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Abstract—One-Sided Communication functions have been de-
fined in the Message Passing Interface standard since version
2. Modern implementations of the interface, such as MPICH2,
support One-Sided Communication. This paper presents insights
to the MPICH2 architecture and the implementation of One-
Sided Communication in its low-level CH3 communication mod-
ules. Further, issues for using MPI’s One-Sided Communication
features on the Single-Chip Cloud Computer are presented and
resolved. The paper also presents a comparative scalability study
of an example application both on the SCC and on an InfiniBand
cluster.

I. INTRODUCTION

The Message Passing Interface (MPI) [1] is a com-

monly used programming API to implement parallel appli-

cations. Version 2 of the MPI Standard [2] specifies syn-

chronous, asynchronous, one-sided, and two-sided commu-

nication, where one-sided operations are defined as being

asynchronous by default.

MPI two-sided communication calls are due to the classic

send-recv scheme where each send call must have a match-

ing receive call at the destination. In contrast, One-Sided

Communication (OSC) defines a process interaction mech-

anism where only one process specifies the communication

parameters. The other process (called target) only has to

provide the memory area (called window) and is not required

to call any communication routine.

MPI-2-OSC separates communication from synchronization

and defines so called synchronization epochs. An arbitrary

number of communication calls can be synchronized within

a single epoch. This bundling reduces the need to make

synchronization calls for each transfer. MPI-2 provides several

API calls to open and close such an epoch. Figure 1 shows

some pseudo code of the typical use of one sided and two

sided communication.

The remainder of the paper is organized as follows: First,

an overview of the architecture of MPICH2 and the im-

plementation of MPI’s OSC method in the low-level CH3

devices is presented. Based on this discussion, issues in the

MPI implementation for the SCC are revealed and fixed. The

corrected implementation is then used in Section V to compare

the scaling of an example CFD application both on the SCC

using one- and two-sided communication as well as on an

InfiniBand cluster. The conclusion and an overview of related

work constitute the end of the paper.

Node A Node B

One-sided example:

MPI_Win_Create MPI_Win_Create

MPI_Win_Post MPI_Win_Start

<computation> <computation>

MPI_Put

<computation>

MPI_Win_Wait MPI_Win_Complete

Two-sided example:

<computation>

MPI_Irecv MPI_Isend

<computation> <computation>

MPI_Wait MPI_Wait

Fig. 1. Pseudo code examples of unidirectional asynchronous data exchange
via one-sided and two-sided communication.

II. MPICH2 ARCHITECTURE

MPICH2 is a portable MPI implementation [3]. Its modular

architecture is shown in Figure 2. The methods defined by

the MPI standard are implemented on top of third generation

of the abstract device interface (ADI3) [4]. This layer wraps

around the message transportation device of the target platform

and thereby provides hardware-independence. A downside of

this interface is the huge amount of functions that have to

be implemented for new platforms. To facilitate the adaption

on new hardware platforms the CH3 device was introduced.

This device implements the ADI3 and presents a much sim-

pler interface to so-called channels. The channels implement

the CH3 interface and are responsible to receive and send

messages from resp. to the hardware.

Within an CH3 channel implementation several require-

ments and conventions from the higher layers have to be

considered. First, all MPI processes are considered to be

connected by virtual connections which do not have to man-

ifest in physical connections. Device specific information for

a connection between two processes, a socket e.g., can be

attached to the according virtual connection. If a message is

going the be sent to a remote process, the upper layers pass

a request to the CH3 channel which activates the according

virtual connection. If it is not possible to satisfy the request
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Fig. 2. MPICH2’s layered architecture

immediately, that is the message was not transferred at all or

only a partial transfer was possible, the channel is responsible

to try a retransmission of the unsent part at a later time. This

can be done by adding the request to a queue associated to

the virtual connection.

To send outstanding messages, the CH3 device invokes a

so-called progress engine which must be implemented by the

channel. The implementation checks whether requests have

been enqueued and if so, it tries to send these messages or

even fragments. With the invocation of the progress engine,

the channel must also check for new messages that have been

received by the hardware.

If the channel has detected a new message, it asks upper

MPICH2 layers to create a new receive request based on

the received data. As soon as more data for this request is

received by the channel, it must check whether the request

has been completed by the incoming data. To do so, call-

back functions are invoked. Besides a default completion call-

back function, a request may provide its specific routine that

has to be called by the channel. This notification scheme also

applies to the requests created when sending messages. Due

to the callback mechanism, the decision whether the request

has been completed successfully is not up to the channel itself,

but to the higher MPICH2 layers. The channel implementation

must therefore be aware of changes in the send resp. receive

requests.

III. OSC WITH CH3 DEVICES

MPICH2 does not require a CH3 channel to implement

any specific function to support one-sided communication.

Instead, the only requirements for a fully-functional channel

is to implement some book-keeping functions, four methods

to start sending a new message resp. processing a send request

and one function that represents the progress engine. As the

latter one is responsible for receiving new messages, there are

no explicit receive methods.

With these minimal requirements, a CH3 channel is able to

process send and receive requests issued by point-to-point op-

erations like MPI SEND and MPI RECV as well as collective

routines such as MPI BCAST or MPI GATHER. Moreover,

the functions to be implemented by a channel also enable

the usage of one-sided communication. This is made possible

by the CH3 device which provides an implementation for

the OSC-related functions of MPI resp. the ADI3 layer. This

implementation is based on point-to-point operations. Thus, a

channel device is not required to implement OSC-functions,

since the CH3 device breaks the according calls down to an

appropriate call sequence of point-to-point primitives.

The implementation of the OSC functions in the CH3

device basically relies on a queue. The operations is-

sued by communication calls like MPI PUT, MPI GET

and MPI ACCUMULATE and initial locking methods like

MPI WIN LOCK are stored in the queue. By calling a

final synchronization method, like MPI WIN UNLOCK, the

enqueued operations are sent to the target process by the same

mechanism used for point-to-point communication.

The synchronization calls use this mechanism as well. For

locking a window with MPI WIN LOCK, for example, a

request to lock the window is sent to the target process. After

that, the progress engine is invoked until a message is received

which grants access to the lock.

To address hardware that offers support for OSC, e.g. by

remote direct memory access (RDMA), the CH3 device allows

channels to overwrite the default OSC implementation. This

flexibility is achieved through function pointers within the

internal structure that represents a remote memory access

(RMA) window. During the window creation, any of these

pointers can be overwritten by the CH3 channel implementa-

tion. Thereby, MPICH2 can be instructed to use the channel’s

implementation of OSC synchronization or communication

calls.

IV. OSC SUPPORT ON THE SCC

MPICH2 had been ported to the Single-Chip Cloud

Computer (SCC) by implementing three different CH3 chan-

nels. The port is named RCKMPI and is based on MPICH2

1.2.1p [5]. All of the SCC-specific CH3 channels use shared

memory which is either backed by the message passing buffer

(MPB), the external memory or both. For the latter case,

the memory used for the messages is switched at a constant

threshold. Although the memory used for message transport

differs, the implementation is basically similar: The memory

is partitioned into sections such as each process resp. core

offers dedicated write areas for every other MPI process.

Regarding bandwidth, the channel that uses the MPB delivers

best performance.

As all channels implement the functions required by the

CH3 device, all communication methods are expected to

work. On the one hand, this is actually true for point-to-point

operations. On the other hand, one-sided communication is

not usable with the original RCKMPI implementation. For

instance, the SCC-specific CH3 channels only cover some

basic cases of the MPICH2 test suite. That way, RCKMPI

applications are likely to crash if this communication paradigm

is used.

There are several reasons for this issue. First, the RCKMPI

source code always calls the default message completion

handler defined by MPICH2. Thus, RCKMPI does not ac-

count the case where a special completion call-back function

has been associated with the send request. As those call-

backs are only defined when OSC-related messages should
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be transferred, applications based on RCKMPI will show

unpredictable behaviour when using OSC.

Even if the appropriate call-back is invoked on message

completion, the channel implementation is not aware of re-

quest modifications caused by upper MPICH2 layers. These

modifications are mainly applied when OSC messages are

transferred. As a consequence, even when invoking the com-

pletion method, OSC applications are again likely to crash.

Therefore, the following implementation issues were fixed

for the MPB CH3 channel implementation of RCKMPI: (a)

Invoke the message completion call-back function when send

and receive requests are assumed to be completed. (b) Check

that the call-back handler confirms the completion of the re-

quest. (c) If the call-back signals an incomplete request, further

process the unfinished request. (d) On message reception, copy

its payload back to the according user buffers. The fixed source

code is available to the MARC community [6].

V. EXPERIMENTAL RESULTS

Based on this work, a CFD-like cellular automaton [7] was

used to compare the applications scalability on the SCC with

an InfiniBand cluster. The cellular automaton is a 9-point-

stencil computation. We tested two different versions of the

application: one uses OSC and the other two-sided routines

from the MPI standard. The programs use the communication

patterns shown in Figure 1. The communication is performed

after each time step: every MPI process has to exchange

8 KB of data with its two neighbor processes. The according

messages are sent before the process starts to calculate the

inner values of its field fraction to gain optimal computation-

communication-overlap.

In the experiment, the application was executed with an

increasing number of nodes while the size of the computed

two-dimensional field was fixed. Since there are only 28 nodes

in the InfiniBand cluster, the scaling was only analyzed up to

a number of 28 nodes for both systems. Each node of both

the SCC and the InfiniBand cluster executed a single MPI

process. The runtime of the sequential version is divided by

the runtime of parallel program running on n processors to

obtain the speedup.

A. Experimental Environment

The InfiniBand cluster consists of 28 machines equipped

with two Intel Xeon 5520 CPUs each providing four cores

(Hyperthreading disabled). On each node, 48 GB of DDR3

main memory are installed. The InfiniBand connection is based

on 20 Gb/s Mellanox MHGH19-XTC ConnectXZ cards and a

Mellanox MTS3600R-1UNC switch. Further, OpenMPI 1.4.3

was used as an MPI-2 implementation that supports Infini-

Band. During the experiments, OpenMPI’s parameters were

choosen such that OSC functions use InfiniBand’s RDMA

features. It is therefore not expected that the OSC application

on the SCC scales better than on the InfiniBand cluster as

there is no RDMA support in RCKMPI.

On the SCC, a modified Linux 2.6.38.3 kernel was used

in conjunction with Busybox. For compiling the application

and RCKMPI, GCC version 4.5.2 has been chosen. On the
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Fig. 3. Speedup of the CFD application compared to its sequential version
on the SCC and the InfiniBand Cluster

InfiniBand cluster, Scientific Linux with Kernel 2.6.18 and

GCC 4.3.2 is installed.

B. Results on SCC

The obtained results are presented in Figure 3. The OSC

version on the SCC shows linear scaling, but it is outperformed

by the two-sided communication version on the SCC. The

speedup values are about one third smaller than the two other

versions and only one half of the optimal linear speedup.

The scaling of both the two-sided and the OSC version

of the application can be attributed to the low latency com-

munication network and the RCKMPI CH3 channel imple-

mentation. A downside of this implementation is the inherited

handling of OSC by the CH3 device implementation. That is

queueing all communication actions until a final synchroniza-

tion call is issued (see Section III).

By processing the queue entries messages are sent for

locking the window, transferring the data and finally unlocking

the window. Thus, at least three MPI message are sent to

the target process in a synchronous manner. Compared to the

single non-blocking communication call (MPI Isend) that is

used in the point-to-point version of the application two addi-

tional messages are required. On the SCC, the two additional

messages are sent with an handshake protocol between the

communication processes, whereas on the InfiniBand cluster

RDMA does not require any participation of the target process.

C. Comparison with InfiniBand Cluster

The OSC version running on the InfiniBand cluster reached

approximately linear speedup (see Figure 3). This shows

the benefit of an RDMA capable network which allows the

implementation of communication libraries which support

computation-communication-overlap.

VI. RELATED WORK

The authors of [8] report up to 30 % runtime improvement

for an atmospheric simulation, when using MPI-2 one-sided
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communication in combination with OpenMP instead of point-

to-point communication. It is not clear if the improvement is

due to the use of OpenMP or one-sided communication or the

combination.

Different implementation options for MPI2-OSC were anal-

ysed in the literature regarding the different capabilities of the

underlying networks [9]–[14]. While one would expect inef-

ficiencies of OSC over transports without support for remote

direct memory access (RDMA), interconnects like InfiniBand

are expected to offer similar or better performance for OSC

than for two-sided communication. However, asynchronous

two-sided communication still offers the best performance if

only a few number of communications are synchronised with

one epoch [9], [10], [15].

In [14] the authors observe that one-sided communication

performs much worse than two-sided communication for short

and medium-sized messages. The reason is spotted in the

overhead of synchronization functions.

The same observation is also made in [15], [16]. A compari-

son of two- and one-sided MPI2 communication over Gigabit

Ethernet [15] shows that the design of the MPI2-OSC API

is the key performance problem. The design of MPI2-OSC

was compared with another OSC API called NEON in [16]

on top of InfiniBand networks. While InfiniBand is an ideal

network for computation-communication-overlap, the MPI2-

OSC implementation again suffered from the additional over-

head and was outperformed by NEON. The authors show that

applications which use MPI-2-OSC suffer from the overhead

of the additional synchronisation message that has to be sent

in order to complete a remote memory access.

Currently, the MPI community discusses the MPI-3 stan-

dard [17]. The One-Sided communication interface proposed

by the MPI-3 RMA Working group retains all of the calls from

MPI-2, but adds new additional calls for window creation, syn-

chronisation, and communication. Some of the proposed new

features are implemented and investigated in [18]. Especially,

the new Request-Based operations seem to be promising to

achieve optimal computation-communication-overlap.

VII. CONCLUSION AND FUTURE WORK

In this paper, we gave insights on the implementation of

One-Sided Communication in MPICH2 which is the base

for the MPI implementation of the SCC – RCKMPI. Based

on this insights, we identified missing functionalities within

that implementation. These issues were fixed and the revised

source code was made available to MARC members.

Further, the scalability of a CFD-like application based

on the OSC implementation of RCKMPI was analyzed and

compared to both a two-sided version on the SCC and a one-

sided version on an InfiniBand cluster. It was revealed that all

variants scale in a linear fashion, while the two-sided version

on the SCC outperforms the two others. Moreover, the OSC

variant shows poor scaling behavior on the SCC. On the other

hand, the good scaling of the OSC version on the Infini-

Band cluster is obviously due to the opportunity to use the

RDMA features. This effect has already been observed when

comparing the MPICH2 implementation with the lightweight

OSC API called NEON both on Gigabit Ethernet [15] and

InfiniBand installations [16].

Future work goes into two directions: First, the scaling of

the OSC features of RCKMPI can be improved. As the SCC

offers hardware support for defining and accessing shared

memory areas, a MPI window for OSC might be defined

with help of the hardware features: A window may reside

in a shared memory which is backed either by the MPB or

the external DDR3 main memory. Further, accesses of a MPI

process resp. core could be supported by dedicated cores. For

example one core per tile could be responsible for performing

RMA operations while the other handles computational tasks

of an application [19]. That way, both RMA and overlap of

communication and computation would be made possible.

Second, it would be interesting to get experiences with

applications using the Global Arrays toolkit on the SCC.

This framework offers a ”virtual shared memory programming

interface.” Moreover, the implementation is based on message

passing libraries, such as MPICH2 and requires OSC features.

Especially, application from the field of quantum chemistry are

heavily using frameworks like Global Arrays [20].
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