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Abstract—The Intel SCC manycore processor supports energy-
efficient computing by dynamic voltage and frequency scaling
of cores on a fine-grained level. In order to enable the use
of that feature in application-level energy optimizations, we
report on experiments to measure power consumption in different
situations. We process those measurements by a least-squares
error analysis to derive the parameters of popular models for
power consumption which are used on an algorithmic level. Thus,
we provide a link between the worlds of hardware and high-level
algorithmics.

I. INTRODUCTION

Energy consumption by computers is continuously growing,

and thus energy-efficient computing — sometimes embellished

as the wider field covered by the buzzword green comput-

ing — gains more and more interest. The Intel Single-chip

Cloud Computer (SCC) manycore processor chip supports

energy efficiency by allowing the user to scale the clock

frequency and the supply voltage of the cores (in groups

of 2 and 8, respectively) and the on-chip network during

runtime, providing many levels for both. Howard et al. [1]

provide some data on power consumption of Intel SCC, but

do not focus on energy efficiency. Albers provides a survey

on algorithmic-level techniques for energy-efficient computing

[2]. Those techniques rely on a parameterized model of power

consumption by cores. Thus, in order to be able to exploit the

algorithmic techniques known in the art on the SCC, it seems

helpful to derive the model’s parameters.

In order to obtain those parameters, we devise microbench-

mark programs and machine settings for the Intel SCC and

measure the power consumption. We subject the differences

between those measurements and the power model to a least-

squares error analysis and thus derive the model parameters.

In this way we provide a missing link between the abstract

algorithmic-level treatment of power consumption and the

hardware-oriented view of power consumption for SCC.

The remainder of this article is structured as follows. In

Section II, we briefly review the model of power consumption

used on an algorithmic level. In Section III, we present the

experimental setting, the measurements and their analysis.

Section IV discusses related work. Section V provides a

conclusion and outlook on further work.

II. POWER CONSUMPTION MODEL

Viewed from an abstract level, the dynamic power consump-

tion of a semiconductor device (such as a processor core) is

dependent both on the frequency with which the device is

clocked, and on the supply voltage. Thus, for a specific device

we might model its dynamic power consumption at frequency

f (assuming a fixed supply voltage) by

pdyn(f) = b · fa , (1)

where b and a are device-specific constants. Typically, a is

assumed to lie between 2 and 3 [2]. A semiconductor device

normally is also assumed to have a frequency-independent

static power consumption pstat = s, where s is a device-

specific constant. The total power consumption of the device

at a fixed supply voltage then sums up to

p(f) = pdyn(f) + pstat = b · fa + s .

The static power consumption is ignored in most studies

as it used to be only a minor fraction of the total power

consumption. However, its importance is growing due to

shrinking feature size, even in embedded systems [3].

A similar formula can be derived for the dependency on

the supply voltage, given a fixed frequency. However, the

two parameters voltage and frequency are not independent,

as the minimum and maximum possible frequencies depend

(among other things) on the supply voltage. To simplify our

investigation, we will concentrate on the clock frequency

in accordance with [2]. To still incorporate the voltage, we

assume that for each frequency, the least possible supply

voltage is used. This leads to more efficient energy use and

to a more accurate model while still sticking to only one

operating parameter. As the static power consumption is linear

in the supply voltage, given that one does not approach the

threshold voltage too much [4, Eq. 10] and as the minimum

possible supply voltage for a given frequency on SCC can be

approximated by a linear relationship, we get

p(f) = pdyn(f) + pstat = b · fa + s · f . (2)

In order to compute the energy consumption during a time

interval [t1; t2], we can either multiply the power consumption

with the length t2 − t1 of the time interval if the power

consumption remains constant during that interval, or we have
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to split the interval into sub-intervals with constant power

consumption and sum up the energy consumptions of the sub-

intervals otherwise. As the power consumption turned out to

be approximately constant during our experiments of fixed

length, energy and power consumptions are proportional, and

thus only power is considered further.

The algorithmic techniques reviewed by Albers [2] either

assume that frequencies can be scaled continuously, or that

a finite number of discrete frequency levels are available.

Also, some techniques use the features that cores can be put

into energy-saving mode or even switched off if not needed.

While frequency change is normally considered to happen

atomically, i.e. without a time or power penalty, switch-off of

cores implies both. Yet, we will restrict ourselves to frequency

scaling and not consider switch-off in our current investigation.

The Intel SCC consists of 24 dual-core tiles, i.e. 48 cores.

The cores are organized in 24 frequency islands, one for

each tile with 2 cores, and 6 voltage islands each comprising

8 cores, for the purpose of dynamic frequency and voltage

scaling. In order to change the frequency and voltage during

the runtime of a program, the RCCE library, which is provided

with the SCC, offers some power management functions. It is

possible to change the frequency and voltage of the different

islands separately. Another and, for our experiments, more

important possibility is to change only the frequency of the

cores and let the voltage automatically scale to the lowest

stable state. In this case there are only 6 so-called power

domains, which are equal to the voltage islands [5]. For

changing the frequency, one has to set a frequency divider

between 2 and 16 for each power domain. The frequency

divider is an integer value with which the global reference

clock frequency of 1.6GHz is divided.

Thus we can vary the frequency (and voltage) as depicted

in Tab. I.

TABLE I
TILE FREQUENCIES, RCCE FREQUENCY DIVIDERS AND VOLTAGES [6,

PP. 39-40]

Tile Frequency RCCE Frequency Divider Voltage
(MHz)

800 2 1.1
533 3 0.8
400 4 0.7
320 5 0.7
266 6 0.7
228 7 0.7
200 8 0.7
178 9 0.7
160 10 0.7
145 11 0.7
133 12 0.7
123 13 0.7
114 14 0.7
106 15 0.7
100 16 0.7

The cores are interconnected by an on-chip network, which

also connects them to 4 on-chip memory controllers. Both on-

chip network and memory controllers are frequency islands of

their own. At system start, the on-chip network can be scaled

at frequencies 1.6GHz and 800MHz [6, p. 22]. The memory

controllers’ frequency normally is not scaled because of their

connection to the off-chip memory banks that need a fixed

operating frequency. Thus in the following, we assume the

memory controllers’ power consumption to be static. This is

a simplifying assumption, as the power consumption not only

depends on voltage and frequency, but also on the application.

If the cores and network are scaled down, while the memory

controllers keep their frequency, then from the controllers’

perspective the application changes, i.e. does fewer accesses

[1].

In the following, we will denote by indices c, n and

m functions or constants belonging to cores, network, and

memory controllers, respectively. Thus, if the 6 power domains

are run at frequencies f1 to f6 and the on-chip network at

frequency f0, then the power consumption of the Intel SCC

would be modelled as

pscc(f0, . . . , f6) = pn(f0) + pm +
6∑

i=1

8 · pc(fi)

= bn · fan

0
+ 8 ·

6∑

i=1

bc · f
ac

i

+ sn · f0 + sm + 8 ·
6∑

i=1

sc · fi .(3)

The experiments of the following section are designed to

experimentally derive the numerical values of bn, bc, an, ac,

sn, sm, and sc. Normally, algorithmic power models [2] only

consider the power consumption of complete chips. Therefore,

we reduce the number of parameters by assuming an = ac.

III. EXPERIMENTAL ANALYSIS

In each experiment, we fix the frequencies f0, . . . , f6, run

a microbenchmark program with one of four different settings

on the SCC, and measure the power consumption one thousand

times during the run of the program. For our measurements we

use the FPGA on the Rocky Lake Board, which supports the

direct measurement of voltages and currents of the domains.

The program can read the actual voltage/current values through

FPGA register access. Also, each experiment is repeated five

times. We then compute the average power consumption from

all measurements in each repeated experiment. When we

put the frequency values and the measured power value into

Eq. (3), we get a non-linear equation with the six unknowns

bn, bc, an, sn, sm, sc.

We devise a large number of frequency settings as explained

below, and thus get a corresponding number of equations. We

compute approximate values for the unknowns with a least-

squares error analysis. Put shortly, for a set of values cn to

sc and a set of values f0 to f6, the power consumption pscc
computed by Eq. (3) differs from the power consumption pexp
measured in the experiment, and thus produces a squared error

(pscc − pexp)
2. The analysis derives a set of values cn to sc

such that the sum of the squared errors from all experiments

is minimized.
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Note that in our preliminary experiments, we did not vary

the network frequency f0, and thus the term pn(f0) can also

be considered static, which reduces the number of unkowns,

and results in the following equation.

pscc(f1, . . . , f6) = 8 ·

6∑

i=1

(bc · f
ac

i + sc · fi) + s̃ , (4)

where s̃ = pn(f0) + sm.

We will explain below how to split s̃ into its components

with the help of power measurements from [1]. In order to

compute the parameters as accurately as possible, we decided

to use a large range of frequencies. In order to restrict the

number of experiments, we split the cores into two groups of

sizes 8k and 48−8k each (k = 0, . . . , 6), where one group has

a higher frequency and the other group has a lower frequency.

The cases k = 0 and k = 6 are special cases in which all

cores have the same (higher or lower) frequency. We choose

the frequencies 800MHz, 533MHz and 400MHz for the high-

frequency groups and 200MHz and 100MHz for the low-

frequency groups. This results in 5 ·3 ·2+5 = 35 experiments.

As a microbenchmark program we implemented a RCCE

program whose execution can be divided into two steps that

are detailed further below. In this program, one of the 48 cores

is the coordinator, which coordinates the groups and measures

the power consumption, while the other ones are the slaves.

It is important to note that in every power domain only one

core, the power domain master, can change the frequency and

voltage of the corresponding domain. Hence, there are 6 power

domain masters and one coordinator, which is one of the power

domain masters.

The user starts the microbenchmark program with four

parameters: the number of high-frequency domains, the high-

frequency divider, the low-frequency divider and the setting

for the microbenchmark. The settings allow to have several

microbenchmarks, that differ in the use of caches, and intensity

and regularity of memory access. There are four settings in

total (cf. table II). In the first setting only one integer variable

is used, which is initially set to 0. In the other settings we

use an array with one million elements. These elements are

initially set to 0 for the second setting, to the maximum integer

value for the third setting and to the index of the element in

the fourth setting.

TABLE II
DIFFERENT BENCHMARK SETTINGS

Benchmark Description

0 Step 1: One variable, initially set to 0
Step 2: Variable is incremented by 1

1 Step 1: array[size 10
6], initially set to 0

Step 2: array elements added up successivly

2 Step 1: array[size 10
6], initially set to max int

Step 2: array elements added up successivly

3 Step 1: array[size 10
6], initially set to index

Step 2: array elements added up in the following order:
(7· index + rank) mod array size

In the first step of the program all cores verify if they are a

power domain master or not, and send the result (my rank

if they are a power domain master, −1 otherwise) to the

coordinator. The coordinator saves the ranks of the power

domain masters in an array and sends to each power domain

master its array index, incremented by 1. In this way, we make

sure that each power domain master has a unique domain-

master rank between 1 and 6. Thus each power domain master

can, from the user-defined number of high frequency domains,

find out to which group its power domain belongs to. After

that, the power domain masters of both frequency groups scale

the frequency (and thus also the voltage) to the user-defined

frequency. At the end of step 1, all cores are synchronized by

a barrier to make sure that all frequency and voltage scalings

for both groups have finished and all cores can begin with the

second step simultaneously.

In the second step we use a time controlled loop and simu-

late an expensive calculation on each core for 10 seconds. The

calculation depends on the chosen microbenchmark setting.

In the first setting the integer variable is incremented by 1

within the loop. This represents a microbenchmark with use

of ALU and caches, and few memory accesses. The second

and third settings add up the array elements successively.

This represents microbenchmarks with cache and memory

accesses, and different ALU use (adding up zeroes, adding up

ones). The last setting uses a more unstructured access pattern

(cf. table II) to add up the array elements, which represents

higher cache miss rate and thus higher memory traffic. While

working in the loop, the coordinator also measures the power

consumption of the whole SCC every 10th millisecond. Thus

we get an averaged result over 1000 measurement points for

each microbenchmark setting. In this way we obtain many

results for different situations and can compare these results

to each other.

Figure 1 shows the results of the four microbenchmark

settings for a high frequency of 800MHz and the low frequen-

cies of 100MHz and 200MHz, respectively. We can see that

the results of the different microbenchmark settings are very

similar to each other. The results for the other core frequencies

(533MHz and 400MHz) differ only in that with decreasing the

high frequency the power consumption also decreases with an

increasing number of high frequency domains. Thus we only

show the results for 800MHz as an example for all results that

we obtained. Also the workload over the 1000 measurement

points within each experiment is quite stable. It mostly varies

in a range of 2 Watt. There are less than 5 outliers on each

experiment.

Figure 1 depicts the average power consumption from each

of the 35 experiments. By a least-squares error analysis of

equations obtained by inserting the frequency values and a

fixed value of 3 for ac into Eq. (4), we obtain the values

bc ≈ 2.015 ·10−9 Watt/MHzac , sc ≈ 10−6Watt/MHz and s̃ ≈
23Watt. The average error is 1.95Watt, which is 5.58% of the

average power consumption (averaged over all experiments).

The relative error ranges from -14.66% to 24.73%. Thus, our

model matches the experimental data quite well.

The comparison between measured and modelled power
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Fig. 1. Power consumption of the SCC for all microbenchmark settings with a different number of high-frequency domains, for the frequency 800MHz.
The low frequency is kept at 100MHz (top) and 200MHz (bottom), respectively.

consumption is depicted in Fig. 2. In this figure each curve

or peak represents the results of one microbenchmark for the

different numbers of high frequency domains. There are totally

24 peaks, which are organized clockwise as follows: On the

right side of the circle each pair of four peaks are the results of

the four microbenchmarks with a high frequency of 800MHz,

533MHz and 400MHz (from top to bottom) and with a low

frequency of 100MHz. On the left side of the circle the peaks

are represented in a reverse order (from bottom to top) and

with a low frequency of 200MHz.

Note that the measurements for all cores running at the same

frequency (k = 0 or 6) correspond quite well to the numbers

reported in [1, Fig. 13]. There cannot be an exact comparison

as we do not know their benchmark program.

According to [1, Fig. 14], the network and memory con-

trollers consume between 18.4Watt (at cores 125MHz, net-

work 250MHz) and 35.7Watt (at cores 1GHz, network

2GHz). As we do not change the frequencies for network

and memory controllers in our experiments, the value for the

static power consumption of around 23Watt seems to match an

interpolation between those values quite well. One has to take

into account that the frequency for the network and memory

controllers in our experiments is fixed to only 800MHz for

both. Thus the voltage of these components is around 0.75V
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Fig. 2. Comparison of measured and modelled power consumption after least-squares error analysis.

and the static power consumption is as expected nearer to

the lower bound of 18.4Watt. As we can only measure the

power consumption of the complete chip, we cannot avoid to

incorporate measurements done by the chip manufacturer [1].

IV. RELATED WORK

Ioannou et al. [7] consider dynamic voltage and frequency

scaling for the SCC and implement a hierarchical power

management with phase prediction to minimize energy con-

sumption, balancing the trade-off between energy consumption

and execution time for the various computation phases of

MPI programs at runtime. Their approach is not based on

using an explicit power model derived off-line, but on iterative

adaptation of frequency and voltage within a performance win-

dow to react to changed computation patterns. The dynamic

adaptation takes into account information for the local power

domain as well as for groups of multiple power domains. They

report on average improvements of 11.4% in the energy-delay

product, with an average increase in execution time by 7.7%

compared to running constantly at maximum frequency.

Putigny et al. [8] propose a performance and power model

for SCC based on the core frequency. The model can be used

for predicting the behavior of regular code such as dense linear

algebra kernels that can be suitably characterized by a few

statically accessible parameters. Their power model does not

consider static power and does not model the network power.

The constant coefficient of the dynamic energy consumption is

not derived, and the scenario used here of combining voltage

and frequency is not mentioned.

Gschwandtner et al. [9] investigate the impact of core fre-

quency and voltage on the performance and power consump-

tion of three major benchmark applications on SCC. They find

that the benefits of core frequency and voltage scaling depends

on the program, in particular whether it is compute-bound.

They also demonstrate that, depending on the application, the

energy-optimal frequency for an entire application can be at

an intermediate level, both lower than the maximum possible

frequency (which yields minimum execution time) and higher

than the minimum possible frequency (which yields minimum

power usage). In contrast to our approach, their work is based

on measurements for entire applications and does not derive

an energy model that could be used for predictions to support

optimizations at a fine-grained level.

Kiertscher et al. [10] present an energy saving daemon

for clusters called cherub, which can interact with different

resource management systems to make them energy-aware. In

this daemon they use the most important modes from standards

and specifications like the Intelligent Platform Management
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Interface (IMPI) or the Advanced Configuration and Power

Interface (ACPI) specification to save energy. The cherub

daemon polls the state of the cluster in regular intervals to

gather the state of the different nodes and the load situation.

With this imformation it can execute some actions to switch

the states of the nodes and also distribute their load to other

nodes. In this way cherub makes the use of a cluster more

efficient in terms of workload and energy.

V. CONCLUSIONS AND FUTURE WORK

Our research provides the SCC-specific parameters for

power consumption models used in algorithmic research on

energy efficiency, thus providing a missing link between both

worlds.

For the future, we plan to include changes of the network

frequency to get more accurate measurements and analyses,

and to use the insights gained in the present experiments

to derive a power-optimal algorithmic mapping of streaming

applications onto the Intel SCC.

We also plan to extend the model to include situations where

cores can be switched off completely, which may be possible

in future architectures [2].

Finally, we would like to refine our timing measurements

to derive time penalties for changing voltage or frequency to

widen the algorithmic applicability of our results.

Our power model considers the SCC at a quite high level

only, and makes some simplifying assumptions to reduce the

model complexity. A more detailed model constructed from

microarchitectural simulation or analysis would be beyond

the scope of our work that focuses on algorithmic level

power modeling. Instead, a complementary, microarchitecture-

agnostic approach could start from a generic but detailed

algorithmic power model that includes many possibly rele-

vant terms, involving parameters both from the algorithmic

and architectural level, and which may or may not be so

obvious from a high-level view onto the chip itself and its

environment. The coefficients of this model could be calibrated

by regression analysis (or other machine learning techniques)

over training runs of benchmark programs with different

characteristics, such as the Berkeley Dwarfs [11, Sect. 3]

or similar computational kernels. This process automatically

creates a SCC-specific power model from training data that

can be used for algorithmic-level power predictions instead

of our simplified model, for instance when deciding between

different applicable algorithmic variants, resource allocation,

choice of tunable parameters, or optimizing transformations

for a computation. Similar techniques have been used for

automatic model construction in other contexts, e.g. by Steinke

et al. [12] for instruction-level energy modeling of an ARM7

processor or by Brewer [13] for algorithmic-level execution

time modeling.

Another way of algorithmic-level power modeling can be

applied after refactoring applications as combinations (such

as serial, parallel and hierarchical composition) of a small

set of algorithmic building blocks representing characteristic

computational patterns [14] (where generic patterns are also

known as skeletons in the literature [15]). For each such

skeleton, a power model might be defined by interpolation

of measurement tables or auto-calibration of a given generic

model, and hence the power model for the overall application

would be composed accordingly from the skeletons’ power

models
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of Technology, 2007, linköping Studies in Science and Technology,
No. 1127.

[4] A. P. Chandrasakaran and R. W. Brodersen, “Minimizing power con-
sumption in digital CMOS circuits,” Proceedings of the IEEE, vol. 83,
no. 4, pp. 498–523, Apr. 1995.

[5] Intel Labs, “Using the RCCE power management calls,” Sep. 2011.
[6] ——, “The SCC programmer’s guide,” Nov. 2011.
[7] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, “Phase-based

application-driven power management on the single-chip cloud com-
puter,” in International Conference on Parallel Architectures and Com-

piler Techniques (PACT 2011), Galveston, Texas, USA. ACM, 2011.
[8] B. Putigny, B. Goglin, and D. Barthou, “Performance modeling for

power consumption reduction on SCC,” in Proc. 3rd Many-core Ap-

plications Research Community Symposium (MARC-3), Dec. 2011.
[9] P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance analysis

and benchmarking of the Intel SCC,” in Proc. 2011 IEEE Int. Conf. on

Cluster Computing. IEEE Computer Society, Sep. 2011, pp. 139–149.
[10] S. Kiertscher, J. Zinke, S. Gasterstädt, and B. Schnor, “Cherub:
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