
HAL Id: hal-00719027
https://hal.science/hal-00719027

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Work in Progress: Malleable Software Pipelines for
Efficient Many-core System Utilization

Janmartin Jahn, Sebastian Kobbe, Santiago Pagani, Jian-Jia Chen, Jörg
Henkel

To cite this version:
Janmartin Jahn, Sebastian Kobbe, Santiago Pagani, Jian-Jia Chen, Jörg Henkel. Work in Progress:
Malleable Software Pipelines for Efficient Many-core System Utilization. The 6th Many-core Ap-
plications Research Community (MARC) Symposium, Jul 2012, Toulouse, France. pp.30-33. �hal-
00719027�

https://hal.science/hal-00719027
https://hal.archives-ouvertes.fr

http://sites.onera.fr/scc/marconera2012

Proceedings of the 6th Many-core
Applications Research Community

(MARC) Symposium

July 19th–20th 2012

ISBN

978-2-7257-0016-8

http://sites.onera.fr/scc/marconera2012
http://hal.archives-ouvertes.fr/MARCONERA2012
http://www.onera.fr

Abstract — This paper details our current research project on

the efficient utilization of many-core systems by utilizing applica-

tions based on a novel kind of software pipelines. These pipelines

form malleable applications that can change their degree of par-

allelism at runtime. This allows not only for a well-balanced load,

but also for an efficient distribution of the cores to the individual,

competing applications to maximize the overall system perfor-

mance. We are convinced that malleable software pipelines will

significantly outperform existing mapping and scheduling solu-

tions.

Index Terms — Parallel architectures, multicore processing,

pipeline processing, multiprocessing systems.

I. INTRODUCTION AND MOTIVATION

unning multiple applications efficiently on a many-core

system requires careful decisions about the distribution of

the availablecores among the running applications becauseof

the following reasons: an inefficient distribution of coresmay

lead to an imbalanced load, thus leaving resources idle, or to a

reduced system performance (even though the load may be

perfectly balanced) when assigning few cores to demanding

applications while giving more coresto applications that hardly

benefit from them. Thelatter may be due to different applica-

tion efficiencies(i.e. the speed-up per core), which areex-

pressed bythe corresponding speed-up functions that describe

how the performance of an application dependson the number

of cores assigned to it.Thus, thesedecisions largely impact the

overall performanceof many-core systems. Parallel applica-

tions often are not able to achieve a linear speed-up with the

number of cores [1], i.e. the efficiency decreases. Consequent-

ly, when running multiple applications, it is crucialto distrib-

ute the cores in a way that the overall efficiency is maximized,

which is illustrated in Figure 1 for the combined (system)

efficiency when running two competing applications.

There are three kinds of parallel applications: a) statically

parallelizedapplications that are only able to execute on a

fixed number of cores, b) moldable applications whose degree

of parallelism can be defined at the start-up time of the appli-

cation,and c) malleable applications that can change their

degree of parallelism (from now on, we will call this resizing)

at runtime.With varying and/or dynamic workloads, malleable

applications allow the highest overall system efficiency as the

optimal number of cores could be assigned to each application

whenever the system state changes [2].

However, the effort and the costs of resizing have to be con-

sidered because they may be manifold and include task migra-

tion and workload distribution, which may be especially hurt-

ful for many-core architectures with distributed memories [3].

Depending on the kind of application, resizing is not possible

at arbitrary points. Today, malleable applications are often

used in high-performance computing and grid-computing

environments, often work on large datasets, and run for long

periods of time (e.g., hours or days). Here, the absolute time

required for the re-distribution of cores is of minor importance

as the total system throughput in long periods of time is cru-

cial. However, due to this property, such applicationsare not

suitable for highly interactive systems or mobile devices: here,

systems need to be responsive, so the time spent for resource

re-distribution needs to be minimal and theefficiency of the

system needs to be improved quickly (and not in the long

term) to satisfy user demands. In typical high-performance

computing environments, large re-distribution timesare tolera-

ble whencompared to the total application runtime. Instead,

we address systems where applications must beresized at a

low overhead to allow frequent variations – e.g., when new

applications enter the system,the system state changes, or a

user starts interacting with the device.

To make decisions about which application should be allowed

to use how many resources, state-of-the-artresource manage-

ment schemes for malleable applications (such as [4, 5]) need

to know how well the application will perform with these

resources, i.e. thespeed-up function must be known. This

knowledge could be obtained by offline profiling or online

Work in Progress: Malleable Software Pipelines

for Efficient Many-core System Utilization
Janmartin Jahn, Sebastian Kobbe, Santiago Pagani, Jian-Jia Chen, Jörg Henkel

Karlsruhe Institute of Technology (KIT), Germany

R

Figure 1 - Combined efficiencies of two competing applications

0
.0

0
.1

0
.1

0
.2

0
.2

0
.3

0
.3

0
.3

0
.4

0
.4

0
.5

0
.5

0
.6

0
.6

0
.7

0
.7

0
.8

0
.8

0
.9

0
.9

1
.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 9 17 25 33 41 49 57

Ratio Cores(A) / Cores(B)

E
ff

ic
ie

n
c
y
 (

S
p

e
e
d

-U
p

 p
e
r

C
o

re
)

Number of Cores

Task A

Task B

Combined

highest combined efficiency

Application A

Application B

Combined

efficiency

equal

distribution

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Work in Progress: Malleable Software Pipelines for Efficient Many-core System Utilization 30

monitoring. After distributing the coresamong the run-

ningapplications, the application itself has to balance the

loadamong its assigned cores.

Our novel contributions are malleable software pipelines

that addressthe three issues of frequent malleability, unknown

speed-up functions, and autonomous load balanc-

ing.Thisincludes: a) software pipelines that are malleable

through decreasing and increasing their level of parallelism at

runtime by fusingstages, i.e. combining multiple consecutive

stages into one larger stage, or splitting previously fused

stages (we call this fission), b) an online monitoring frame-

work that decides upon the best option for fusion and fission

operations, and c) a compiler that creates those software pipe-

lines using an architecture specification and application profile

with a maximum level of granularity.

II. RELATED WORK

There are multiple ways to create malleable applications, but

basically they are based on the same principles. On shared

memory architectures, creating malleable applications can be

done by (e.g., compiler based [6] or library based [7]) exploi-

tation of thread and even loop-level parallelism. The costs for

resizing the application are comparably low (because no data

has to be migrated between private memories) and allow fre-

quent resizing of the application at the granularity of several

hundred milliseconds. For distributed memory systems, where

each core has its own, private memory, these approaches are

not suitable because the overhead for resizing applications can

be prohibitively high. Thus, approaches like Master-Slave

parallelization are used [8]. Here, depending on the amount of

available cores, more or less workers are created, i.e. resizing

is possible at thread level, but the resizing costs are much

higher than in a shared memory system.

Consequently, the time between resizing decisions has to be

long enough so the gain from the increased efficiency can

exceed the corresponding overhead, which makes them very

suitable for large scientific computing environments where

applications run for hours or days, but less suitable for interac-

tive systems running on MPSoCs. Another possibility is a

single program multiple data (SPMD) application architecture

[9], where the data is partitioned depending on the available

cores. Adjusting the data partition to changing system states is

possible but comes at a high cost, which also only allows for

seldom changes in the application size.

Adaptive-MPI (AMPI) [10] provides a multitude of „virtual
cores‟as the smallest level of parallel granularity, which are

prepared at compile time and are mapped to physical coresat

runtime. Typically, multiple virtual cores are mapped on one

real core. AMPI is based on the Charm++ language [11] and

utilizes the same runtime system for load balancing as applica-

tions written in Charm++. Resizing of applications imple-

mented with AMPI is transparent to the application itself as

only the mapping of virtual to real cores has to be changed

and, if necessary, the working set has to be transferred. There-

fore, AMPI cannot take advantage of application-specific

knowledge (such as choosing optimal migration points be-

tween iterations of pipeline stages). AMPI is designed for

large, distributed computing environments (e.g., datacenters)

where the individual nodes have large main memories and fast

cores. In contrast to this, we target architectures with compa-

rably slow individual cores where the access to (off-chip)

main memory is very costly and must be reduced to a mini-

mum.

Figure 2 – Basic operations of malleable pipelines

III. OUR APPROACH

Software pipelines present a widely used programming model

which is especially suitable to parallelize sequential complex

applications for many-core systems with distributed memories

that may be private to each core. Multiple compilers, tools and

frameworks exist that extract software pipelines from existing

applications [12-14]. The presented malleable software pipe-

lines are software pipelines with the following properties:

They support the basic operations of fusion and fission, as

illustrated in Figure 2. A fusion of pipeline stages reduces the

degree of parallelism, thus reducing the number of stages by

combining two consecutive stages into one. Contrarily, fission

increases the degree of parallelism by splitting fused stag-

es.Pipelines are created with a compile-time chosen finest

level of granularity, from which no further fissions are possi-

ble. Stages can be fused until only one stage remains. In this

case, the pipeline is equivalent to the sequential execution of

the same algorithm.Malleable software pipelines use runtime

monitoring to decide which stages to fuse or which stage to

split.

Figure 3 - Block diagram of system components

1 2 3 4 5 6

1 2+3 4 5 6

Fusion

1 2 3 4 5 6

1 2+3 4 5 6

Fission

Runtime System Malleable PipelineOS / Middleware

Runtime

Predictor

Interface

Fusion /

Fission

Engine

Task Migration
(Application Level)

Task Migration
(Middleware Level)

System

Monitoring

Efficiency

Optimization

Operating System

pass-through

Runtime

Monitoring

A
p

p
lic

a
tio

n
 M

a
s
te

r
S

ta
g

e
6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Work in Progress: Malleable Software Pipelines for Efficient Many-core System Utilization 31

The system components are illustrated in Figure 3: The

runtime system constantly monitors the system utilization and

application efficiencies. An efficiency optimization compo-

nent periodically re-evaluates the current system state and may

decide to change the distribution of the system‟s cores to the
applications. Each application consists of one so-called Appli-

cation Master and one process per pipeline stage. These pro-

cesses are based on the same executable file and may run one

or more consecutive pipeline stages. When running multiple

stages on one core, no inter-core data communication for these

stages is necessary.

The Application Master includes an interface for the commu-

nication with the runtime system, a Fusion / Fission Engine,

and a lightweight runtime predictor that predicts the potential

performance increase of a fission operation and the potential

performance decrease of a fusion operation, and an application

level task migration component.

The Interface is responsible for the communication with the

run-time system and provides it with information such as the

maximum level of parallelism (static) and the gradient of the

speed-up function (dynamic).

The Fusion / Fission Engineis responsible for conducting

the fusions and fissions requested by the runtime system. The

runtime system specifies which cores may be used or will be

taken away from the application, while the Fusion / Fission

Engine is responsible for identifying the stages to be fused or

split.This decision is based on Runtime Monitoring of the

computational and communication demands (from now on, we

will call both computational and communication demands

„resource demands‟) of each individual stage. Using a light-

weight Runtime Predictor, the Application Master decides

which fusion will result in the least performance degradation

and which fission will result in the highest performance in-

crease. To avoid bloated communication volumes and races

for communication hardware (such as the Message Passing

Buffer in Intel‟s Single-Chip Cloud Computer [15]), only

consecutive stages are fused. When the number of cores as-

signed to an application changes, all pipeline stages of that

application are recombined.

The migration of the pipeline stages is very lightweight as

they are migrated after completing an iteration, as software

pipelines typically have a peak memory consumption while

performing one iteration, and carry little state between itera-

tions. As the executable file is the same for each stage and

may dynamically switch from executing one stage to execut-

ing several stages, only the state information of the corre-

sponding stages that is carried between iterations needs to be

transferred. Consequently, the executable file needs to be

transferred only when new cores are made available for an

application and the stage fusions may be performed at runtime

with very little overhead. In the presented case-study (see

Section V), some stages were completely stateless (e.g., image

enhancement or transformations which operate on each frame

of the video stream individually) while others carried little

state (e.g., information about identified objects in the previ-

ously processed image) in the worst-case of 38 kilobytes. The

size of the state that needs to be transferred for each resizing

decision depends on the executed application. However, we

find that a typical property of software pipelines is that each

stage carries comparably little state between iterations..

IV. RUNTIME SYSTEM

The runtime system is responsible for optimizing the efficien-

cy of multiple applications running on a many-core system,

thus competing for computational resources. This is performed

by resizing the competing applications at runtime. To accom-

plish this, each application provides information about wheth-

er it could efficiently make use of more cores or if the already

assigned cores are not used efficiently and a fusion of pipeline

stages could be performed to free cores for other applica-

tions.If all possible applications and system states are known

at design time, these decisions can be made at design time.

This allows for optimal allocation, scheduling, and mapping of

applications to cores. However, i.e. due to user interactions,

changing input data, or unpredictable system state, an online

resource management is required to efficiently utilize system

resources.In [4], a distributed approach for managing mallea-

ble applications on many-core systems with hundreds or thou-

sands of cores has been presented. The scalability of the ap-

proach is achieved by avoiding the use of global knowledge or

broadcast communication. The approach utilizes an applica-

tion performance model for parallel applications which con-

siders the theoretical speed-up of an application [1] and the

relative placement of the cores of the application to make its

decisions.

In the following section we show how well the theoretical

performance model and the performance of the real implemen-

tation of our malleable software pipelines match. By using real

measurements of application performance and resizing over-

head (which is currently not exactly modeled in the decision

making process) we will be able to enhance the previous ap-

proach and apply it to a real many-core system running our

malleable software pipelines.

V. CASE STUDY ANALYSIS

We analyze a software pipeline that we generated from a

complex, real-world robotic application. The presented soft-

ware pipeline captures stereo images from two pairs of stereo

cameras, uses image enhancement and transformation algo-

rithms, calculates a three-dimensional depth map, and then

detects and tracks objects. Due to bandwidth constraints, the

images can only be captured sequentially, not in parallel. The

application tracks a recognized object and moves the robot to

follow it. The 18 individual stages of the pipeline are illustrat-

ed in Figure 4. The case study focuses on the behavior of that

software. To obtain the results, each pipeline stage had been

benchmarked individually on the Intel SCC to obtain the nec-

essary information to calculate the optimal fissions and fu-

sions for any given number of cores.

When executing these stages on multiple cores, the speed-up

function is largely sub-linear, as shown in Figure 5. A maxi-

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Work in Progress: Malleable Software Pipelines for Efficient Many-core System Utilization 32

mum speed-up of 9.7x can be achieved when running the

application on 18 cores. The efficiency drops when increasing

the number of cores, while positive “jumps” in efficiency
when increasing the number of cores from 9 to 10 or from 11

to 12 are due to the fact that due to the increased number of

cores, the fusions can be changed and otherwise heavily load-

ed cores have to carry much less load. The values represent

stable states for different pipeline lengths. Dynamic effects

(e.g., cache effects) that occur directly after resizing an appli-

cation are not presented in this case study as the runtime sys-

tem is still work-in-progress.

The overhead of stage fusions is limited as only the state

that is carried between iterations needs to be transferred. For

the applications we have examined, the magnitude of the re-

quired data size ranges from a few bytes to few kilobytes (with

38 kilobytes being the worst case), so the overhead of transfer-

ring this state is negligible in most state-of-the-art many-core

architectures, which often have a high-bandwidth, low-latency

inter-core communication fabric. The overhead of stage fis-

sion is purely dominated by transferring the executable file.

VI. OUTLOOK

The above argumentation urges that the efficiency of the utili-

zation of the computational resources of many-core systems

may be greatly enhanced when using malleable applications.

In contrast to the state-of-the-art malleable application models,

malleable software pipelines are well-suited to MPSoC archi-

tectures with comparably slow individual cores, small on-chip

memories and highly penalized access to off-chip storage.

Shifting malleability to the application layer allows software

pipelines to change their degree of parallelism for efficiency

optimization without incurring significant overhead because

only the state that is carried across multiple iterations needs to

be transferred.We are currently implementing the required

infrastructure and conduct experiments that compare our mal-

leable software pipelines to the state-of-the-art load balancing

and task management systems.

REFERENCES

[1] A. B. Downey, “A parallel workload model and its implications for
processor allocation,” in Sixth IEEE International Symposium on High Per-
formance Distributed Computing, August 1997, pp. 112–123.

[2] J. Hungershöfer, A. Streit, and J.-M.Wierum, “Efficient resource man-
agement for malleable applications”,Technical Report, 2001.

[3] S. Borkar, “Thousand core chips: a technology perspective,” in Proceed-
ings of the 44th annual Design Automation Conference (DAC), 2007, pp. 746–
749.

[4] S. Kobbe, L. Bauer, D. Lohman, W. Schröder-Preikschat, and J. Henkel,

“DistRM: Distributed resource management for on-chip many-core systems,”
in Proceedings of the IEEE International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Oct. 2011, pp. 119–128.

[5] P. Sanders and J. Speck, “Efficient parallel scheduling of malleable
tasks,” in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE

International, may 2011, pp. 1156 –1166.

[6] M. W. Hall and M. Martonosi, “Adaptive parallelism in compiler-

parallelized code,” Concurrency: Practice and Experience, vol. 10, no. 14, pp.

1235–1250, 1998.

[7] C. Pheatt, “Intel® threading building blocks,” J. Comput. Sci. Coll.,

vol. 23, no. 4, pp. 298–298, Apr. 2008.

[8] N. Islam, A. Prodromidis, and M. S. Squillante, “Dynamic partitioning in
different distributed-memory environments,” in In Job Scheduling Strategies
for Parallel Processing. Springer-Verlag, 1996, pp. 244–270.

[9] L. V. Kalé, S. Kumar, and J. Desouza, “A malleable-job system for
timeshared parallel machines,” in Proceedings of the 2nd International Sym-

posium on Cluster Computing and the Grid (CCGrid 2002), 2002, pp. 230–
237.

[10] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in In Proceed-

ings of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 03), 2003, pp. 306–322.

[11] L. V. Kalé and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on c++,” in In Proceedings of the Conference on Object

Oriented Programming Systems, Languages and Applications, 1993, pp. 91–
108.

[12] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A practical approach
to exploiting coarse-grained pipeline parallelism in C programs,” in Interna-
tional Symposium on Microarchitecture, 2007.

[13] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “ Automatic Thread
Extraction with Decoupled Software Pipelining,” in International Symposium

on Microarchitecture, 2005.

[14] J. Cheng, J. Castrillon, W. Sheng, H. Sharwachter, R. Leupers,

G. Ascheid, H. Meyr, T. Isshiki, and H. Kunieda, “MAPS: An Integrated
Framework for MPSoC Application Parallelization,” in Design Automation
Conference, 2008.

[15] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob,

S. Yada, S. Marella, P. Salihundam, et al., “A 48-Core IA-32 message-passing

processor with DVFS in 45nm CMOS,” in IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), February 2010, pp.

108–109.

Due to bandwidth constraints, the images

can only be captured sequentially

The robot is controlled to move in line

with the tracked object and grasps it

Capture Left

Robotic Motion Control

Capture Right

Undistort Left

Undistort Right

Image Enhancement (L)

Image Enhancement (R)

Color-Space Conversion (L)

Color-Space Conversion (R)

Compact Region Filter

Erode

Dilate

Harris Corner Detection

Scale-Invariant Feature Transform

Stereo Matching

Object Recognition

Stochastic Smoothing

Incremental Grasp Planning

Figure 4 - Pipelined robotic application

Figure 5 - Speed-up and efficiency of the robotic application

0

0.2

0.4

0.6

0.8

1

Efficiency

E
ff

ic
ie

n
c
y

S
p

e
e

d
-U

p

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17

Number of cores

Application
Speed-Up

Ideal
Speed-Up
Curve

Poly.
(Application
Speed-Up)

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Work in Progress: Malleable Software Pipelines for Efficient Many-core System Utilization 33

	I. Introduction and Motivation
	II. Related Work
	III. Our Approach
	IV. Runtime System
	V. Case Study Analysis
	VI. Outlook
	References

