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Interactive Visualization and Task Management on

the 48-core Intel SCC
Jimi van der Woning and Roy Bakker

Informatics Institute, University of Amsterdam

Sciencepark 904, 1098 XH Amsterdam, The Netherlands

Abstract—In this paper we propose and describe how we have
built a tool that enables a user to interactively monitor and
manage a many-core system like the 48-core experimental Single-
chip Cloud Computer (SCC), which was created by Intel Labs
targeting the many-core research community. We provide the
user with a visual representation of the current state of the system
on multiple levels of detail, such as chip, core and task. We allow
the user to create, start, pause and migrate tasks across different
cores. We also allow the user to easily adjust the voltage and
frequency of the chip. However this tool can run on any PC with
a screen and input devices, we have optimized the interface to
run on a multi-touch device for the best ease of use.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-

cessor [1] is a 48-core concept vehicle created by Intel Labs as

a platform for many-core software research. It provides an on-

chip message passing network, a non cache-coherent off-chip

shared memory and dynamic frequency and voltage scaling.

Unlike currently available multi-core systems, the SCC is

an on-chip distributed system. Even though efforts are already

made and still continuing on writing and porting operating

systems or virtualization layers that can manage the chip as

a whole [2], the most common use of the SCC system is

currently to have every core managed by its own instance

of a slightly modified version of the Linux kernel. As a

consequence, it gets harder for users to gain insight in the

current state of the system. Also, it is not trivial to map tasks

on the system while keeping the load balanced and energy

consumption low, without a complete understanding of the

state of the system.

We propose a management system for independent many-

core systems like the SCC, which enables users to interact

with the system. The user of the system must be able to:

1) Monitor the system:

• Current load, state and power consumption of the

chip.

• The current resource usage for each core.

• The resource usage per monitored process on a core.

• Task output.

• Overview of running, waiting, completed and pos-

sibly failed tasks.

2) Manage the system:

• Easily create a task.

• Start a task on a single specified core, or the best

core available (suggested by the system).

• Migrate tasks to other cores, either manually with or

without suggestions from the system, or potentially

automatically.

• Control frequency and voltage.

All of the above can easily be controlled from a user

interface running on a regular PC with mouse interaction, but

to improve the user experience and ease of use even more, the

system is optimized for use with a multi-touch system.

Manually managing a system like the SCC does not seem to

be very efficient in daily practice. For this purpose, it is better

to use an automated grid- and cluster management system.

However, we think that our system is very useful in both re-

search and education. It can mainly be used for experimenting

with task placement and voltage and frequency settings, while

having a clear understanding of what is currently happening

from a user friendly interface. The system can later be attached

to an automated task manager or grid engine.

In this paper we will discuss our experiences in building

such a management system for the SCC. We assume sufficient

knowledge of the SCC architecture and its memory system,

as this is broadly covered by both related work [1], [3]

as well as our previous work [4], [5]. Some related work

on visualization, but not on cluster management systems, is

described in Section II. We discuss which approaches and

tools we have used for the implementation in Section III.

In Section IV we evaluate these different approaches and we

conclude with a discussion and future work in Section V.

II. RELATED WORK

Since the beginning of the SCC research, a Performance

Meter has been available as part of the sccKit provided by

Intel (See Figure 1). This tool shows us the current load for

all the independent cores, as well as the overall usage and

power consumption of the system. It is a nice tool, but it will

not be sufficient for our proposed system, as there is no way

to actually manage the SCC.

QNX Software Systems [6] has developed software for

the visualization of many-core applications, which is used

mostly for the development of applications in embedded

systems. It is not considered for the management of a running

system. Other visualization frameworks such as IBM’s Tuning

Fork [7] are available to monitor the performance of a system.

Many visualization tools only operate on traces instead of a

running system. We have not found a system that combines

visualization and management on the same high level as we

want to.
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Figure 1: The SCC performance meter (sccPerf).

III. MANYMAN - THE MANY-CORE MANAGER

The many-core visualization and management tool has

been dubbed ManyMan, as in Many-core Manager. Many-

Man consists of two main parts, a front- and a back-end,

with a communication layer in-between. The reason for this

separation is twofold. First, the front-end could theoretically

be attached to a different many-core chip, or, the other way

around, a different front-end could be attached to this back-

end. This increases the usability of the tool, since it is not

restricted to just one chip or interface. The second reason for

this separation is of a more practical kind. At the University

of Amsterdam, the SCC is located in a server room where no

monitor could be easily attached to it.

BACK-END

The back-end has been written completely in Python, for

which there are two main reasons. First, Python is a relatively

easy programming language which allows for rapid develop-

ment. Second, Python provides good support for running many

threads, starting shells on remote machines using subprocesses

and TCP communication. The back-end performs multiple

tasks:

A. Monitoring

Monitoring the chip is half of the visualization and man-

agement tool. One would like to know the status and payload

of every core and task on the system. Unfortunately, the SCC

does not provide such information about the chip as a whole,

which means that it needs to be retrieved separately from each

core.

In order to access one of the SCC’s cores, one needs to

open an SSH connection to the core in question from the

MCPC. Since an SSH connection needs to be opened for each

task that runs on the SCC, SSH Connection Sharing is used.

This mechanism allows us to have only one TCP connection

to an SCC core, with one-time authentication. This master

connection has to be active while all subsequent connections

are, which makes the monitoring process the perfect candidate

to be that connection.

In order to obtain the payload information of each core,

the Unix top command is used. At adjustable intervals, top

provides information about all processes that are running on

the core and the total payload of the core itself. The fact that

this information is everything that has to be shown, makes

top the ideal monitoring solution. However, as top accesses

more information than just that information that is needed, it

might create some overhead.

It has to be noted that any resource usage of processes that

have not been started using ManyMan, as for example kernel

processes, will be marked as overhead. This overhead will be

visible in the total core payload, but, of course, not in the per

task payload. Because of that, the task payloads will not add

up to the total core payload.

B. Task creation

When a task needs to be created, a child connection is

added to the monitoring master SSH connection of the core

on which the user has decided the task should run. On this

child connection, the task is started with BLCR’s cr_run

command, and a small wrapper that enables us to obtain the

process identifier (PID) of the task on the remote core. When

the program starts to run, its output will be buffered. It will

be sent to the front-end upon request.

In case a user does not know which core to start a task on,

a smart-start function has been implemented. When smart-

starting a task, the core with the least CPU and memory

usage is selected. In this process, both the CPU and the

memory usage have the same weight. A possible growth in

CPU or memory usage is foreseen by also taking the number

of running tasks on a core into account. The more tasks are

running on a core, the smaller the chance a task will start there

gets. As soon as the best core to run the task on is found, the

task will be started on that core as usual. Note that this smart-

start function does not keep track of the history of core usage

or whatsoever, but it just looks at the current core state.

C. Task migration

To enable the migration of tasks, we make use of the

Berkely Lab Checkpoint/Restart library [8]. Using BLCR,

tasks can easily be stopped (checkpointed) and restarted later

while releasing all resources. Restarting a task can also be

done on other cores or even other compatible machines.

Besides the benefits, checkpointing also creates overhead, as

the BLCR library writes the complete state of the process to

the filesystem. A task that needs to be migrated will first be

checkpointed using the cr_checkpoint command from the

BLCR library. The location of the context file that is hereby

created will be stored in order to be able to restart the task later.

When checkpointing is complete, the task can be restarted on
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the desired core using cr_restart. When a user does not

want to restart the task yet, it will instead be moved to the

list of waiting tasks. Since all cores of the SCC mount the

same /shared directory, one does not have to worry about

sending context files among cores. These can just be found

on the exact same path as where they were originally stored.

At restart, the cr_restart command will be executed with

the -no-restore-pid flag to avoid PID collisions on the

remote core.

Just like the smart-start function, a smart-move function has

been implemented. Using this function, a task can be moved

to the best possible core, which is found the same way as it

is done when smart-starting, except for the fact that the new

core will never be the core the task is already running on.

D. Task pausing / resuming

Since checkpointing a task produces some overhead, tasks

can also be paused using the traditional POSIX STOP signal,

after which they can be resumed by sending the POSIX CONT

signal. It has to be noted that even though the process is paused

and will not use the CPU, it will not release resources such

as memory. Due to this fact, paused tasks cannot be moved

to other cores, as long as they are not checkpointed. Besides

that, not releasing memory might be a problem for the SCC

cores, since their private memory is limited (around 640MB).

For manually scheduling CPU intensive tasks however, this is

a great solution.

E. Communication

The communication between front- and back-end makes use

of a TCP connection. The connection is currently open and not

encrypted as both client and server are within the same access

restricted network. When the server needs to be available on

the public internet, some form of authentication has to be

implemented. Across the TCP connection, messages are sent

in the JSON format. This format is human-readable, which

allows for easy debugging and portability.

FRONT-END

The GUI part has been optimized for use with a (multi)touch

display. For the front-end we make use of Kivy [9]. Kivy is

an open source library for rapid development of applications

that make use of innovative user interfaces, such as multi-

touch applications. The same Kivy source code runs on Linux,

Windows, MacOSX, Android and IOS, providing us with the

best flexibility.

F. Chip overview

The chip overview as a whole is shown in figure 2. In

the middle part, the cores are presented in the order they

are physically arranged at on the chip. This order serves no

functional purpose, but has been chosen to provide the user

a realistic view of the chip and provide the same layout as

the sccGui does. The payload of each core is visualized

by a coloured overlay that changes in both colour and size.

The portion of the core that is taken by the overlay literally

Figure 2: ManyMan’s main window, the chip overview.

translates to the core’s CPU usage, where the colour changes

from green at 0% CPU to red at 100% CPU. Although the

information is only updated once a second, the overlay is

animated to fade to the new payload within that second. The

main window also notes the number of tasks per core.

On the left side of the window, a list of tasks is shown.

These tasks are currently not running on any core, but are

either not started yet (new) or have been stopped by the user

(stopped). In order to (re)start such a task, one can simply

drag it to the core he or she wants it to run at. If the user

does not care on which core the task will run, the task may be

smart-started by tapping the play button on the right side of

the task. By clicking the copy button on the left side of a task,

the task can be duplicated. This is especially useful when said

task is a benchmark program.

The right side of the window provides a list with tasks that

are either finished or have failed to complete. In this list, the

task’s output and statistics can still be viewed, but it can not

be dragged any more. The delete button will remove the task

completely from the ManyMan system.

Figure 3: ManyMan’s core view, containing information about

core 28.
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G. Core view

When tapping a core in the chip overview, a popup like the

one in figure 3 will open. On the left side, the history of the

CPU and memory usage is shown. In these graphs, the white

line indicates the total load of the core, which consists of all

tasks started by ManyMan, plus all overhead (i.e tasks not

started through ManyMan, and OS overhead). The coloured

lines in the performance graphs indicate the payload of the

tasks that have been started using the many-core management

system. The colours of these lines match the colours of the

tasks in the task list on the right side of the core view.

The tasks in the task list can be moved to a different core by

simply dragging them to the core a user wants them to run on.

When dragging a task, all open core popups will swerve out

of the way so that they do not block any core. The smart-move

option, along with some additional controls and information,

is located in the detailed task view. This task view can be

opened by tapping the information button on the left side of a

task. When a task is dragged to anything that is not a core, as

for example the task list on the side of the main view, it will

be checkpointed and moved to the chip overview’s task list.

In order to be able to compare the payloads of two or more

cores, multiple core views can be opened at once. The user

may drag them around to prevent them from lying on top of

each other. The popup can also be scaled to fit more of them

on the screen, or rotated for when the user wants to look at it

from a different angle.

Figure 4: ManyMan’s task view, on a task ’Count’.

H. Task view

The detailed task view (see figure 4) looks similar to

the core view. Again, the left side of the popup contains

information about the CPU and memory usage of the task.

On the lower right side of the window, the last 100 lines of

the task’s output are shown. This number is configurable, but

cannot be too large due to Kivy’s inefficient way of rendering

text. The complete output of a task is written to a file, so that

it can be accessed and processed later.

Above the output, the task control buttons are shown.

Tapping the stop button will signal the back-end that the task

needs to be checkpointed, after which the task will be moved to

the chip overview’s task list. When a user wants to temporarily

pause a task, he can tap the pause button. The back-end will

then send a POSIX STOP signal to the task, after which the

pause button will be replaced by a resume button. Tapping

this button will cause the task to be resumed by sending it

the POSIX CONT signal. Finally, tapping the move button

will smart-move the task to the best available core other than

itself.

Figure 5: The task create popup along with the on-screen

keyboard.

Just like the core views, multiple task views may be opened

at once to compare their performance. It is even possible to

have both multiple core and task views open at the same time.

I. Task creation

When tapping the Add task button in the main window,

a popup will open in which a command and optionally a name

can be entered. This popup is shown in figure 5. For multi-

touch support, an on-screen keyboard can be used to enter

the name and command of the task. A command is either a

known shell command or the location of a binary accessible

on the cores (for example in the /shared directory). After

the create button is pressed, the task will be added to the chip

overview’s task list. A better way of creating a task would be

by selecting a binary using a file browser. Unfortunately, the

front-end does not run on the SCC’s MCPC, which means that

one cannot easily open a graphical file browser and navigate

to the file.

J. Voltage and Frequency Scaling

Using the Set Frequency button, ManyMan is able to

set the frequency divider for each tile. Currently, we only

change frequencies at voltage domain level, and set the voltage

according to the minimal value for that frequency. See table I,

obtained from [10], for the corresponding values. As figure 6

shows, one can set the frequency for each of the power

domains, or for the chip as a whole. In the main window,

the power consumption of the complete chip is visualized in

a graph.
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Figure 6: Frequency and Voltage settings, easily adjustable.

Frequency divider Frequency Voltage

2 800 1.16250
3 533 0.85625
4 400 0.75625
5 320 0.69375
6 267 0.66875
7 229 0.65625
8 200 0.65625

16 100 0.65625

Table I: SCC supported frequencies and required voltage.

Based on [10], where frequencies between 100-200 are left

out on purpose.

IV. EVALUATION

A. Running latency

In order to be able to stop a task in mid-execution, tasks

are started using the cr_run command, which might cre-

ate overhead. In order to test this, experiments have been

performed using a program that calculates the sum of some

million random numbers. The Unix time function has been

used to time this program when it is executed both with

and without the cr_run command. On the SCC, the time

function is unreliable for measuring the wall-clock time, due

to the possibly varying frequencies of the cores where the

kernel does not correct for by default. In a period that the

frequency does not change, however, this function can be used

to measure relative times. We measured an overhead of about

0.2% for this task with a running time of about 55 seconds.

In practice, it boils down to less than 0.1 second of overhead

per execution.

B. Checkpoint/Restart latency

Checkpointing can create a lot of overhead, as the BLCR li-

brary writes the complete state of the process to the filesystem.

On the SCC, the only (persistent) filesystem is NFS mounted

from the MCPC. This allows easy migration of tasks across

cores, but also introduces a large latency for task migration.

Figure 7 shows the latency for checkpointing and restarting

processes with increasing memory usage. The testing program

Figure 7: Latency for checkpointing and restarting using the

BLCR library on SCC core 0.

that has been used here simply allocates a specified number

of megabytes of memory. This memory is then filled with

random data, after which the sum of this data is calculated.

While calculating the sum, the process will be checkpointed.

It is made sure that all requested memory has been allocated

and filled with random data at that time. This way, problems

with lazy allocation of memory pages will not be encountered.

The measurements in this experiment were done by adding a

timing mechanism in the BLCR source code. At the beginning

and end of the main function, the time stamp counter (TSC) is

read and the values are subtracted. To convert to seconds, the

resulting value is divided by the core frequency. As expected,

the time required for checkpointing scales linearly with the

amount of allocated memory.

Figure 8: Latency for checkpointing and restarting using the

BLCR library on core 0. Writing to NFS compared to writing

to RAM.

Besides the test where context files were written to NFS on

the MCPC, an additional test has been performed where the

context files were written to the filesystem in RAM (/tmp).

The results of this experiment can be found in figure 8. It

shows that the time required for checkpointing can be reduced

with approximately 4.5%. When restarting a task from RAM,

the difference is much bigger. A task now restarts almost twice

as fast, with a speedup of 49.3%. This giant difference is due

to the fact that loading data from NFS into RAM is a very

time consuming task. When context files are written in RAM,
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there is a problem when tasks need to be migrated. As multiple

cores do not share their RAM, the context files would have to

be copied between cores. This could possibly be done by using

Copy Cores or shared memory (memory remapping). However,

relocating context files would slow down and complicate the

restarting process again and probably not be beneficial.

C. Connection Sharing time gain

In order to speed up each access to a core, SSH Connection

Sharing is used. We measured the average time it takes to open

an SSH connection to SCC core 10, both with and without

using Connection Sharing. In order to obtain these results, an

ssh command was used to open a connection to core 10,

on which immediately the exit command was executed. We

measured an average speedup of 0.61 seconds when using

Connection Sharing.

In order to make sure these results were not distorted

due to immediately closing the connection using the exit

command, additional experiments have been performed in

which a sleep of 10 and 20 seconds has been executed.

For these experiments, the average time gains were 0.62 and

0.61 seconds respectively, by which the initial measurement

is confirmed.

D. Energy Consumption

We performed a very small power consumption measure-

ment in which we calculate the number of (floating point)

operations in an iterative estimation of π. The results of this

test can be found in table II. We can go from as low as 21 W

at 100 MHz to 110 W at 800 MHz. As we count the number

of operations per watt, we see that 320-400 MHz is the most

efficient in power consumption. For an idle system, we can

easily scale back to 100 MHz and only consume 18 Watts.

Freq. Volt. FLOP/s Power FLOPs / Watt Idle

800 1.16250 2232382092 110W 20294383 64W
533 0.85625 1517496998 48W 31614521 30W
400 0.75625 1138837303 35W 32538209 24W
320 0.69375 912457180 28W 32587756 22W
267 0.66875 760936186 25W 30437447 21W
229 0.65625 653551028 24W 27231293 20W
200 0.65625 570407521 23W 24800327 19W
100 0.65625 285427629 21W 13591792 18W

Table II: SCC power consumption

E. Usability test

In order to test the usability of the front-end, a few Com-

puter Science students and a couple of students from non-

computer related disciplines were asked to perform a number

of tasks. After these tasks had been completed, the students

were asked a number of questions about the usability of the

software. The tasks that had to be performed and the questions

that have been asked can be found in [11], together with a

more detailed analysis of the results.

The general opinion of both the Computer Science and the

non-Computer Science students was that the tool looked great.

They all found the way tasks have to be started very intuitive
and really liked the detailed core overview. During these tests,

some remarks were made by the participants of which most

have been added to the application.

V. CONCLUSION

The proposed application provides any user (either a com-

puter scientist or not) with a total insight of the resource usage

on a many-core system like the SCC. The current design of

the system is modular, which means that we can easily adapt

the font-end to work with a different many-core system than

the SCC, but we can also use the back-end for other purposes.

The current system may also be usable to manage a cluster of

independent (unix) machines with a shared file system, as we

currently consider the SCC as a cluster on chip.

The work described in this paper can be extended with

some more additional features. Examples of those can be

support for MPI tasks including core selection, or automated

task scheduling and migration. This scheduler should then be

able to automatically adjust voltage and frequency based on

the load of the system and possible deadlines. One can also

investigate the options for replacing the BLCR library with a

more sophisticated cluster management system.

The software created in this project is available for down-

load under the GPL3 license at [12], where we also provide

more information about the project, screenshots and a demon-

stration video.
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