
HAL Id: hal-00719037
https://hal.science/hal-00719037

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Implementation of the bare-metal Hypervisor
MetalSVM for the SCC

Pablo Reble, Jacek Galowicz, Stefan Lankes, Thomas Bemmerl

To cite this version:
Pablo Reble, Jacek Galowicz, Stefan Lankes, Thomas Bemmerl. Efficient Implementation of the bare-
metal Hypervisor MetalSVM for the SCC. The 6th Many-core Applications Research Community
(MARC) Symposium, Jul 2012, Toulouse, France. pp.59-65. �hal-00719037�

https://hal.science/hal-00719037
https://hal.archives-ouvertes.fr


http://sites.onera.fr/scc/marconera2012

Proceedings of the 6th Many-core
Applications Research Community

(MARC) Symposium

July 19th–20th 2012

ISBN

978-2-7257-0016-8

http://sites.onera.fr/scc/marconera2012
http://hal.archives-ouvertes.fr/MARCONERA2012
http://www.onera.fr


Efficient Implementation of the bare-metal

Hypervisor MetalSVM for the SCC

Pablo Reble, Jacek Galowicz, Stefan Lankes, Thomas Bemmerl

Chair for Operating Systems, RWTH Aachen University

Kopernikusstr. 16, 52056 Aachen, Germany

{reble,galowicz,lankes,bemmerl}@lfbs.rwth-aachen.de

Abstract—The focus of this paper is the efficient implemen-
tation of our compact operating system kernel as a bare-metal
hypervisor for the SCC. We describe source, functionality, and
the operation of our kernel, as well as the interaction with the
already published communication layer. Furthermore we give a
detailed insight into the boot procedure of the SCC from reset
to the starting point of our light-weight operating system kernel.
This procedure is performed by a bare-metal framework, which
is part of the MetalSVM project. Programmers can use our
framework as a springboard for bare-metal programming on
the SCC, which goes along with the first release of MetalSVM.
Finally, we evaluate the performance of a paravirtualized Linux
guest on the SCC hardware and present results of context switch
latencies for Linux and MetalSVM hosts.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-

cessor [1] is a concept vehicle created by Intel Labs as a

platform for many-core software research, which consists of

48 cores arranged in a 6 × 4 on-die mesh of tiles with two

cores per tile. The intended programming approach for this

cluster-on-chip platform is based on message passing [2].

For the parallelization of data-intensive algorithms, espe-

cially with irregular access pattern a shared memory pro-

gramming model like OpenMP which is based on memory

coherence offers an attractive and efficient alternative. If future

many core processor architectures have to waive the memory

coherency implementation in hardware, MetalSVM can enable

shared memory programming on those architectures using

virtualization.

One logical, but parallel and cache coherent virtual machine

runs on top of a virtualization layer. With a Shared Virtual

Memory (SVM) system this implements a classic approach

for the realization of memory coherence in software in a

bare-metal hypervisor. The virtualized Linux instance, called

guest, will have the impression of being executed on a sym-

metric multiprocessor system. As a result, standard shared

memory parallelized applications can run on future many-

core platforms. Since the shared memory paradigm shows

advantages in many scenarios, we are convinced that it is

valuable to transparently provide memory coherence even on

an architecture without according hardware support.

This paper is structured as follows: In Section II, we

motivate the realization of MetalSVM1 and summarize related

1http://www.metalsvm.org

work of our project. Afterwards, we present in Section III

the structure and implementation details of the first version of

MetalSVM. We describe the Boot process of the hypervisor

kernel on the SCC platform in Section IV. Additionally,

we compare context switch overhead and the hypervisor

implementation performance between Linux and MetalSVM

in Section V. In Section VI, we explain the benchmarks used

for the evaluation of our kernel and present the respective

performance results. The final Section VII summarizes this

paper and gives an outlook to our next research goals.

II. MOTIVATION AND RELATED WORK

Initially by forking eduOS, we started the further develop-

ment of MetalSVM. eduOS is a very minimalistic operating

system used for educational purposes at the RWTH Aachen

University. It is inspired by Unix but does not aim to be

fully POSIX compliant as, for instance, the Linux kernel or

the MINIX kernel, which are also used for operating system

courses and research [3].

In fact, the simplicity of eduOS leads to an easy customiz-

ability and tasks running in kernel space are executed near

bare-metal. As a lightweight and small monolithic kernel,

it provides adequate functionality for running user space

programs. Figure 1 shows the basic kernel structures of eduOS.

Application Programming Interface

IPC

semaphore

mutex

mailbox

scheduler timer I/O

driver

running task

ready tasks

blocked tasks

Hardware

Fig. 1: Kernel structure of eduOS

MetalSVM, the further development of eduOS, represents a

highly optimized codebase for running applications near bare-

metal on the Intel SCC. Programmers can use our framework

as a springboard for bare-metal programming on the SCC. In

[4], we presented a first prototype, and in [5] further improve-

ments of an SVM system, based on our framework. Here,

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Efficient Implementation of the bare-metal hypervisor MetalSVM for the SCC 59

http://www.metalsvm.org


Application

Linux

Hypervisor
back-end driver

device emulation

front-end driver

virtio

Kernel Kernel
Comm. and Synch.

Layer

Core i Core j

SCC Hardware

M
e
ta

lS
V

M

Fig. 2: Basic Concept of MetalSVM [4]

a shared memory application uses special SVM functions

explicitly for shared memory allocation. A transparent use of

the SVM layer by unchanged software will be enabled by a

virtualization layer on top of the functionality of the MetalSVM

kernel (see Figure 2).

From the application programmer’s view, Linux user space

applications have limited control over the preemption time,

which is affected by context switching and interrupt handling.

Consequently, this can be a good reason to run applications

bare-metal to avoid this kind of overhead. However, one may

be not interested or be able to take care of the rest of the

necessary low-level work, which is the common reason for

using an operating system. Since MetalSVM is configurable,

the possibility exists to switch off infrastructure, for instance

the hypervisor or the communication layer, which makes our

framework comparable to bare-metal frameworks presented at

the Intel Communities page [6], [7].

In [8], we evaluated the synchronization and communication

hardware support of the SCC for inter kernel usage. For

the integration of iRCCE into MetalSVM, this included an

extension in the form of a mailbox system in combination

with optimized synchronization support. The result is fast

synchronous and asynchronous communication between user

and kernel tasks of MetalSVM [9].

Besides MetalSVM, several projects handle the integration

of an SVM system into virtual machines, for an easy appli-

cation of common operating systems and development envi-

ronments without changes. An example for such a hypervisor-

based SVM system is vNUMA [10] that has been implemented

on the Intel Itanium processor architecture. In [11] one founder

of vNUMA proposed to extend this concept for Many-Core

Chips. For x86-based compute clusters, the so-called vSMP

architecture developed by ScaleMP2 allows for cluster-wide

cache-coherent memory sharing. This architecture implements

2http://www.scalemp.com

a virtualization layer underneath the OS that handles dis-

tributed memory accesses via InfiniBand-based communica-

tion. In some respects, these approaches are similar to our

hypervisor approach. Both implement the SVM system in an

additional virtualization layer between the hardware and the

operating system.

The main difference between these approaches is that

vSMP and vNUMA explicitly use message-passing between

the cluster nodes to transfer the content of the page frames,

whereas our SVM system can cope with direct access to

these page frames. In fact, we want to exploit the SVM

system with SCC’s distinguishing capabilities of transparent

read/write access to the global off-die shared memory. This

feature will help to overcome a drawback of other hypervisor-

based approaches regarding fine granular operations. A recent

evaluation [12] of ScaleMP’s vSMP with synthetic kernel

benchmarks as well as with real-world applications has shown

that vSMP architecture can stand the test if its distinct NUMA

characteristic is taken into account. Moreover, this evaluation

reveals that fine granular operations such as synchronization

are the big drawback of this kind of architectures. Our aim is to

avoid this shortcoming by using the distinguished capabilities

of transparent remote read/write memory on the SCC.

RockyVisor [13] is the name of another project for the

realization of a hypervisor based symmetric multi-processing

support for the SCC. In contrast to MetalSVM, this project

targets the integration of its hypervisor into Linux and not on

the base of a minimalistic kernel. Therefore, on the top of all

Linux instances runs a virtualized Linux, which assumes that

the SCC is an SMP system. From our point of view, such a

Linux on Linux approach implies unneeded overhead.

III. KERNEL FEATURES

The intended usage for an SVM management system in-

fluences the hypervisor kernel. In this section, we detail the

implementation of this monolithic kernel including interrupt

handling, device drivers, file system, and hypervisor. Addition-

ally, we give reasons for specific design decisions by concrete

applications.

The focus in this paper is the kernel implementation for

the SCC. However, we compare this implementation to dif-

ferent hardware architectures supported by MetalSVM, whose

concept is divided in a hardware dependent and independent

part.

A. Hypervisor

The fact that a guest kernel is aware that it runs as a

guest and uses hypercalls to do privileged operations is called

paravirtualization [14]. Using an existing hypervisor solution

from the Linux kernel has been the first choice for the inte-

gration into MetalSVM [15]. This way we can avoid changes

on the Linux kernel code, since interaction between host and

guest is based on a de facto standard virtualization interface.

lguest is an appropriate match in this context, because its about

5000 lines of code keep it quite simple. Despite its small

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Efficient Implementation of the bare-metal hypervisor MetalSVM for the SCC 60

http://www.scalemp.com


size it provides all required features for the realization of the

MetalSVM project [16].

For development and testing purposes, we use QEMU3,

which is a generic and open source machine emulator and vir-

tualizer. To simplify our tests of standard kernel components,

we integrated a driver for the Realtek RTL8139 network chip,

which is also supported by QEMU as an emulated device.

B. Device Drivers

Communication between the SCC cores running MetalSVM

is not limited to the iRCCE library and its mailbox extension.

With the integration of lwIP, a light-weight TCP/IP library,

the flexibility is increased [17]. Consequently, BSD sockets

are made available to user space applications to establish

communication between the SCC cores and the MCPC. In [4],

we demonstrated the convincing performance of the resulting

network layer.

The network capabilities besides other devices of MetalSVM

will be forwarded to the guest operating system through

the hypervisor via virtio. Virtio is Rusty Russell’s draft to

create an efficient and well-maintained framework for IO-

virtualization of virtual devices commonly used by different

hypervisors [18]. In our scenario, for instance the network

capabilities of MetalSVM are used as a backend by just

forwarding the requests of the Linux guest operating system

to the hypervisor.

C. Interrupt Management

The SCC platform includes 48 P54C cores. As a second

generation of Pentium cores, the P54C is the first processor

which is based on an on-chip local Advanced Programmable

Interrupt Controller (APIC). This local APIC is used to

program the local timer interrupt, which can be used to trigger

the scheduler periodically. MetalSVM uses a simple priority-

based round-robin scheduler, described in detail in Section V.

Beside the timer interrupt, the local APIC possesses two

programmable local interrupts (LINT0 and LINT1). Interrupts

achieve an important role, because the SCC does not use

the traditional way to integrate I/O devices (IO-APIC) or

to send inter-processor interrupts (IPIs). Therefore, a core

configuration register exists for each core of the SCC, which

is mapped to the address space of all cores. A special bit in

these registers triggers a LINT0 or a LINT1. As a result, core

x is enabled by the memory-mapped configuration registers to

trigger an interrupt on core y. However, with this mechanism

the receiving core is now able to determine the origin of the

interrupt.

The update of Intel sccKit to version 1.4.0 includes a Global

Interrupt Controller (GIC), which provides a more flexible

way to handle interrupts [19]. If an interrupt is triggered by

the GIC, the receiver is able to determine the origin of this

interrupt. MetalSVM uses the GIC especially for inter-core

communication via iRCCE or our mailbox system [5]. Here,

the information about the origin of an interrupt increases the

scalability.

3http://www.qemu.org/

D. File system

Since the SCC provides no non-volatile storage, a file

system is physically limited in use. Nevertheless, MetalSVM

has an elementary inode file system with an initial population

loaded from a ramdisk file. This file system can be manipu-

lated at runtime.

The integration of newlib4, which is a C library in-

tended for use on embedded systems, extends the usage of

MetalSVM. Regarding the mode to run user-space applications

on MetalSVM arises the possibility to access custom character

devices by the provided /dev directory. These can be imple-

mented very comfortably using a well defined interface.

IV. BOOT ON THE SCC

MetalSVM is Multiboot5 compliant. This means that the

project framework creates an ELF kernel file and an initial

ramdisk image file. A boot loader like GRUB can easily use

these files to boot MetalSVM on commodity x86 hardware.

Because the available SCC hardware is a research prototype,

the booting process differs from commodity hardware. Differ-

ences to commodity hardware are the absence of BIOS support

and the lack of stand-alone memory initialization of this

experimental platform. The only possibility to bootstrap the

SCC cores is preloading their memory content into a bootable

state. Thus, the general system initialization is realized by a

standard PC (MCPC) with direct access to the memory of the

SCC and its configuration registers.

In the following, we describe the function of our framework

to bring the SCC Platform into a Multiboot compliant state.

As a result, an entry point for our 32 bit minimalist Multiboot

kernel is created. Additionally, we describe the interaction with

the common sccKit tools to boot up the SCC platform with

MetalSVM.

Initially, the boot procedure starts by pulling the reset

pins of the SCC cores. Next, its Lookup Tables (LUT) are

initialized and the memory is set into a bootable state for

each core. After a reset pin release the instruction pointer of

each core holds the hardwired address 0xfffffff0. As the

SCC does not provide any form of boot loader, our framework

provides minimal assembler code for this purpose, which

needs to be located at this position. Starting the operation

in real mode, this code initializes the stack pointer, installs

a rudimentary GDT, switches the processor to protected mode

and subsequently to 32 bit mode. As a last step, this setup

procedure jumps to the alignment value of the MetalSVM

kernel, address 0x100000.

The compiler has to support the pentium architecture for

the generation of ELF format output of our minimalist kernel

for the SCC. ELF, as the standard binary file format for

Unix systems, is currently not supported by the sccKit tools.

Therefore, the utility objcopy is used to generate a directly

loadable, raw binary kernel file by discarding all symbols

and relocation information. The previously described startup

4http://sourceware.org/newlib/
5http://www.gnu.org/software/grub/manual/multiboot/

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Efficient Implementation of the bare-metal hypervisor MetalSVM for the SCC 61

http://www.qemu.org/
http://sourceware.org/newlib/
http://www.gnu.org/software/grub/manual/multiboot/


routine, from real to protected mode, a data struct, containing

information which is generally provided by the bootloader,

and the kernel itself are composed to a single image by

sccMerge.

Next, sccMerge creates rules for the configuration of the

LUTs and one object file per memory controller of the SCC

platform. Subsequently, sccBoot loads the generated object

files into the off-die memory and finally sccReset is used

to release the reset pins of the SCC cores.

V. SCHEDULING

Requirements to a scheduler of the presented hypervisor are

lower compared to schedulers of popular modern operating

systems. Specifically, the intended use for the scheduler is

to handle a few tasks, such as the guest kernel, daemon and

monitoring tasks. Hence, a simple but fast algorithm is applied

to manage tasks. The scheduler keeps an array with as many

items as priority steps exist. Per priority there is one linked

list of tasks waiting for execution. Between two timeslices the

scheduler appends the previous task to the end of its priority

list and selects the head of the current processed priority level

list for execution.

The small set of implemented priorities in MetalSVM pro-

vides the possibility to apply optimization. One optimization is

already implemented in the networking layer. Network packet

traffic is handled in a special kernel task whose priority can

be changed. This way it is possible to balance between high

network throughput and overall system latency.

Version 0.1 of MetalSVM supports 32 different priority lev-

els. This small number allows MetalSVM to create a bitmap of

used priority queues in one 32 bit integer. Consequently, with

one assembler instruction (msb) is it possible to determine the

highest used priority queue, which promises an extremely low

overhead. Before leaving any interrupt handler, the handler

checks, if a task with higher priority is able to run and calls

the scheduler if required. In our scenario, a reduction of the

latency of the network stack can be achieved, by holding the

network thread at a higher priority than the computation tasks.

A. Hardware Context Switch

Early versions of MetalSVM used the x86 hardware task

switching by default for a context switch. Here, a context

switch is performed by a JMP to a TSS descriptor, which has

the advantage of a very simple application. Therefore, the TSS

(Task State Segment), which stores the state of a task, except

the FPU state, is restored.

A disadvantage of this method is the lack of selection which

registers are saved and restored [20]. Furthermore, the number

of TSS entries in the segment table is limited to 8192 [21].

Due to portability reasons most modern operating system

implementations use software task switching.

However, a basic component of the SCC is the classic P54C

core, which could result in an increased scheduling perfor-

mance of hardware context switching. Besides a benchmark

of the hypervisor layer, we evaluate this assumption in the

next section.

VI. BENCHMARKS

Benchmark results of different subsystems of MetalSVM,

excluding the kernel, have been already published. An evalu-

ation of the synchronization support, including different spin

lock and barrier implementations is presented in [8]. In [4],

the network layer and a first prototype of the SVM layer are

evaluated. Further optimizations of the SVM layer and the

mailbox extension of iRCCE are presented in [5].

In this section of this paper, we analyze advantages of

a bare-metal implementation of MetalSVM. We compare the

context switch overhead of sccLinux 2.6.38 to MetalSVM 0.1

on the SCC platform. Additionally, we compare the lguest

implementation of MetalSVM to the implementation of the

Linux kernel 2.6.32 and 2.6.38.3. For a comparison of the

results, the benchmark application is the single process running

on sccLinux.

For the benchmark in this section, we obtained measure-

ments by running a single instance of the selected host oper-

ating system on a single core of the SCC platform6. Because,

sccLinux in a version 2.6.32 is currently not available in a

configuration with lguest support, we used an Intel Celeron

550 test system with a frequency of 2 GHz, to benchmark the

context switch latencies.

A. Context Switch Latency

For the measurement of context switch latency, two tasks

are running on a single core with a high priority. Each task

periodically reads the time stamp counter in a loop and stores

the result at a shared memory location. Measured gaps, which

are shorter than a timeslice and longer than an iteration without

interruption, are recorded as an indicator for the latency of a

context switch and visualized as a scattered plot in Figure 3.

This method is comparable to the hourglass benchmark [22].

But in contrast to our benchmark, the hourglass benchmark

tests the general preemption time and gives no information

about the context switch latency.

Thus, the benchmark results from Figure 3 can be used for

a comparison of context switch latencies between sccLinux

and MetalSVM. As reported by Figure 3a, sccLinux has a

minimal context switch overhead of about 6400 processor

cycles. Figure 3a indicates a certain noise, which has no

clear signature and changes from time to time. The picture

is different for MetalSVM, which generates a minimal context

switch overhead of 2100 processor cycles. This is more than

3 times faster. However, Figure 3b shows a second level of

about 5000 ticks for context switch latencies. This effect is

caused by the process of the lwIP driver, which is running

with a high priority.

The scale-up from Figure 3b visualizes the differences

between hardware and software context switch for MetalSVM

on the SCC platform. Here, no significant effect of the context

switch method to the context switch latency, except a constant

offset, can be identified.

6core/mesh/memory frequency: 533 MHz/800 MHz/800 MHz

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Efficient Implementation of the bare-metal hypervisor MetalSVM for the SCC 62



0 1,000 2,000
0

10

20

30

iteration

1
0
3

ti
ck

s

(a) sccLinux 2.6.38

0 1,000 2,000
0

10

20

30

iteration

HW context switch

SW context switch

(b) MetalSVM

Fig. 3: Context switch latencies on the SCC (2000 iterations)

B. Hypervisor Performance

The hypervisor plays an important role to establish a

transparent shared virtual memory environment. Obviously, its

overhead has a significant impact on the performance of its

guest machine, for instance concerning memory management,

context switches and process handling.

Measurements of three representative latencies identify a

reduced virtualization overhead of lguest in combination with

MetalSVM. The context switch from guest execution to host

execution is performed at each hypercall and at the majority

of interrupts. Page faults in a guest application can involve up

to 3 guest-host roundtrips. Therefore, a fast resolving is aimed

for. We measured the duration of system calls, exemplary

for getpid, fork, vfork, and pthread_create. Here,

getpid indicates the overhead of a system call, since its

payload execution time is very low. Due to optimizations

in interrupt delivery, getpid does not involve a host-guest

context switch. The difference of 400 ticks between Linux and

MetalSVM as the host operating system can be explained by

cache effects. fork and vfork are used to show the amount

of ticks needed for the creation of a task and the copy operation

of a whole page directory of the original task. A huge

difference between Linux and MetalSVM for the execution

time of pthread_create is noticeable. This effect can

be explained by the coarse granularity of the current timer

implementation of MetalSVM. Here, the processor frequency

has a direct impact.

As a real-life example we used a floating point operation

intensive application in the form of the jacobi solver algorithm.

We measured the overall execution efficiency within the virtual

guest machine. Additionally, a second setup indicates the

overhead of a task plus floating point context switch by

running two instances of the solver.

TABLE I: Benchmark results for the Intel Celeron platform

(Linux 2.6.32)

Benchmark
Hypervisor Ratio

MSVM
LinuxLinux MetalSVM

Host-guest context switch 1 406 1 347 96 %

Page fault 40 426 31 978 79 %

getpid() 1 039 626 60 %

fork() 446 224 301 831 68 %

vfork() 163 421 117 536 72 %

pthread_create() 3 678 968 40 022 838 1 088 %

Jacobi solver (128x128 Matrix) 156 · 10
9

99 · 10
9 63 %

Jacobi solver (2 instances) 317 · 10
9

199 · 10
9 63 %

Values in processor ticks

The 3 tables (I, II, and III) show the tick count of both

hypervisor implementations, Linux and MetalSVM, for differ-

ent stages of the development. The light weight MetalSVM

kernel results in a successful reduction of overhead for our

implementation in combination with memory handling code

optimizations of the hypervisor (cf. Table I). However, these

measurements were taken at an earlier development stage of

the hypervisor.

Table II shows benchmark results of MetalSVM version 0.1

and a more recent Linux kernel (2.6.38.3), which is available

with sccKit 1.4.1 for the SCC platform. The Linux kernel has

undergone performance improvements from version 2.6.32 to

2.6.38.3, which affects the benchmark results. However, we

see a major advantage of a light weight solution, concerning

customizability and transparent performance analysis.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Efficient Implementation of the bare-metal hypervisor MetalSVM for the SCC 63



TABLE II: Benchmark results for the Intel SCC platform

(Linux 2.6.38.3)

Benchmark
Hypervisor Ratio

MSVM
LinuxLinux MetalSVM

Host-guest context switch 2 042 2 113 103 %

Page fault 918 679 867 676 94 %

getpid() 191 191 100 %

fork() 3 216 767 3 101 387 96 %

vfork() 220 317 236 207 107 %

pthread_create() 16 256 988 10 883 839 67 %

Jacobi solver (32x32 Matrix) 3.74 · 10
9

3.74 · 10
9 98 %

Jacobi solver (2 instances) 7.51 · 10
9

7.48 · 10
9 98 %

Values in processor ticks

TABLE III: Benchmark results for the Intel Celeron platform

(Linux 2.6.38.3)

Benchmark
Hypervisor Ratio

MSVM
LinuxLinux MetalSVM

Host-guest context switch 3 020 2 590 86 %

Page fault 40 388 43 985 109 %

getpid() 607 595 98 %

fork() 351 907 371 381 106 %

vfork() 132 142 137 366 104 %

pthread_create() 1 020 630 40 049 784 3924 %

Jacobi solver (32x32 Matrix) 2.04 · 109 2.03 · 109 99 %

Jacobi solver (2 instances) 4.08 · 109 4.13 · 109 101 %

Values in processor ticks

VII. CONCLUSION AND OUTLOOK

In this paper we presented a bare-metal hypervisor, with

the roots of a Unix-like monolithic kernel, used for educational

purposes. Our framework extends the software package sccKit

of the many-core platform to run our configurable light-weight

bare-metal programming environment. Performance evaluation

of the context switch latency proves the assumption that kernel

tasks can be executed close to bare-metal. Thus, broad func-

tionality like interrupt handling and inter core communication

in a synchronous as well as asynchronous manner is provided.

This meets the requirements for the integration of an SVM

system perfectly, which we have already shown in [4] by using

an adapted shared memory application. Here, the light-weight

kernel benefits from the efficiency of its subsystems.

The benchmark results of selected system calls for a Linux

guest system underline the potential of a bare-metal hypervisor

implementation. Considered as a whole, it features a conve-

nient development base for research due to its simplicity and

limited base of supported hardware architectures.

For transparent execution of shared memory parallelized

applications, we plan to boot and connect multiple instances

of the presented kernel and run a single paravirtualized Linux

instance on top of the hypervisor layer.

ACKNOWLEDGMENT

The research and development was funded by Intel Cor-

poration. The authors would like to thank especially Ulrich

Hoffmann, Michael Konow and Michael Riepen of Intel

Braunschweig for their help and guidance.

REFERENCES

[1] SCC External Architecture Specification (EAS), Intel Corporation,
November 2010, Revision 1.1. [Online]. Available: http://communities.
intel.com/docs/DOC-5852

[2] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the intel scc many-core
processor,” in Proceedings of the 2011 International Conference

on High Performance Computing and Simulation (HPCS 2011),
Istanbul, Turkey, July 2011, pp. 525 –532. [Online]. Available:
http://dx.doi.org/10.1109/HPCSim.2011.5999870

[3] A. Tanenbaum and A. Woodhull, Operating Systems: Design and

Implementation, 3rd ed. Prentice Hall, 1997.
[4] S. Lankes, P. Reble, C. Clauss, and O. Sinnen, “The Path to

MetalSVM: Shared Virtual Memory for the SCC,” in Proceedings

of the 4th Many-core Applications Research Community (MARC)

Symposium, Potsdam, Germany, December 2011. [Online]. Available:
http://communities.intel.com/docs/DOC-19214

[5] S. Lankes, P. Reble, C. Clauss, and O. Sinnen, “Revisiting Shared
Virtual Memory Systems for Non-Coherent Memory-Coupled Cores,”
in Proceedings of the 2012 International Workshop on Programming

Models and Applications for Multicores and Manycores (PMAM

2012) in conjunction with the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP

2012), New Orleans, LA, USA, February 2012. [Online]. Available:
http://doi.acm.org/10.1145/2141702.2141708

[6] ET International, “ETI’s SCC Development Framework available,”
August 2011. [Online]. Available: http://communities.intel.com/thread/
17643

[7] M. Ziwisky, “BareMichael baremetal framework,” April 2012. [Online].
Available: http://communities.intel.com/thread/28001

[8] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl, “A Fast Inter-
Kernel Communication and Synchronization layer for MetalSVM,”
in Proceedings of the 3rd MARC Symposium, KIT Scientific

Publishing, Ettlingen, Germany, July 2011. [Online]. Available:
http://communities.intel.com/docs/DOC-6871

[9] C. Clauss, S. Lankes, T. Bemmerl, J. Galowicz, and S. Pickartz,
iRCCE: A Non-blocking Communication Extension to the RCCE

Communication Library for the Intel Single-Chip Cloud Computer,
Chair for Operating Systems, RWTH Aachen University, July
2011, Users’ Guide and API Manual. [Online]. Available: http:
//communities.intel.com/docs/DOC-6003

[10] M. Chapman and G. Heiser, “vNUMA: A Virtual Shared-Memory
Multiprocessor,” in Proceedings of the 2009 USENIX Annual Technical

Conference, San Diego, CA, USA, Jun 2009, pp. 349–362.
[11] G. Heiser, “Many-Core Chips — A Case for Virtual Shared Memory,”

in Proceedings of the 2nd Workshop on Managed Many-Core Systems

(MMCS), Washington, DC, USA, March 2009, p. 4 pages.
[12] D. Schmidl, C. Terboven, A. Wolf, D. an Mey, and C. Bischof,

“How to Scale Nested OpenMP Applications on the ScaleMP vSMP
Architecture,” in Proceedings of 2010 IEEE International Conference

on Cluster Computing, September 2010, pp. 29 –37.
[13] J.-A. Sobania, P. Tröger, and A. Polze, “Towards Symmetric Multi-

Processing Support for Operating Systems on the SCC,” in Proceed-

ings of the 4th Many-core Applications Research Community (MARC)

Symposium, Potsdam, Germany, December 2011.
[14] A. Whitaker, M. Shaw, and S. D. Gribble, “Denali: Lightweight Virtual

Machines for Distributed and Networked Applications,” in Proceedings

of the USENIX Annual Technical Conference, 2002.
[15] S. Lankes, “First Experiences with SCC and a Comparison with

Established Architectures,” Invited talk at the 1st MARC Symposium,
Braunschweig, Germany, November 2010. [Online]. Available: http:
//communities.intel.com/docs/DOC-5848

[16] R. Russell, “lguest: Implementing the little Linux hypervisor,” in Pro-

ceedings of the Linux Symposium, Ottawa, Canada, 2007.
[17] A. Dunkels, Design and Implementation of the lwIP TCP/IP Stack,

Swedish Institute of Computer Science, 2001.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Efficient Implementation of the bare-metal hypervisor MetalSVM for the SCC 64

http://communities.intel.com/docs/DOC-5852
http://communities.intel.com/docs/DOC-5852
http://dx.doi.org/10.1109/HPCSim.2011.5999870
http://communities.intel.com/docs/DOC-19214
http://doi.acm.org/10.1145/2141702.2141708
http://communities.intel.com/thread/17643
http://communities.intel.com/thread/17643
http://communities.intel.com/thread/28001
http://communities.intel.com/docs/DOC-6871
http://communities.intel.com/docs/DOC-6003
http://communities.intel.com/docs/DOC-6003
http://communities.intel.com/docs/DOC-5848
http://communities.intel.com/docs/DOC-5848


[18] R. Russell, “virtio: Towards a De-Facto Standard for Virtual I/O
Devices,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, Jul.
2008. [Online]. Available: http://doi.acm.org/10.1145/1400097.1400108

[19] The sccKit 1.4.x User’s Guide, Intel Labs, October 2011. [Online].
Available: http://communities.intel.com/docs/DOC-6241

[20] D. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd ed.,
A. Oram, Ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc.,
2002.

[21] Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume

3A, Intel Corporation, August 2007.
[22] J. Regehr, “Inferring Scheduling Behavior with Hourglass,” in Proceed-

ings of the USENIX Annual Technical Conference FREENIX Tracki,
Monterey, CA, USA, June 2002, pp. 143–156.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Efficient Implementation of the bare-metal hypervisor MetalSVM for the SCC 65

http://doi.acm.org/10.1145/1400097.1400108
http://communities.intel.com/docs/DOC-6241

	I Introduction
	II Motivation and Related Work
	III kernel features
	III-A Hypervisor
	III-B Device Drivers
	III-C Interrupt Management
	III-D File system

	IV Boot on the SCC
	V Scheduling
	V-A Hardware Context Switch

	VI Benchmarks
	VI-A Context Switch Latency
	VI-B Hypervisor Performance

	VII Conclusion and Outlook
	References

