
HAL Id: hal-00719022
https://hal.science/hal-00719022

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Broadcast on the Intel SCC using
Interrupts

Darko Petrović, Omid Shahmirzadi, Thomas Ropars, André Schiper

To cite this version:
Darko Petrović, Omid Shahmirzadi, Thomas Ropars, André Schiper. Asynchronous Broadcast on
the Intel SCC using Interrupts. The 6th Many-core Applications Research Community (MARC)
Symposium, Jul 2012, Toulouse, France. pp.24-29. �hal-00719022�

https://hal.science/hal-00719022
https://hal.archives-ouvertes.fr

http://sites.onera.fr/scc/marconera2012

Proceedings of the 6th Many-core
Applications Research Community

(MARC) Symposium

July 19th–20th 2012

ISBN

978-2-7257-0016-8

http://sites.onera.fr/scc/marconera2012
http://hal.archives-ouvertes.fr/MARCONERA2012
http://www.onera.fr

Asynchronous Broadcast on the Intel SCC using

Interrupts
Darko Petrović, Omid Shahmirzadi, Thomas Ropars, André Schiper

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

firstname.lastname@epfl.ch

Abstract—This paper focuses on the design of an asynchronous
broadcast primitive on the Intel SCC. Our solution is based on
OC-Bcast, a state-of-the-art k-ary tree synchronous broadcast
algorithm that leverages the parallelism provided by on-chip
Remote Memory Accesses to Message Passing Buffers. In the
paper, we study the use of parallel inter-core interrupts as
a means to implement an efficient asynchronous group com-
munication primitive, and present the userspace library we
designed to be able to use interrupts in OC-Bcast and make
it work asynchronously. Our experimental evaluation shows that
our algorithm allows parallel broadcast operations to efficiently
progress concurrently and provides low latency for a single
broadcast operation. It highlights that parallel interrupts can
help implementing efficient group communication primitives on
many-core systems.

I. INTRODUCTION

Recent research in microprocessor design indicates that

the most promising way to achieve high performance while

lowering power consumption is to integrate many loosely-

coupled processors on a single chip [1]. A many-core chip

can be viewed as a distributed system, i.e. a set of cores

connected through a Network on Chip (NoC). The Intel Single-

Chip Cloud Computer (SCC) is a 48-core research prototype

of a many-core chip, designed to be operated as a message

passing system.

Group communications, such as broadcast, are of major

importance in message passing systems, and have been widely

studied in different contexts. Considering the low latency and

high throughput of a NoC, a many-core chip is very similar

to a parallel High Performance Computing (HPC) system.

However, results show that porting an HPC communication

library to the SCC requires rethinking the design of the

communication algorithms [10].

In this paper, we study the implementation of an asyn-

chronous broadcast primitive for the Intel SCC. Our previous

work, done in the context of Single Program Multiple Data

(SPMD) applications, studied synchronous broadcast opera-

tions [10]. It shows that leveraging specific features of the Intel

SCC, i.e., Remote Memory Access (RMA) to on-chip Message

Passing Buffers (MPB), helps improving the performance of

group communications by increasing parallelism in the data

dissemination. We adapt the resulting algorithm, called OC-

Bcast (On-Chip Broadcast), to work asynchronously in order

to be able to use it in a more general execution model. To do

so, we propose to use parallel Inter-Processor Interrupts (IPI).

The paper presents the following contributions:

• A study of the global interrupt controller (GIC) on the

Intel SCC, and the description of a library to simply

manipulate IPIs in userspace (Section IV).

• An asynchronous version of OC-Bcast based on paral-

lel IPIs that allows arbitrary interleaving of concurrent

broadcast operations (Section V).

• An evaluation of the proposed algorithm showing that it

manages to achieve both low single broadcast latency and

high concurrent broadcasts throughput, demonstrating

usefulness of parallel IPIs in implementing efficient group

communication on many-core chips (Section VI).

Before detailing the contributions, we describe the SCC in

Section II and focus on the related work on interrupt-based

communication and broadcast on the SCC in Section III.

II. THE INTEL SCC

The SCC is a general purpose many-core prototype devel-

oped by Intel Labs. In this section we briefly describe the SCC

architecture and inter-core communication.

a) Architecture: The cores and the NoC of the SCC

are depicted in Figure 1. There are 48 Pentium P54C cores,

grouped into 24 tiles (2 cores per tile) and connected through

a 2D mesh NoC. Tiles are numbered from (0,0) to (5,3). Each

tile is connected to a router. The NoC uses high-throughput,

low-latency links and deterministic virtual cut-through X-Y

routing [5]. Memory components are divided into (i) message

passing buffers (MPB), (ii) L1 and L2 caches, as well as

(iii) off-chip private memories. Each tile has a small (16KB)

on-chip MPB equally divided between the two cores. The

MPBs allow on-chip inter-core communication using Remote

Memory Access (RMA): Each core is able to read and write

in the MPB of all other cores. There is no hardware cache

coherence for the L1 and L2 caches. By default, each core has

access to a private off-chip memory through one of the four

memory controllers, denoted by MC in Figure 1. In addition,

an external programmable off-chip component (FPGA) is

provided to add new hardware features to the prototype.

b) Inter-core communication: To leverage on-chip RMA,

cores can transfer data using the one-sided put and get

primitives provided by the RCCE library [8]. Using put, a

core (a) reads a certain amount of data from its own MPB or

its private off-chip memory and (b) writes it to some MPB.

Using get, a core (a) reads a certain amount of data from some

MPB and (b) writes it to its own MPB or its private off-chip

memory. The unit of data transmission is the cache line, equal

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Asynchronous Broadcast on the Intel SCC using Interrupts 24

Tile
Core

+ L1

Core

+ L1

L2

L2

Mesh

inter

face

MPB

R

MC

MC MC

MC

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

FPGA

Fig. 1: SCC Architecture

to 32 bytes. If the data is larger than one cache line, it is

sequentially transferred in cache-line-sized packets. During a

remote read/write operation, each packet traverses the routers

on the way from the source to the destination.

Cores are also able to notify each other using inter-process

interrupts (IPI), either by writing directly into the receiving

core configuration register or by using the Global Interrupt

Controller (GIC)1. In the latter case, the receiving core is able

to obtain additional information about the interrupt through a

set of GIC registers. We consider the GIC in this work.

III. RELATED WORK

In the SCC context, there are works on interrupt-based

message passing ([6], [7], [9], [11], [12]), as well as on the

implementation of collective operations ([4], [2], [8]). How-

ever, to the best of our knowledge, there is no work combining

the two, that is, leveraging IPIs for collective communication.

For this reason, we present the related work in two categories:

(i) papers that focus on the collectives, i.e. broadcast and (ii)

those that discuss interrupt-based communication.

A. Broadcast Algorithms

Despite several implementations of broadcast on the Intel

SCC, the only scenario considered so far is running HPC

applications. This assumes the SPMD model, in which each

core runs the same program and every core explicitly invokes

a routine to participate in a collective operation. As a conse-

quence of this assumption, polling can be used for notification

and asynchronous primitives are not necessary.

When it comes to the broadcast algorithms used,

RCCE comm [3], as well as RCKMPI [2] use well-known

algorithms based on two-sided communication – binomial

tree and scatter-allgather. On the other hand, OC-Bcast [10]

applies a tree based algorithm for broadcast directly on top of

put/get primitives, which dramatically improves both latency

and throughput by minimizing memory copy operations on the

critical path. The algorithm presented in this paper has been

directly derived from OC-Bcast, as described in Section IV.

B. Communication Based on Interrupts

The assumption of having only one program running at a

time, as well as synchronous communication among cores,

which holds for HPC applications, is not valid in general-

purpose distributed systems. Therefore, using interrupts for

1The GIC is available starting with sccKit 1.4.0 and is located on the FPGA.

asynchronous communication is a must for porting such sys-

tems to the SCC.2 Examples of SCC software relying upon

inter-core interrupts are numerous ([6], [7], [9], [11], [12]). In

the context of this paper, most interesting works are those that

give specific details on different ways of using interrupts and

their cost in terms of performance.

The SCC port of Barrelfish [9] uses IPIs to notify cores

about message arrivals. The round-trip message latency re-

ported by the authors was found too high for point-to-point

communication in such a system, despite running it on bare

metal with the minimum needed software overhead.

Another approach for leveraging interrupts, using the GIC,

has been applied in the SCC port of distributed S-NET [12], a

declarative coordination language for many-core chips. The

port is based on an asynchronous message-passing library:

Interrupts are trapped by the Linux kernel and then forwarded

to the registered userspace process in the form of a UNIX

signal, which is the idea reused in this paper. Using a similar

round-trip experiment as in [9], the authors confirm the high

latency of inter-processor interrupts. Moreover, the latency

they observe is even higher than in [9], mainly because of

a necessary context switch before delivering a signal to the

registered userspace process. A direct comparison with RCCE,

the native SCC message passing library based on polling [8],

has shown that IPIs are far less efficient in terms of latency

for point to point communication.

Despite being costly for point-to-point message passing,

IPIs can be used for asynchronous collective communication

with an acceptable cost, as we show in this work.

IV. BROADCAST BASED ON INTERRUPTS

This section describes the design and implementation of

our broadcast library based on inter-processor interrupts (IPI).

First, we give an overview of the underlying hardware mecha-

nism for sending parallel interrupts. Then we briefly describe

OC-Bcast, a polling-based broadcast algorithm for the SCC,

and explain how we have adapted it to use interrupts instead.

A. Interrupt Hardware on the SCC

Using the basic IPI mechanism on the SCC, a core can

send an interrupt to another core by writing a special value to

the configuration register of that core. This generates a packet

which is sent through the on-chip network to the destination

core. Although this mechanism is simple and straightforward,

it lacks some essential features. For example, the identity of

the notifier is unknown and it is possible to send only one

interrupt at a time.

Fortunately, the SCC has an off-chip FPGA, which allows

for adding new hardware features. An extension to the basic

IPI mechanism has been provided by Intel, which comprises a

set of registers for managing IPI (request, status, reset and

mask). As a consequence, a core can send an interrupt to

up to 32 other cores in just one instruction, by writing an

2Strictly speaking, it is possible to communicate asynchronously using a
dedicated polling thread, but this solution wastes CPU cycles and energy.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Asynchronous Broadcast on the Intel SCC using Interrupts 25

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45

L
at

en
cy

 (
co

re
 c

y
cl

es
)

Core ID

(a) With access to GIC registers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45

L
at

en
cy

 (
co

re
 c

y
cl

es
)

Core ID

(b) Without access to GIC registers

Fig. 2: Latency of broadcasting an interrupt at the kernel level

appropriate bit mask to its request register3. The work of

generating interrupt packets is completely delegated to the

FPGA interrupt controller.

To test whether the FPGA interrupt controller actually

delivers multiple interrupts in parallel, we have performed the

following experiment: A core sends an interrupt to all cores

(including itself), by issuing two instructions which write a

mask of ”1”-s to its request register on the FPGA. Then, the

core measures the time until it receives its own interrupt. The

results, given in Figure 2a, indicate a significant difference

in latency observed by different cores, ranging from about

2000 to almost 6000 core cycles (cf. VI-A for setup details).

Further experiments have confirmed that this difference grows

as a function of the number of cores that the interrupt is sent

to – it is barely noticeable for less than 20 cores, but then

starts to increase rapidly.

The experiment presented above could lead us to the

conclusion that parallel notification using interrupts scales

poorly, but further investigation explains this result. Namely,

upon receiving an interrupt, there is a fixed set of steps a

core should perform. This includes reading from the status

register, to determine the sender, and resetting the interrupt

by writing to the reset register. Since all the registers related

to interrupt handling are on the FPGA, access to them is

handled sequentially. When an interrupt is sent to many cores

at once, they all try to access their interrupt status register at

the same time, but their requests contend and are handled one

after another, which explains the observed performance loss.

We believe that a proper on-chip implementation of interrupt

registers would eliminate this problem, since they could be

accessed in parallel. To confirm that the reason for bad scaling

of the interrupt mechanism is contention on the FPGA, we

have repeated the same experiment, but this time deliberately

avoiding the FPGA registers, except on the sending core. In

Figure 2b we see that the times measured across the cores are

very similar and close to 2000 core cycles. Slight differences

in latency are easy to explain. Namely, the FPGA is connected

to the mesh via the router between tiles (2,0) and (3,0) (cf.

Figure 1), so the round-trip time to the FPGA is shorter for

3The upper limit of 32 is merely a consequence of the 32-bit memory word
on the P54C

cores closer to this router. Next, it takes slightly more time for

cores 32 to 47 to receive their interrupt. This is because, as

already described, it is possible to send at most 32 interrupts

by issuing a single instruction. Therefore, when broadcasting

an interrupt, a core first broadcasts to cores 0 to 31 in the

first instruction, and then to the other cores, which results in

slightly higher latency.

Another set of experiments, as well as comparisons with

results of other authors [12], confirmed that the latencies

presented in Figure 2b are practically indistinguishable from

the latency of sending point-to-point interrupts (about 2000

cycles). This implies that the cost of notification using inter-

rupts is practically constant with respect to the number of cores

notified. However, as we have described, sequential access to

the off-chip registers for interrupt handling slows down the

whole process in the current implementation on the SCC.

Still, from Figure 2a we can see that even with this effect,

broadcasting an interrupt to the 48 cores is only about 3 times

more expensive than sending a point-to-point interrupt, making

this mechanism interesting for use in group communication.

B. OC-Bcast Based on Interrupts

Now we describe how the SCC interrupt hardware presented

above can be used to perform asynchronous broadcast. As the

base, we used OC-bcast [10], an optimized on-chip broadcast

algorithm built on top of one-sided put and get primitives.

The principle of OC-bcast is the following: a broadcast k-

ary tree is formed, with the sender as its root. The sender puts

the message in its MPB and notifies its k children, which then

copy the message to their own MPBs in parallel and notify the

parent that it can free its MPB. The children repeat this process

with their children, until all the cores have got the message.

The value of k is configurable. Obviously, higher values of k

offer more parallelism, but they can lead to contention on the

MPB, which can cancel out the gain obtained by the increase

in parallelism. This is not a problem for the SCC itself (OC-

Bcast with k = 47 even gives the lowest latency for some

message sizes), but can be an issue at large scale.

However, in its original flavor, OC-Bcast uses MPB polling

for notification. Each child has a flag in its MPB that it polls

when waiting for a message. This means that the children

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Asynchronous Broadcast on the Intel SCC using Interrupts 26

cannot be notified in parallel about the existence of a message,

since the parent can write only one flag at a time, which

was mitigated to some extent by using a special notification

tree. This problem can be addressed by parallel interrupts. The

modified algorithm can be summarized as follows:

1) The sender puts the message from its private memory to

its MPB and sends a parallel interrupt to all its children.

Then it waits until all the children have received the

message.

2) Upon receiving the interrupt, a core copies the data from

the parent’s MPB to its own MPB and acknowledges

the reception of the message to the parent by setting the

corresponding flag in the parent’s MPB.

3) The core then sends a parallel interrupt to notify its own

children (if any) and then copies the message from the

MPB to its private memory. Then it waits until all its

children have received the message.

4) When all core’s children have acknowledged the recep-

tion, the core can make its MPB available for other

actions (possibly a new message).

C. Implementation

To implement the modified OC-Bcast, we have developed

a userspace library for interrupt handling, following the idea

given in [12]. Namely, a userspace process can register itself

with a special kernel module. Every time an interrupt from

another core is received, the kernel module sends a real-time

UNIX signal to the registered process, which triggers a user-

provided handler. We have opted for real-time signals because

they can be queued if there is more than one signal pending.

This way, we ensure that every interrupt is converted to a

signal and the algorithm can be written entirely in userspace.

A drawback of this approach is a performance loss already

observed in [12], since it increases the end-to-end delay of

sending interrupts. Namely, the numbers presented in Figure

2b show only the latency until the receiver’s kernel handles

the interrupt. To propagate it to a userspace process in the

form of a UNIX signal, a context switch is necessary, which

significantly increases the cost. Nevertheless, we have adopted

this approach for two reasons. Firstly, such an implementation

changes only absolute numbers and does not prevent us from

observing changes in performance resulting from design-level

decisions. The same algorithm could be implemented in the

Linux kernel or directly on bare metal, which completely

avoids UNIX signals and context switching. Secondly, our

library is easy to integrate with RCCE and the accompanying

tools, which makes it convenient for other researchers willing

to use inter-processor interrupts without significant effort.

V. MANAGING CONCURRENT BROADCAST

OC-Bcast was initially designed in the context of SPMD

applications, where a core has to explicitly call the broadcast

function to participate in the collective operation. As a con-

sequence, a core is involved in only one collective operation

at a time. Using interrupts in OC-Bcast allows us to move

to a more general model where broadcast operations can

arbitrarily interleave at one core. In this section, we study

how to efficiently manage this aspect.

The algorithm described in Section IV-B has to be modified

to allow asynchronous broadcast operations issued by different

cores. Indeed, without modifications the algorithm would be

prone to deadlocks. A simple scenario can be used to illustrate

a deadlock situation. Consider two cores c and c′ that try to

broadcast a message concurrently, with c′ being a child of c

in the tree where c is the root and the opposite in the tree

where c′ is the root. Core c′ cannot copy the message that c

is trying to broadcast in its MPB because it is busy with its

own message. Core c′ will be able to free its MPB when it

knows that all its children have copied the message. However

c cannot get the message from c′ either, because it is in exactly

the same situation as c′. There is a deadlock.

To deal with this problem, a simple solution would be to use

a global shared lock to prevent multiple broadcast operations

from being executed concurrently. In this case, the problem

becomes equivalent to broadcast in the SPMD model and no

further modifications to OC-Bcast are necessary. However, this

would limit the level of parallelism and prevent us from fully

using the chip resources.

To avoid deadlocks without limiting the parallelism, we

adopt the following solution: If the MPB of some core c is

occupied when a notification about a new message arrives,

c copies the message directly to its off-chip private memory.

Additionally, if c has to forward the message, it is added to a

queue of messages that c has to forward. Eventually, when the

MPB is available again, c removes messages from the queue

and forwards them to the children.

Algorithm 1 presents the pseudo-code of this solution for

a core c. In the presented algorithm, we do not put any

requirements on the tree structure. We only assume that a

predefined deterministic algorithm is used to compute the

broadcast trees. Thus, during the initialization, each core is

able to compute the tree that will be used by each source

(line 7). Furthermore, if a message is larger than the available

MPB, it is divided into multiple chunks.

For the sake of simplicity, the pseudo-code is not

fully detailed. It only illustrates the important modifi-

cations that are made to avoid deadlocks. We define

three functions as an interface to the algorithm described

in Section IV: OCBcast send chunk(chunk, Tree) initi-

ates the sending of the chunk chunk in the tree Tree;

OCBcast receive chunk(chunk, buf, src) allows to get

chunk from the MPB of core src in buf , buf being either

the MPB of the caller or a memory region in its off-chip

private memory; OCBcast forward chunk(chunk, Tree)
is used to forward a chunk in the tree Tree. Contrary

to OCBcast send chunk(), OCBcast forward chunk()
assumes that the chunk is already in the MPB of the sender.

In the pseudo-code, a chunk includes not only payload, but

also some meta-data, i.e., the id of the core that broadcasts the

message (chunk.root) and the id of the message the chunk is

part of (chunk.msgID).

As mentioned before, we allow a core to receive chunks

directly in its off-chip private memory when its MPB is busy

with another chunk that is being sent (line 17). Thus, the

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Asynchronous Broadcast on the Intel SCC using Interrupts 27

Algorithm 1 Asynchronous broadcast algorithm (code for core

c)

Local Variables:

1: MPBc {MPB of core c}
2: MPBStatusc ← available {Status of the MPB}
3: chunkQueuec ← ∅ {Queue of chunks to forward}
4: set of trees Tree1, T ree2, ..., T reen {Treec is the tree with c as root}

5: initialization:
6: define deliver chunk() as the IPI handler
7: for coreID ∈ 0...n do compute TreecoreID

8: broadcast(msg)
9: for all chunk of msg do

10: broadcast chunk(chunk)

11: broadcast chunk(chunk)
12: MPBStatusc ← busy

13: OCBcast send chunk(chunk, Treec)

14: MPBStatusc ← available

15: flush queue()

16: deliver chunk(chunk, source)
17: if chunkQueuec is empty ∧ MPBStatusc = available then

18: MPBStatusc ← busy

19: OCBcast receive chunk(chunk, MPBc, source)
20: if c has children in Treechunk.root then

21: OCBcast forward chunk(chunk, Treechunk.root)
22: MPBStatusc ← available

23: flush queue()

24: else
25: let item be the memory allocated to receive the chunk
26: OCBcast receive chunk(chunk, item, source)
27: if c has children in Treechunk.root then
28: enqueue item in chunkQueuec
29: if msg corresponding to chunk.msgID is complete then
30: deliver msg to the application

31: flush queue()
32: while chunkQueuec is not empty do

33: dequeue chunk from chunkQueuec
34: MPBStatusc ← busy

35: OCBcast send chunk(chunk, Treechunk.root)

36: MPBStatusc ← available

sender can free its MPB. The chunks that the core is supposed

to forward to other cores, are stored in a queue (lines 25-28),

that is flushed when the MPB becomes available (line 15 and

line 23). Note that to ensure fairness, if the MPB is free at the

time the core receives an interrupt but some chunks are already

queued to be forwarded (line 17), the chunk is received in the

private memory and added to the queue. Thus, a chunk cannot

overtake another chunk that has been in the queue already for

some time. However, if no chunk is in the queue and the MPB

is available, the chunk is first copied in the MPB to limit the

number of data movements between the MPB and the private

memory that could harm the performance of the broadcast

operation [10].

VI. EVALUATION

In this section we evaluate our broadcast algorithm. After

describing the system parameters used for our experiments,

we measure the latency of the presented broadcast algorithm

and compare it with that of OC-Bcast. Then we show how the

algorithm behaves with different values of k and with more

cores broadcasting at the same time.

Message Size
(Number of cache lines)

1 32 64 128

OC-Bcast 44.0 µs 76.1 µs 112.6 µs 189.8 µs

Asynchronous broadcast 40.2 µs 75.5 µs 118 µs 196.7 µs

TABLE I: Comparing the latency of synchronous broadcast

(OC-Bcast) and asynchronous broadcast for different

message sizes.

A. Setup

We have performed the experiments under the default

SCC settings: 533 MHz tile frequency, 800 MHz mesh and

DRAM frequency and standard LUT entries. We use sccKit

1.4.1.3, running a custom version of sccLinux, based on Linux

2.6.32.24-generic. The kernel of every core runs the special

kernel module for converting interrupts to UNIX signals,

described in Section IV.

B. Experiments

The first experiment measures the latency when messages of

different sizes are broadcast from one core (core 0 in this case).

We fix the value of k to 47 (see Section IV), which enables

us to obtain the highest level of parallelism when sending the

interrupts and reading from the MPB. Due to space constraints,

we do not consider other values of k in this experiment.

Table I compares the obtained latency with that of OC-

Bcast4. The two algorithms have very similar latencies with

these settings. This confirms that the interrupt hardware on

the SCC is useful for designing asynchronous collective op-

erations, even though its latency is high for point-to-point

communication, as pointed out in other studies [9], [12].

It is interesting to notice that the latency of the asynchronous

broadcast algorithm increases faster as a function of the mes-

sage size. This is because of a higher level of MPB contention.

More specifically, it is pointed out in [10] that too much

parallelism in accessing the MPB can impair performance. In

OC-Bcast, notifications are propagated using a binary tree,

which results in less overlapping accesses to the MPB of the

sender than when a parallel interrupt is sent. This shows that

extremely high values of k might be inappropriate at large

scale because of the contention effect.

In the second experiment, we change the output degree of

the broadcast tree (k) and the number of sources, that is,

the number of cores broadcasting in parallel. Each source

repeatedly broadcasts a 4 KB (128 cache lines) message from

its private memory, without waiting for the other cores to

receive the message, thus creating a message pipeline. This

way we observe the throughput of the system, that is, the

amount of data broadcast in a unit of time.

The result of this experiment is given in Figure 3. With a

single source, the throughput decreases as k increases. The

reason is the cost of polling flags (there are at most k flags to

poll). To wait for an acknowledgment from its children, each

parent has to poll k flags in its MPB and reset them afterwards.

The variations in the performance can be explained by the fact

4The version of OC-Bcast considered here is slightly optimized with respect
to the original paper which presents it [10].

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Asynchronous Broadcast on the Intel SCC using Interrupts 28

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45

S
y
st

em
 T

h
ro

u
g
h
p
u
t

in
 M

B
/s

Value of k

1 source
5 sources

48 sources

Fig. 3: Throughput of the asynchronous broadcast algorithm

for different values of k and different number of concurrent

sources

that a core does not control when it will be signaled. In fact,

when a core is about to forward a received message to the

children, it can get interrupted to receive another message.

If this happens, the children have to wait, which introduces

sporadic performance drops.

With more than one source, the throughput increases. There

are two possible reasons for this. The first one is that when

a single node is broadcasting messages, the other cores are

sometimes idle waiting for the next message to be available.

With multiple sources, this idle time can be used to receive

messages from other sources. The second reason is that if a

core receives interrupts in different trees, it can often have

more than one interrupt waiting to be serviced by the kernel.

When this happens, all the pending interrupts will be serviced

(converted to signals) one after another, and only then will the

execution switch back to the userspace process. This actually

means that there will not be one context switch per interrupt,

but significantly less, resulting in performance increase.

We can also see that the difference in throughput when

broadcasting from 5 and 48 sources is not significant. This

is because the system gets saturated. Based on the model

presented in [10], the maximum bandwidth when copying data

from a core’s MPB to the off-chip memory is about 55 MB/s

(assuming cache line prefetching implemented in software as

in iRCCE [4]). Our algorithm achieves 68% of this maximum

bandwidth.

When it comes to the choice of k with multiple sources, the

trend is opposite to the single-source case. This is especially

visible for smaller values of k, where each increase by 1 evi-

dently increases the throughput. To understand this, recall that

the resources of every core are effectively used in this case,

in the sense that there is no idle time. However, performing

a broadcast operation consumes more resources on different

cores if k is lower since there are more interrupts to send.

Thus, the cores manage to do less useful work.

C. Discussion

The presented experiments show two important properties of

our asynchronous broadcast algorithm. First, in spite of being

built on more general assumptions, its latency is comparable

with that of the most efficient synchronous broadcast algo-

rithm currently available for the SCC. Second, the algorithm

manages concurrent broadcasts efficiently, even when all cores

are broadcasting at the same time.

VII. CONCLUSION

In this work we have presented a novel asynchronous

broadcast algorithm for the Intel SCC, which is based on

RMA and parallel IPI. Our algorithm is derived from OC-

Bcast, an optimized synchronous broadcast algorithm for the

SCC. The evaluation of our asynchronous broadcast primitive

demonstrates that the algorithm manages to efficiently deal

with concurrent broadcast operations to achieve low latency

and high system throughput. Comparisons with existing syn-

chronous broadcast primitives also show that parallel IPI are of

general interest to implement efficient group communications

on many-core chips.

As future work, we plan to study the use of IPI and on-chip

RMA operations for other group communication primitives on

the Intel SCC. Especially, we will focus on group communica-

tion primitives that provide ordering properties, to implement

replicated data structures.

REFERENCES

[1] Shekhar Borkar. Thousand core chips: a technology perspective. In
Proceedings of the 44th annual Design Automation Conference, DAC
’07, pages 746–749, New York, NY, USA, 2007. ACM.

[2] I. C. Urena, M. Riepen, and M. Konow. RCKMPI–Lightweight MPI
Implementation for Intel’s Single-chip Cloud Computer (SCC). Recent

Advances in the Message Passing Interface, pages 208–217, 2011.
[3] E. Chan. RCCE comm: a collective communication library for the Intel

Single-chip Cloud Computer. http://communities.intel.com/docs/DOC-
5663, 2010.

[4] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and
improvements of programming models for the Intel SCC many-core
processor. In High Performance Computing and Simulation (HPCS),

2011 International Conference on, pages 525 –532, july 2011.
[5] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer com-

munication switching technique. Computer Networks (1976), 3(4):267–
286, 1979.

[6] S. Lankes, P. Reble, C. Clauss, and O. Sinnen. The Path to MetalSVM:
Shared Virtual Memory for the SCC. In The 4th symposium of the

Many-core Applications Research Community (MARC), page 7, 2011.
[7] N. Linnenbank, F. Reader, A.S. Tanenbaum, and D. Vogt.

Implementing MINIX on the Single Chip Cloud Computer.
www.nieklinnenbank.nl/download/scc.pdf, 2011.

[8] T. Mattson and R. Van Der Wijngaart. RCCE: a Small Library for
Many-Core Communication. Intel Corporation, May, 2010.

[9] S. Peter, A. Schpbach, D. Menzi, and T. Roscoe. Early experience with
the Barrelfish OS and the Single-Chip Cloud Computer. In 3rd MARC

Symposium, Fraunhofer IOSB, Ettlingen, Germany, 2011.
[10] Darko Petrović, Omid Shahmirzadi, Thomas Ropars, and André Schiper.

High-Performance RMA-Based Broadcast on the Intel SCC. In 24th

ACM Symposium on Parallelism in Algorithms and Architectures, Pitts-
burg, PA, USA, June 2012. to appear.

[11] R.F. van der Wijngaart, T.G. Mattson, and W. Haas. Light-weight
communications on Intel’s single-chip cloud computer processor. ACM

SIGOPS Operating Systems Review, 45(1):73–83, 2011.
[12] M. Verstraaten, C. Grelck, M.W. van Tol, R. Bakker, and C.R. Jesshope.

Mapping distributed S-Net on to the 48-core Intel SCC processor. In
3rd MARC Symposium, Fraunhofer IOSB, Ettlingen, Germany, 2011.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Asynchronous Broadcast on the Intel SCC using Interrupts 29

	Introduction
	The Intel SCC
	Related Work
	Broadcast Algorithms
	Communication Based on Interrupts

	Broadcast Based on Interrupts
	Interrupt Hardware on the SCC
	OC-Bcast Based on Interrupts
	Implementation

	Managing Concurrent Broadcast
	Evaluation
	Setup
	Experiments
	Discussion

	Conclusion
	References

