microsoft tools must be run from a Windows machine that has

a network connection to the MCPC. Furthermore, the license

for this framework allows for non-commercial use only, and it

grants back to Microsoft the right to use, modify, and sell any

modifications to and/or derivative works of their framework.

BareMichael tools are run directly on the MCPC, and its

open-source, BSD-style license is less restrictive, permitting

redistribution and use of the framework and derivative works,

both in source and binary forms, for both commercial and

non-commercial purposes.

ETI provides a beta version of its SCC Development Frame-

work [10] for compiling and launching bare-metal applications

on the SCC. Applications get compiled into an ELF format

binary and are loaded and launched via a utility running on

the MCPC. The ETI framework is closed source, and therefore

lacks certain flexibilities offered by BareMichael such as the

ability to modify the boot process. The current release also

offers no means of specifying which cores to boot up, only

the number of cores. Furthermore, it forces the same image

to be loaded onto all cores at once. In contrast, BareMichael

is able to load different images to different cores with only

minor changes to the build process.

Finally, an Intel internal framework named BareMetalC

exists [5], but it is not released to the public due to licensing

limitations. The bare-metal RCCE library was created specif-

ically to support this framework.

VI. CONCLUSION

We have introduced BareMichael, a minimalistic, open-

source framework for loading and executing bare-metal pro-

grams on the Intel SCC architecture. Our lightweight frame-

work is packaged with a subset of the standard C library, and

features out-of-the-box support for Intel’s message-passing li-

brary, RCCE. A basic benchmark shows that message-passing

bandwidth for RCCE on bare-metal is nearly identical to that

for RCCE in SCC Linux.

A programmer developing in BareMichael is not limited

merely to launching individual parallel applications on the

SCC. The flexibility of the framework is demonstrated by our

implementation of Xipx, a port of the Embedded Xinu operat-

ing system, for which BareMichael serves as the foundation.

In order to allow multiple threads to simultaneously use the

SCC’s message passing buffer in a preemptive environment,

Xipx manages the MPB hardware at the device layer. Though

our simple device implementation does not match the band-

width of RCCE, it allows for asynchronous communications

and allows multiple processes to use the MPB simultaneously,

two features that are not possible with the basic RCCE API.

Future work on Xipx will investigate how to increase message-

passing performance at the device layer.

Typical usage of the SCC involves loading the private

memory of each core with an identical image. However, there

is interest in being able to boot different images on different

cores [11], [12]. The utilities of sccKit allow for this, and

we have been successful in using the BareMichael build

environment to load and boot heterogeneous images on the

SCC. A future release will incorporate this functionality.

The current, simplistic implementation of MikeTerm only

allows one-way serial communication from the SCC to the

MCPC. Two-way communication is desirable, and it may

be realized via the UART support that was introduced with

version 1.4.2 of sccKit. We plan to look into this possibility

for future releases as well.

We provide the BareMichael framework as an open-source

package in the hope that it will lower the entry barrier

for others wishing to develop and run bare-metal applica-

tions on the Intel SCC. The framework is available for

download at http://marcbug.scc-dc.com/svn/repository/trunk/

baremetal/baremichael/.
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