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Abstract — This paper details our current research project on 

the efficient utilization of many-core systems by utilizing applica-

tions based on a novel kind of software pipelines. These pipelines 

form malleable applications that can change their degree of par-

allelism at runtime. This allows not only for a well-balanced load, 

but also for an efficient distribution of the cores to the individual, 

competing applications to maximize the overall system perfor-

mance. We are convinced that malleable software pipelines will 

significantly outperform existing mapping and scheduling solu-

tions.  

 
Index Terms — Parallel architectures, multicore processing, 

pipeline processing, multiprocessing systems.  

 

I. INTRODUCTION AND MOTIVATION 

unning multiple applications efficiently on a many-core 

system requires careful decisions about the distribution of 

the availablecores among the running applications becauseof 

the following reasons: an inefficient distribution of coresmay 

lead to an imbalanced load, thus leaving resources idle, or to a 

reduced system performance (even though the load may be 

perfectly balanced) when assigning few cores to demanding 

applications while giving more coresto applications that hardly 

benefit from them. Thelatter may be due to different applica-

tion efficiencies(i.e. the speed-up per core), which areex-

pressed bythe corresponding speed-up functions that describe 

how the performance of an application dependson the number 

of cores assigned to it.Thus, thesedecisions largely impact the 

overall performanceof many-core systems. Parallel applica-

tions often are not able to achieve a linear speed-up with the 

number of cores [1], i.e. the efficiency decreases. Consequent-

ly, when running multiple applications, it is crucialto distrib-

ute the cores in a way that the overall efficiency is maximized, 

which is illustrated in Figure 1 for the combined (system) 

efficiency when running two competing applications. 

There are three kinds of parallel applications: a) statically 

parallelizedapplications that are only able to execute on a 

fixed number of cores, b) moldable applications whose degree 

of parallelism can be defined at the start-up time of the appli-

cation,and c) malleable applications that can change their 

degree of parallelism (from now on, we will call this resizing) 

at runtime.With varying and/or dynamic workloads, malleable 

applications allow the highest overall system efficiency as the 

optimal number of cores could be assigned to each application 

whenever the system state changes [2]. 

However, the effort and the costs of resizing have to be con-

sidered because they may be manifold and include task migra-

tion and workload distribution, which may be especially hurt-

ful for many-core architectures with distributed memories [3]. 

Depending on the kind of application, resizing is not possible 

at arbitrary points. Today, malleable applications are often 

used in high-performance computing and grid-computing 

environments, often work on large datasets, and run for long 

periods of time (e.g., hours or days). Here, the absolute time 

required for the re-distribution of cores is of minor importance 

as the total system throughput in long periods of time is cru-

cial. However, due to this property, such applicationsare not 

suitable for highly interactive systems or mobile devices: here, 

systems need to be responsive, so the time spent for resource 

re-distribution needs to be minimal and theefficiency of the 

system needs to be improved quickly (and not in the long 

term) to satisfy user demands. In typical high-performance 

computing environments, large re-distribution timesare tolera-

ble whencompared to the total application runtime. Instead, 

we address systems where applications must beresized at a 

low overhead to allow frequent variations – e.g., when new 

applications enter the system,the system state changes, or a 

user starts interacting with the device. 

 

To make decisions about which application should be allowed 

to use how many resources, state-of-the-artresource manage-

ment schemes for malleable applications (such as [4, 5]) need 

to know how well the application will perform with these 

resources, i.e. thespeed-up function must be known. This 

knowledge could be obtained by offline profiling or online 
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Figure 1 - Combined efficiencies of two competing applications 
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monitoring. After distributing the coresamong the run-

ningapplications, the application itself has to balance the 

loadamong its assigned cores. 

Our novel contributions are malleable software pipelines 

that addressthe three issues of frequent malleability, unknown 

speed-up functions, and autonomous load balanc-

ing.Thisincludes: a) software pipelines that are malleable 

through decreasing and increasing their level of parallelism at 

runtime by fusingstages, i.e. combining multiple consecutive 

stages into one larger stage,  or splitting previously fused 

stages (we call this fission), b) an online monitoring frame-

work that decides upon the best option for fusion and fission 

operations, and  c) a compiler that creates those software pipe-

lines using an architecture specification and application profile 

with a maximum level of granularity. 

II. RELATED WORK 

There are multiple ways to create malleable applications, but 

basically they are based on the same principles. On shared 

memory architectures, creating malleable applications can be 

done by (e.g., compiler based [6] or library based [7]) exploi-

tation of thread and even loop-level parallelism. The costs for 

resizing the application are comparably low (because no data 

has to be migrated between private memories) and allow fre-

quent resizing of the application at the granularity of several 

hundred milliseconds. For distributed memory systems, where 

each core has its own, private memory, these approaches are 

not suitable because the overhead for resizing applications can 

be prohibitively high. Thus, approaches like Master-Slave 

parallelization are used [8]. Here, depending on the amount of 

available cores, more or less workers are created, i.e. resizing 

is possible at thread level, but the resizing costs are much 

higher than in a shared memory system.  

Consequently, the time between resizing decisions has to be 

long enough so the gain from the increased efficiency can 

exceed the corresponding overhead, which makes them very 

suitable for large scientific computing environments where 

applications run for hours or days, but less suitable for interac-

tive systems running on MPSoCs. Another possibility is a 

single program multiple data (SPMD) application architecture 

[9], where the data is partitioned depending on the available 

cores. Adjusting the data partition to changing system states is 

possible but comes at a high cost, which also only allows for 

seldom changes in the application size. 

Adaptive-MPI (AMPI) [10] provides a multitude of „virtual 
cores‟as the smallest level of parallel granularity, which are 

prepared at compile time and are mapped to physical coresat 

runtime. Typically, multiple virtual cores are mapped on one 

real core. AMPI is based on the Charm++ language [11] and 

utilizes the same runtime system for load balancing as applica-

tions written in Charm++. Resizing of applications imple-

mented with AMPI is transparent to the application itself as 

only the mapping of virtual to real cores has to be changed 

and, if necessary, the working set has to be transferred. There-

fore, AMPI cannot take advantage of application-specific 

knowledge (such as choosing optimal migration points be-

tween iterations of pipeline stages). AMPI is designed for 

large, distributed computing environments (e.g., datacenters) 

where the individual nodes have large main memories and fast 

cores. In contrast to this, we target architectures with compa-

rably slow individual cores where the access to (off-chip) 

main memory is very costly and must be reduced to a mini-

mum. 

 

 
Figure 2 – Basic operations of malleable pipelines 

III. OUR APPROACH 

Software pipelines present a widely used programming model 

which is especially suitable to parallelize sequential complex 

applications for many-core systems with distributed memories 

that may be private to each core. Multiple compilers, tools and 

frameworks exist that extract software pipelines from existing 

applications [12-14]. The presented malleable software pipe-

lines are software pipelines with the following properties: 

They support the basic operations of fusion and fission, as 

illustrated in Figure 2. A fusion of pipeline stages reduces the 

degree of parallelism, thus reducing the number of stages by 

combining two consecutive stages into one. Contrarily, fission 

increases the degree of parallelism by splitting fused stag-

es.Pipelines are created with a compile-time chosen finest 

level of granularity, from which no further fissions are possi-

ble. Stages can be fused until only one stage remains. In this 

case, the pipeline is equivalent to the sequential execution of 

the same algorithm.Malleable software pipelines use runtime 

monitoring to decide which stages to fuse or which stage to 

split. 

 
Figure 3 - Block diagram of system components 
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The system components are illustrated in Figure 3: The 

runtime system constantly monitors the system utilization and 

application efficiencies. An efficiency optimization compo-

nent periodically re-evaluates the current system state and may 

decide to change the distribution of the system‟s cores to the 
applications. Each application consists of one so-called Appli-

cation Master and one process per pipeline stage. These pro-

cesses are based on the same executable file and may run one 

or more consecutive pipeline stages. When running multiple 

stages on one core, no inter-core data communication for these 

stages is necessary. 

The Application Master includes an interface for the commu-

nication with the runtime system, a Fusion / Fission Engine, 

and a lightweight runtime predictor that predicts the potential 

performance increase of a fission operation and the potential 

performance decrease of a fusion operation, and an application 

level task migration component.  

The Interface is responsible for the communication with the 

run-time system and provides it with information such as the 

maximum level of parallelism (static) and the gradient of the 

speed-up function (dynamic).  

The Fusion / Fission Engineis responsible for conducting 

the fusions and fissions requested by the runtime system. The 

runtime system specifies which cores may be used or will be 

taken away from the application, while the Fusion / Fission 

Engine is responsible for identifying the stages to be fused or 

split.This decision is based on Runtime Monitoring of the 

computational and communication demands (from now on, we 

will call both computational and communication demands 

„resource demands‟) of each individual stage. Using a light-

weight Runtime Predictor, the Application Master decides 

which fusion will result in the least performance degradation 

and which fission will result in the highest performance in-

crease. To avoid bloated communication volumes and races 

for communication hardware (such as the Message Passing 

Buffer in Intel‟s Single-Chip Cloud Computer [15]), only 

consecutive stages are fused. When the number of cores as-

signed to an application changes, all pipeline stages of that 

application are recombined. 

The migration of the pipeline stages is very lightweight as 

they are migrated after completing an iteration, as software 

pipelines typically have a peak memory consumption while 

performing one iteration, and carry little state between itera-

tions. As the executable file is the same for each stage and 

may dynamically switch from executing one stage to execut-

ing several stages, only the state information of the corre-

sponding stages that is carried between iterations needs to be 

transferred. Consequently, the executable file needs to be 

transferred only when new cores are made available for an 

application and the stage fusions may be performed at runtime 

with very little overhead. In the presented case-study (see 

Section V), some stages were completely stateless (e.g., image 

enhancement or transformations which operate on each frame 

of the video stream individually) while others carried little 

state (e.g., information about identified objects in the previ-

ously processed image) in the worst-case of 38 kilobytes. The 

size of the state that needs to be transferred for each resizing 

decision depends on the executed application. However, we 

find that a typical property of software pipelines is that each 

stage carries comparably little state between iterations.. 

IV. RUNTIME SYSTEM 

The runtime system is responsible for optimizing the efficien-

cy of multiple applications running on a many-core system, 

thus competing for computational resources. This is performed 

by resizing the competing applications at runtime. To accom-

plish this, each application provides information about wheth-

er it could efficiently make use of more cores or if the already 

assigned cores are not used efficiently and a fusion of pipeline 

stages could be performed to free cores for other applica-

tions.If all possible applications and system states are known 

at design time, these decisions can be made at design time. 

This allows for optimal allocation, scheduling, and mapping of 

applications to cores. However, i.e. due to user interactions, 

changing input data, or unpredictable system state, an online 

resource management is required to efficiently utilize system 

resources.In [4], a distributed approach for managing mallea-

ble applications on many-core systems with hundreds or thou-

sands of cores has been presented. The scalability of the ap-

proach is achieved by avoiding the use of global knowledge or 

broadcast communication. The approach utilizes an applica-

tion performance model for parallel applications which con-

siders the theoretical speed-up of an application [1] and the 

relative placement of the cores of the application to make its 

decisions. 

In the following section we show how well the theoretical 

performance model and the performance of the real implemen-

tation of our malleable software pipelines match. By using real 

measurements of application performance and resizing over-

head (which is currently not exactly modeled in the decision 

making process) we will be able to enhance the previous ap-

proach and apply it to a real many-core system running our 

malleable software pipelines. 

V. CASE STUDY ANALYSIS 

We analyze a software pipeline that we generated from a 

complex, real-world robotic application. The presented soft-

ware pipeline captures stereo images from two pairs of stereo 

cameras, uses image enhancement and transformation algo-

rithms, calculates a three-dimensional depth map, and then 

detects and tracks objects. Due to bandwidth constraints, the 

images can only be captured sequentially, not in parallel. The 

application tracks a recognized object and moves the robot to 

follow it. The 18 individual stages of the pipeline are illustrat-

ed in Figure 4. The case study focuses on the behavior of that 

software. To obtain the results, each pipeline stage had been 

benchmarked individually on the Intel SCC to obtain the nec-

essary information to calculate the optimal fissions and fu-

sions for any given number of cores. 

When executing these stages on multiple cores, the speed-up 

function is largely sub-linear, as shown in Figure 5. A maxi-
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mum speed-up of 9.7x can be achieved when running the 

application on 18 cores. The efficiency drops when increasing 

the number of cores, while positive “jumps” in efficiency 
when increasing the number of cores from 9 to 10 or from 11 

to 12 are due to the fact that due to the increased number of 

cores, the fusions can be changed and otherwise heavily load-

ed cores have to carry much less load. The values represent 

stable states for different pipeline lengths. Dynamic effects 

(e.g., cache effects) that occur directly after resizing an appli-

cation are not presented in this case study as the runtime sys-

tem is still work-in-progress. 

The overhead of stage fusions is limited as only the state 

that is carried between iterations needs to be transferred. For 

the applications we have examined, the magnitude of the re-

quired data size ranges from a few bytes to few kilobytes (with 

38 kilobytes being the worst case), so the overhead of transfer-

ring this state is negligible in most state-of-the-art many-core 

architectures, which often have a high-bandwidth, low-latency 

inter-core communication fabric. The overhead of stage fis-

sion is purely dominated by transferring the executable file. 

 

 

 

VI. OUTLOOK 

The above argumentation urges that the efficiency of the utili-

zation of the computational resources of many-core systems 

may be greatly enhanced when using malleable applications. 

In contrast to the state-of-the-art malleable application models, 

malleable software pipelines are well-suited to MPSoC archi-

tectures with comparably slow individual cores, small on-chip 

memories and highly penalized access to off-chip storage. 

Shifting malleability to the application layer allows software 

pipelines to change their degree of parallelism for efficiency 

optimization without incurring significant overhead because 

only the state that is carried across multiple iterations needs to 

be transferred.We are currently implementing the required 

infrastructure and conduct experiments that compare our mal-

leable software pipelines to the state-of-the-art load balancing 

and task management systems. 
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Due to bandwidth constraints, the images 

can only be captured sequentially
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Figure 4 - Pipelined robotic application 

 

 
Figure 5 - Speed-up and efficiency of the robotic application 
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