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Modeling the growth of stylolites in sedimentary rocks.

Alexandra Rolland1,2, Renaud Toussaint1, Patrick Baud1, Jean Schmittbuhl1,

Nathalie Conil2, Daniel Koehn3, François Renard4,5, Jean-Pierre Gratier4

Abstract. Stylolites are ubiquitous pressure-solution seams found in sedimentary rocks.
Their morphology is shown to follow two self-affine regimes: analyzing the scaling prop-
erties of their height over their average direction shows that at small scale, they are self-
affine surfaces with a Hurst exponent around 1, and at large scale, they follow another
self-affine scaling with Hurst exponent around 0.5. In the present paper we show the-
oretically the influence of the main principal stress and the local geometry of the sty-
lolitic interface on the dissolution reaction rate. We compute how it is affected by the
deviation between the principal stress axis, and the local interface between the rock and
the soft material in the stylolite. The free energy entering in the dissolution reaction ki-
netics is expressed from the surface energy term, and via integration from the stress per-
turbations due to these local misalignments.The resulting model shows the interface evo-
lution at different stress conditions. In the stylolitic case, i.e. when the main principal
stress is normal to the interface, two different stabilizing terms dominate at small and
large scales which are linked respectively to the surface energy and to the elastic inter-
actions. Integrating the presence of small scale heterogeneities related to the rock prop-
erties of the grains in the model leads to the formulation of a Langevin equation pre-
dicting the dynamic evolution of the surface. This equation leads to saturated surfaces
obeying the two observed scaling laws. Analytical and numerical analysis of this surface
evolution model shows that the cross-over length separating both scaling regimes depends
directly on the applied far-field stress magnitude. This method gives the basis for the
development of a paleostress magnitude marker. We apply the computation of this marker,
i.e. the morphological analysis, on a stylolite found in the Dogger limestone layer located
in the neighborhood of the Andra Underground Research Laboratory at Bure (Eastern
France). The results are consistent with the two scaling regimes expected, and the prac-
tical determination of the major principal paleostress, from the estimation of a cross-
over length, is illustrated on this example.

1. Introduction

Stylolites are undulated surfaces resulting from localized
stress-driven dissolution of some minerals of the rock. Insol-
uble minerals as clay particles, oxides and organic matters
are concentrated in the interface and make stylolites visible.
Bathurst [1987] describes stylolites as serrated interfaces
with an amplitude greater than the diameter of the tran-
sected grains giving them a sutured appearance. He makes
a difference with dissolution seams or ’flaser’ which are
smooth, undulating, lacking in sutures and fitting around
grains instead of cutting through them. Stylolites are most
often found in carbonates [Stockdale, 1922, 1926, 1936, 1943;
Dunnington, 1954; Bushinskiy , 1961; Park and Schot , 1968;
Bathurst , 1971; Buxton and Sibley , 1981; Railsback , 1993]
but also in sandstones [Young , 1945; Heald , 1955], shales
[Wright and Platt , 1982; Rutter , 1983], cherts [Bushinskiy ,
1961; Iijima, 1979; Cox and Whitford-Stark , 1987] and some-
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times in coal [Stutzer , 1940]. Stylolites are divided in two
groups according (i) to their orientation with respect to the
bedding of the surrounding rock or (ii) to the orientation
of their ’tooth’ with respect to the mean plane of the stylo-
lite. The first group shows two types of orientation: stylo-
lites parallel to the bedding plane, designated as sedimen-
tary, and formed under the lithostatic pressure and stylolites
oblique or even perpendicular to the bedding, designated as
tectonic, and depending on the maximum tectonic stress.
The tooth orientation is in both cases an indicator of the
direction of the incremental displacement which is parallel
to the major principal stress in co-axial deformation. The
stylolites of the second group are called ’slickolites’ [Ebner
et al., 2010a]. They develop when there is a preferential
plane for their growth (bedding or fracture). In this case, the
stress is not perpendicular to the mean plane of the stylolite
[Stockdale, 1922], but the edges of the tooth are subparallel
to the maximum principal stress axis. Various studies [Park
and Schot , 1968; Renard et al., 1997, 2001; André, 2003;
Aharonov and Katsman, 2009] suggest that many parame-
ters play an important role in the stylolite growth such as
confining pressure, deviatoric stress, fluid pressure, tempera-
ture, shape and assemblage of grains, anisotropy of minerals,
rates of dissolution and presence of clay (acting potentially
as catalyst for the dissolution).

Only few papers report experiments about stylolites de-
velopment. Indeed, they are inherently difficult to repro-
duce as the kinetics of pressure-solution processes is very
slow [Rutter , 1976]. Experiments were conducted either on
aggregates [Cox and Paterson, 1991; Den Brok and Morel ,
2001; Renard et al., 2001; Gratier et al., 2005] or with in-
denter techniques [Gratier and Guiguet , 1986; Gratier , 1993;
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Gratier et al., 2004; Dysthe et al., 2002, 2003; Karcz et al.,
2008]. Dysthe et al. [2002, 2003] used an indenter tech-
nique where a sodium chloride crystal was kept in contact
with a piston at given pressure and temperature for sev-
eral months. A fluid at compositional equilibrium with the
crystal is trapped between the sample and the indenter. The
contact evolved due to pressure-solution during the indenta-
tion. A power law time dependence with an exponent value
of 1/3 as in Andrade creep law was shown to control the
indentation rate. The observed microstructures in the con-
tact seem to be different from stylolites. Karcz et al. [2008]
loaded a halite cone-shaped indenter against a flat silicate
surface immersed in an undersaturated brine. Using confo-
cal microscopy techniques, they observed that the evolution
of the system is dictated by an interaction between two de-
formation mechanisms: undercutting dissolution reducing
the area of the contact and plastic flow increasing it. Re-
cently, similar experiments were carried out with a brine at
chemical equilibrium with the crystal [Laronne Ben-Itzhak ,
2011; Laronne Ben-Itzhak et al., 2012a]. Emerging evolving
islands and channels were observed at the contact. Such is-
lands and channels structures were previously observed at
the contacts during experiments on aggregates [Schutjens
and Spiers, 1999; Den Brok and Spiers, 1991]. Other exper-
iments on aggregates were performed byGratier et al. [2005].
They loaded layers of fine quartz sand grains. The experi-
ments lasted several months at 350◦C, under 50 MPa of dif-
ferential stress and in presence of an aqueous silica solution.
Microstylolites were created for the first time in the labo-
ratory at the stressed contacts between the quartz grains.
An interesting observation is that the stylolites peaks are
always located in front of dislocation pits. Consequently,
stylolites appear to be localized by the heterogeneities of
the mineral. Den Brok and Morel [2001] loaded elastically
K-alum crystals at a controled temperature and in a sat-
urated K-alum solution. A hole was drilled in the middle
of the crystals to provide an elastic strain gradient. They
observed macroscopic etch grooves on the originally smooth
free surfaces of the soluble crystals which disappear when
removing the stress. Koehn et al. [2004] stressed crystals of
NaClO3 in a NaClO3 solution at room temperature. Paral-
lel dissolution grooves developed on their free surface in a 1D
geometry to a 2D geometry with the coarsening of the pat-
tern. The pressure-solution process slowed down or stopped
progressively with the increasing concentration of the solu-
tion during the experiments. Gratier et al. [2004] used a
similar technique in which a sample of Bure claystone was
kept in contact with a piston, with a saturated brine in the
contact, at an imposed pressure and temperature for several
months. No evidence of localized pressure-solution (dissolu-
tion seam) was observed in this case, grain to grain sliding
being more efficient in presence of clay. Renard et al. [2001],
studied chemical compaction of aggregates of halite (salt)
mixed with clay. They showed that clay particles enhance
pressure-solution. Moreover, Renard et al. [1997] studied
the effect of clay on clay-rich sandstones. They suggested
that pressure-solution is enhanced by clay because a thick
film of water is preserved between clay particles. They also
concluded that the depth determines the limiting factor for
the process: at great depth, the water film between grains
should be thinner and diffusion limits the process. Con-
versely, at low depth water films are bigger, transport is
easier and the reaction kinetics is the limiting factor.

The clay particles effect on pressure-solution was recently
simulated in numerical modeling. Aharonov and Katsman
[2009] used the two-dimensional Spring Network Model to
study the stylolites growth in a medium with a uniform clay
distribution. They showed that clay plays a role of enhanc-
ing pressure-solution and that stylolites propagation is pos-
sible only when both pressure-solution and clay-enhanced
dissolution operate together. Koehn et al. [2007] developed

a new discrete simulation technique that reproduces success-
fully the roughening of stylolites from a preferential exist-
ing surface with no clay. This model is based on molecular
dynamics, with a dissolution speed depending on the local
free energy that includes stress dependent terms and sur-
face energy terms. Two different spatial regimes arise from
this modeling: a small-scale regime where surface energy is
dominant with significant fluctuations of the roughness and
a large-scale regime where elastic energy dominates. The
dependence on the cross-over scale between both regime on
the imposed stress has been recently investigated numeri-
cally [Koehn, 2012]. This model shows that the growth of
the stylolite tooth follows the main compressive stress direc-
tion. The nature and structure of the small scale disorder for
the dissolution properties of grains were systematically an-
alyzed [Ebner et al., 2009a]. Moreover, Ebner et al. [2010b]
performed detailed microstructural analysis to investigate
the interplay between this disorder and the compositional
nature of the grains surrounding a stylolite.

Stylolites are localised features for which deformation is
purely compactant as for compaction bands [Mollema and
Antonellini , 1996; Baud et al., 2004; Katsman et al., 2006b;
Tembe et al., 2008]. Stylolites and compaction bands devel-
opment was modeled as anticracks or anti-mode I fracture
[Fletcher and Pollard , 1981; Rispoli , 1981; Mollema and An-
tonellini , 1996]. Fletcher and Pollard [1981] assume that
the rate of pressure-solution is only a function of the nor-
mal stress. They observed an elliptic dissolution pattern i.e.
more dissolution in the central part of stylolites than at the
tips. With these observations they proposed an analogy be-
tween propagation of stylolites and propagation of mode I
fractures. They observed that the relative displacement be-
tween the sides of a stylolite should have the opposite sign
than that of a crack, and thus termed their model an anti-
crack. Note however that cracks can bear zero surface trac-
tion, contrary to stylolites. This distinction between crack
solutions and stylolites was introduced, and it was shown by
Katsman et al. [2006a] that, as compaction bands, stylolites
are Localized Volume Reduction zones (LVR). The shape of
the displacement along stylolites, and how the stress per-
turbation can be determined from the concept of LVR, is
discussed in details by Katsman [2010].

In LVR where the dissolution amount is constant across
the surface of the LVR, as for a compaction band, the stress
enhancement was shown to be that of a dislocation [Kats-
man et al., 2006a]. In later models Katsman [2010], it was
shown that if more dissolution is allowed in the center of a
stylolite, another type of stress enhancement, with a depen-
dence on the distance to the tips analogous to the one for
a crack (rather than to a dislocation), can be observed it
is given by the Eshelby inclusion problem. Such an increase
of the dissolution in the center of a stylolite, where the dis-
solution does not stop in the already dissolved zone in the
middle of the stylolite, can be observed in models with a
positive feedback do the dissolution, as for example the one
that can be modeled from a clay concentration mechanism
[Aharonov and Katsman, 2009].

In general, in stylolites, the stress concentrates at the tips
and the largest stress is perpendicular to the stylolites. Re-
cent models [Koehn et al., 2007; Ebner et al., 2009b; Zhou
and Aydin, 2010] suggest that a higher stress concentration
at the top of the tooth should be responsible of localized
high rates of dissolution. Benedicto and Schultz [2010] in-
vestigated the topography of stylolites (along-strike trace
length, maximum and average amplitudes) from the dam-
aged zone of the Gubbio normal fault zone in central Italy.
They showed that the amount of contractional strain ac-
commodated by stylolites as well as their length and their
number increase according to the topography parameters.
Analyses of cores from boreholes reveal also an increase in
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stylolite abundance with depth [Lind , 1993]. Fabricius and
Borre [2007] compared formations of chalk from boreholes
on the Ontong Java Plateau and in the central North Sea.
They showed that the burial stress and the temperature play
distinct roles in the burial diagenesis and porosity develop-
ment of chalk. Pressure-solution and physical compaction
are controled by the burial stress while the temperature
controls recrystallization and cementation. Moreover, Lind
[1993] suggests that mineralogical anomaly is an initializing
factor in stylolite formation such as burrows, shale clasts
or flaser structures. Many studies were conducted on the
morphology of sedimentary stylolites [Renard et al., 2004;
Brouste et al., 2007; Ebner et al., 2009b]. Morphology anal-
yses can be done on 1D profiles or 2D opened surfaces. They
consist on studying a stylolitic profile or surface height vari-
ations (standard deviation, height differences, power spec-
trum, average wavelet coefficient spectrum, etc.) over dif-
ferent scales [Schmittbuhl et al., 1995, 2004; Renard et al.,
2004]. These analyses reveal two distinct scaling regimes
that could be described by power laws. The power laws
are function of a roughness exponent also called Hurst ex-
ponent inferred to be 1 and 0.5 for small and large scale
respectively [Renard et al., 2004; Schmittbuhl et al., 2004;
Brouste et al., 2007; Ebner et al., 2009b]. The two regimes
are separated by a cross-over length typically around 1 mm
[Renard et al., 2004; Schmittbuhl et al., 2004]. For sedimen-
tary stylolites, the two dimensional (2D) analysis of their
surface does not show any significant inplane anisotropy re-
flecting the fact that horizontal stresses are isotropic. Ebner
et al. [2010a] observed that the profiles of tectonic stylolites
show the same geometric attributes as sedimentary ones.
Two different regimes are also observed with Hurst expo-
nent around 1 and 0.5 for small and large scale respectively.
However, for tectonic stylolites, the 2D analysis revealed an
anisotropy of the cross-over length which varies with the di-
rection in the plane of stylolites. Ebner et al. [2010a] argue
that this anisotropy develops because the stylolite rough-
ens in an anisotropic inplane stress field. The vertical and
inplane horizontal stresses are significantly differents. In
recent papers, stylolites are presented as fossilized signa-
tures of the stress field [Renard et al., 2004; Schmittbuhl
et al., 2004; Ebner et al., 2009b, 2010a]. The existence of
two scaling regimes for sedimentary stylolites was shown in
Schmittbuhl et al. [2004] where a brief theoretical derivation
was performed. It was shown that the cross-over length be-
tween both scaling regimes is expected to be dependent on
the stress acting on the stylolite during its growth. Their
conclusion was that stylolite morphology can be used as a
paleostress magnitude indicator. This conclusion was later
probed independently on two types of approaches: first,
on field data sampled from the same formation at differ-
ent heights, Ebner et al. [2009b] showed that the measured
cross-over length in the morphology followed the expected
scaling with the burial stress, evaluated from the position
in the formation. Next, discrete numerical simulations were
carried out at different stress magnitudes, allowing for the
dissolution of grains along the fluid/rock interface, with free
energy depending on interfacial tension and local stress. It
was shown that the two expected scaling regimes were ob-
served [Koehn et al., 2007; Koehn, 2012], and that the cross-
over length followed the predicted dependence on the far-
field stress amplitude [Koehn, 2012].

Interfaces between solids and fluids are related to models
of stylolitization. In the case where a solid in contact with a
fluid is stressed, an instability due to pressure-solution was
shown theoretically to exist and is called the Asaro-Tiller-
Grinfeld (ATG) instability [Renard et al., 2004]. In models
of dissolving surfaces with a stress imposed to a solid in
contact with a fluid at chemical equilibrium, this instabil-
ity leads to the growth of initial large scale modulations of
the surface with a wavelength selection obtained through a

fastest growing mode. The basic equation depends on the
particular boundary conditions e.g. when two solids with
different elastic properties are in contact and submitted to
a stress, the interface can undergo a fingering instability led
by the contrast between the free energies applied to both
solids [Angheluta et al., 2008, 2009, 2010]. The stability
analysis can be performed theoretically from expressions for
the kinetics using local free energy criteria for the reaction
rate [Renard et al., 2004; Schmittbuhl et al., 2004], or global
ones [Bonnetier et al., 2009; Angheluta et al., 2008]. De-
pending on the boundary conditions, this situation is also
found to be unstable for perturbations exceeding a certain
wavelength, leading to fingering (as e.g. with large stress
tangential to a fluid interface, or a stress normal to fluid in-
terfaces and lateral periodic boundary conditions [Bonnetier
et al., 2009]). With other boundary conditions, the surface
energy and elastic interactions are found to stabilize the in-
terfaces, which are only destabilized by material noise due
to heterogeneities [Schmittbuhl et al., 2004; Koehn et al.,
2007]. We will argue in details in the discussion section
about the different possibilities applied to the geometry of
stylolites, and the fact that stylolites displaying self-affine
scaling laws for their height at large scale are compatible
with the stabilizing character of elastic forces at large scale.
This manuscript provides the technical development and de-
tails that lead to the final result that was previously pub-
lished without derivation, in a condensed form [Schmittbuhl
et al., 2004]. It also compares the result of the analytical
development to a direct numerical simulation.

In this paper we concentrate on the following questions:
(i) Is the elastic energy stabilizing or destabilizing? (ii)
What is the significance of the obtained paleostress values?
To answer to these questions, (i) we derive the details of
the computation leading to the link between the paleostress
magnitude and the cross-over length between the two scal-
ing regimes. This is performed by a perturbative analysis of
the elastic energy around an interface slightly wavy and un-
aligned with one of the principal stresses. Then we show in
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Figure 1. Initial stage of a stylolite: Trapped elongated
fluid pocket.
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Figure 2. Solid-fluid interface: geometry considered.
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details that the mechanics and chemistry allow to relate the
small and large scale behavior of stylolites to known models,
with Hurst exponents corresponding to the observed ones.
(ii) We finally present and discuss an application in rela-
tion with the geological context. This is made on a stylolite
from the Bure carbonates and it shows how the predicted
scaling regimes can be found, and how to determinate the
paleostress from the extracted cross-over length.

2. Analytical approach : Continuous elastostatic
model for stylolite propagation

The rough morphology of stylolites arises from the disor-
der present in a rock and its impact on the pressure-solution
process. This disorder is spatially linked to the grains consti-
tuting the rock. To understand the impact of this disorder
on the chemico-mechanical coupling, we will consider the
following simplified geometry: the initial stage of the sty-
lolite is modeled as an elongated fluid pocket enclosed be-
tween two contactless rough surfaces of infinite extent. The
contacts between these two surfaces can in principle modify
the geometry of the resulting dissolution surface. However,
they are assumed to be sufficiently loose in a stylolite and
thus the main morphological results are not affected. This
assumption simplifies the problem since the dissolution pro-
cess, happening on both sides of the stylolite (Figure 1),
can be described as the dissolution of a solid half-plane in
contact with a fluid. With this geometry, the small and
large scale self-affine behaviors of the dissolution surface and
the associated roughness exponents (or Hurst exponents) are
well reproduced. The model leads to the characteristic expo-
nents typically observed in previous studies [Renard et al.,
2004; Schmittbuhl et al., 2004; Brouste et al., 2007; Ebner
et al., 2009b].

The average stylolitic plane is defined along the x and
y-axis (Figure 2). To have better statistics on the mor-
phology of the studied surfaces, the model is assumed to be
invariant by translation along the y-axis. It allows to us
to describe a larger range of scales at the same numerical
cost and to numerically solve the self-affine behavior of the
resulting pressure-solution surface over a larger number of
orders of length scales. The same approach can be consid-
ered using invariance by translation along the x-axis. In the
model we assume a mechanical equilibrium throughout the
system and express the dissolution rate as a function of the
stress tensor and of the area of interface per unit volume.

2.1. Force perturbation related to the mechanical

equilibrium along the fluid-solid interface

First, we express the mechanical equilibrium at the solid-
fluid interface (Figure 2). The convention adopted is that
compressive stresses and compactive strains are negative
Landau and Lifchitz [1986]. The far-field stress applied
to the host rock is denoted by ¯̄σ0. The largest principal
stress axis, perpendicular to the average plane of the stylo-
lite, is defined along the z-axis. The fluid pocket transmits
all the load through itself (The boundary condition of the
fluid pocket is approximated as undrained for that respect:
if there is any flow, from or into the fluid pocket, it happens
slowly, via the lateral ends. If there is any contact between
the opposite walls perpendicular to the main fluid direction,
the load transmitted through this contact is neglected). The
fluid pressure is thus homogeneous and equal to the largest
principal stress applied to the host rock, considering the
integral of the local stress field ¯̄σ along an elongated rectan-
gular boundary (dashed line in Figure 1):

p = −σ0
zz (1)

Locally, the local stress ¯̄σ is split between the far-field
asymptotic value ¯̄σ0 and a perturbation generated by the
irregular nature of the interface ¯̄σ1:

¯̄σ(x) = ¯̄σ0 + ¯̄σ1(x) (2)

The far-field stress unit vectors x̂ and ẑ along the x and
z-axis are assumed to be the principal directions i.e.

¯̄σ0 = σ0
xxx̂x̂+ σ0

zzẑẑ (3)

Here, the notations x̂x̂ and ẑẑ correspond to unit ma-
trixes composed from the unit vectors, as e.g. are ŷŷ, x̂ŷ, or
ẑx̂. This canonical basis for the matrixes is composed from
the doublets of unit vectors x̂, ŷ and ẑ. For example, x̂ẑ rep-
resents the unit matrix with all components equal to zero,
apart from a unit in the lign corresponding to the x coordi-
nate, and the column corresponding to the z one, so that for
a pair of vectors u, v applied to the left and right of this ma-
trix, u · (x̂ẑ) · v = (u · x̂)(ẑ · v) = uxvz. In other terms, with
cartesian components along directions of indexes i and j,
and the help of the Kronecker symbol δ, the components of
the matrix x̂ẑ, for example, are: (x̂ẑ)ij = δixδjz. This con-
vention to define the canonical basis of matrix space (nine
elementary second order dyadic products like x̂ẑ) from the
three basic unitary vectors of the vectorial space, x̂, ŷ and ẑ
is, for example, defined by [Gonzalez and Stuart , 2008].

For a stylolite, the largest compressive stress axis is nor-
mal to its average plane and thus to the average fluid pocket
direction:

|σ0
zz| > |σ0

xx| (4)

This relation has strong implications on the stability of the
surface pattern emerging from the dissolution process. The
far-field deviatoric stress is defined as:

σ0
s = (|σ0

zz| − |σ0
xx|) = (σ0

xx − σ0
zz) (5)

To express the force perturbation related to the curved na-
ture of the interface, we define the unit vector n̂ normal
to the surface pointing towards the fluid. This vector is
assumed to be close to the principal stress axis. In the
following, we will consider small-angle deviations from a
straight surface, and the results will therefore be valid for
small surface slopes only. The model presented below aims
to describe the onset of the stylolite propagation from a flat
surface, and it will also describe the evolution of large wave-
length modes, if the aspect ratio of such modes (ratio of the
amplitude over the wavelength) stays small, corresponding
to small effective slopes at large wavelength.

The interface is described as a single-valued function z(x)
and the slopes are assumed to be of the order ǫ i.e. that

σ= 0
n̂.

σ= n̂.1
x

σ0
z x

σ0
x

σ= n̂.1 .

x

ẑ

^

z(x)^ ^p=−     

= σ0 σ0
xz )(       z)x(        − ^

σxx+       zz^^ 0
zσ 0 == ^^

^

^−p  n= nσ0
z

δ   =f

Far field
solid stress:

Fluid

Solid

n=z−(    z)x

^

Figure 3. Local mechanical equilibrium along the fluid-
solid interface (equation 8).
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|∂x(z)| ∈ O(ǫ) ≪ 1. Since the normal n̂ to the interface
of slope ∂xz can be expressed by the conditions of nor-
mality to the interface, n̂ · (1, ∂xz)

T = 0 (at any order
or ǫ), and by its unitary norm n̂2 = 1, it is in general

n̂ = (−(∂xz)x̂ + ẑ)/
√

1 + (∂xz)2. Using the above limit
of small slopes, developing in ǫ, we obtain to leading order

n̂ = ẑ − (∂xz)x̂+O(ǫ2) (6)

(The order O(ǫ) is absent from n̂).
The local mechanical equilibrium at the solid-fluid inter-

face is expressed as:

σ · n̂ = −pn̂ (7)

And with equations (1-7) the force perturbation (illustrated
in Figure 3) becomes:

δf(x) = σ1(x) · n̂ =

−pn̂− σ0 · n̂

= σ0
zz[ẑ − (∂xz)x̂]− σ0

zzẑ + σ0
xx(∂xz)x̂

= (σ0
xx − σ0

zz)(∂xz)x̂

= σ0
s(∂xz)x̂ (8)

2.2. Chemico-mechanical coupling

Next, we express the chemico-mechanical coupling. The
dissolution speed normal to the solid/fluid interface (in
mol.m−2.s−1), is to the first order proportional to the chem-
ical potential ∆µ of the chemical product dissolving [Kass-
ner et al., 2001; Misbah et al., 2004; Schmittbuhl et al., 2004;
Koehn et al., 2007]:

v = m∆µ (9)

where

m = k0Ω/RT (10)

is the mobility of the dissolving species, R = 8.31
J.mol−1.K−1 is the universal gas constant, T is the tem-
perature in Kelvin, k0 is a dissolution rate which can be
measured experimentally, and Ω is a molar volume. For cal-
cite, Ω ≃ 4 · 10−5 m3.mol−1 and k0 ≃ 10−4 mol.m−2.s−1

for dissolution in water at atmospheric pressure and 298◦K
[De Giudici , 2002; Schmittbuhl et al., 2004]. The difference
in chemical potential from the solid state to the fluid state
is [Kassner et al., 2001; Misbah et al., 2004; Koehn et al.,
2007]:

∆µ = ∆Ψs + Ω∆Pn +Ωγκ (11)

Considering a solid state at given pressure and elastic free
energy in chemical equilibrium with the fluid, ∆Ψs and ∆Pn

are defined respectively as the change in Helmoltz free en-
ergy per mole and the change in stress normal to the inter-
face. The last term corresponds to the surface energy with
κ = ∂xxz, the surface curvature (the inverse of the radius
curvature) and γ the surface tension between the solid and
the fluid phase. In a particular case, neglecting temperature
variation effects and assuming that the fluid composition is
in chemical equilibrium with a solid flat surface at normal
pressure p and stress σref , Eq.(11) reduces to :

∆µ = 0 (12)

κ = 0 (13)

More generally, by definition ([Kassner et al., 2001]:

∆Ψs + Ω∆Pn = Ω∆ue, (14)

where

∆ue = ue(σ)− uref
e (15)

and

ue = [(1 + ν)σijσij − νσkkσll]/4E (16)

is the elastic free energy per unit volume with E the Young’s
modulus and ν the Poisson’s ratio of the elastic solid [Kass-
ner et al., 2001; Landau and Lifchitz , 1986].

To take into account the dissolution speed variations as-
sociated to the morphology of the stylolite, we develop the
dissolution speed to the leading order as:

v = v0 + v1 (17)

With equations (9-16):

v0 =
k0Ω

2

RT

(

[(1 + ν)σ0
ijσ

0
ij − νσ0

kkσ
0
ll]

4E
− uref

e

)

=
k0Ω

2

RTE
(αp20 − αrefp

2
ref ) (18)

The geometrical factor α is computed assuming σ0
xx = σ0

yy =
−p0 + σs/3 and σ0

zz = −p0 − 2σs/3:

α =
9(1− 2ν) + 2(1 + ν)σ2

s/p
2
0

12
(19)

αref is expressed with a similar expression and character-
izes the chemical equilibrium with the fluid at the referential
state as a function of the pressure pref and the shear stress
σref . Typically, for a limestone with a Young’s modulus
E = 80 GPa stressed at p0 ≃ 10 MPa (which corresponds
to a few hundred of meters deep in sedimentary rocks) and
for a fluid with a chemical composition in equilibrium with
the solid, the dissolution speed at the solid-fluid interface in
a limestone is of the order of:

v0n ≃ 10−6 to 10−5 m.year−1

2.3. Consequences for the stability of the dissolution

process

From the local mechanical equilibrium and the nature of
the chemico-mechanical coupling, some important consider-
ations can be inferred about the morphological stability of
the dissolution surfaces. This behavior depends on the ori-
entation of the surfaces with respect to the far-field stress.

Previously we have shown how to express the force per-
turbation arising from the mismatch between the solid-fluid
interface orientation and the principal axis of the far-field
stress tensor x̂ (equation 8).

This relationship holds independently of the relative mag-
nitudes of the principal stresses σxx and σzz. If the largest
principal stress is tangential to the interface, which is not

σFluid

Solid

z

z

x

|σ  |>|σ  |
force

zx
v low

v large

Unstable dissolution process

p=

perturbation

Figure 4. Surface tangential to the largest stress (σxx)
axis: unstable case, Azaro-Tiller-Grinsfeld instability.



X - 6 ROLLAND ET AL.: MODELING THE GROWTH OF STYLOLITES

σFluid

Solid

z

x

|σ  |>|σ  |v large

v low

force

Stable dissolution process

z x

z
p=

perturbation

Figure 5. Surface normal to the largest stress (σzz) axis:
stable case.

the case for stylolites, σ0
s < 0 and the sign of δf(x) · x̂

is opposite to the slope of the interface ∂xz. Such tangen-
tial force perturbation is concentrated at the points lying
ahead of the average dissolution front (Figure 4). The elas-
tic forces concentrate stress at the valleys of the dissolution
front where the free energy is thus higher. This leads to
an increased dissolution speed at the points lying ahead of
the averaged front. The dissolution propagates downwards.
The points at the crests, i.e. located behind the averaged
dissolution front, show a reduced rate of dissolution thus
pushing them further from the average front. The points
lying out of the average dissolution plane tend therefore to
depart further from the average position. The elastic force is
in this situation a destabilizing force. On the contrary, the
surface tension tends to stabilize the process by decreasing
the surface area by flattening the interface.

The competition between the elastic long-range destabi-
lizing forces and the surface tension short-range stabilizing
forces leads to the ATG interface instability. The fastest
growing wavelength is determined by the balance between
these long-range destabilizing and short-range stabilizing ef-
fects. Such instability arising in stressed solids was studied
theoretically [Asaro and Tiller , 1972; Grinfeld , 1986; Misbah
et al., 2004] and observed experimentally in stressed soluble
crystals immersed in a saturated fluid [Den Brok and Morel ,
2001; Koehn et al., 2004].

If the largest principal stress lies perpendicular to the in-
terface, as for stylolites, σ0

s > 0 and the sign of δf(x) · x̂
is the same as the slope of the interface ∂xz. Such tangen-
tial force perturbation is concentrated at the points lying
behind of the average dissolution front (Figure 5). The elas-
tic forces concentrate stress at the crests of the dissolution
front where the free energy is thus higher. This leads to
an increased dissolution speed for the points lying behind
the averaged front. The dissolution propagates downwards.
The points at the valleys, i.e. located ahead of the averaged
dissolution front, tend to come back to the average position.
The elastic force is a stabilizing force in this situation. Here,
the surface tension is again a stabilizing process.

Since the long-range elastic force and the short-range sur-
face tension force are stabilizing forces, if the modeled solid
properties are purely homogeneous (i.e. homogeneous elas-
tic solid with homogeneous dissolution rate properties), the
model predicts the flattening of any initial non-plane surface
with time.

Consequently, to model the morphogenesis of stylolites,
which are rough surfaces, we will take here into account the
disorder linked to the material properties.
2.3.1. Consequence on initial evolution of trapped
fluid pocket

In summary, the above arguments show that an elemen-
tary bump of a flat surface disappears for σs > 0, or grows
for σs < 0. Qualitatively, if the argument on the stability
of surfaces depending on their orientation on the principal
stress axis extends for more local orientations along trapped
fluid pockets, one should observe the following: for the sides

of a fluid pocket lying tangentially to the largest stress, these
should develop instable grooves penetrating into the solid,
similarly to the ATG instability case. On the contrary, the
sides normal to the largest stress direction should remain
relatively flat, apart from the fluctuations due to the disor-
der. These small variations along the surfaces normal to the
principal stress axis, and the penetrations of grooves of char-
acteristic wavelength in the rock along the direction of the
weakest stress, should lead to the development of elongated
structures, and merge initially separated fluid pockets (or
clay-enriched pockets). This qualitative mechanism is illus-
trated on Figure 6. This expectation of qualitative evolution
is indeed compatible with the mechanism of development of
anti-cracks numerically obtained by Koehn et al. [2003]. The
experimental grooves observed along the free surface on the
sides of a fluid-filled cylindrical pocket by Den Brok and
Morel [2001] also displayed this trend.

2.4. Expression of the dissolution speed perturbation

as a function of the interface shape

To model the disorder in the solid we assume that the ma-
terial properties (related to the solid grains) vary in a ran-
dom and spatially uncorrelated way. This disorder can orig-
inate from the diversity of grain composition, grain size or
orientation, i.e. it represents the small scale heterogeneities
present in the rock For example, the dissolution rate k can
be expressed as an averaged term k0 plus some spatial vari-
ations of zero average η(x, z) · k0:

k = k0(1 + η(x, z(x))) (20)

The random variable η is a quenched disorder with no spa-
tial correlations and is characterized by its mean < η >= 0
and its variance < η2 > assumed to be small enough to keep
small local slopes. The dynamics of the dissolving interface
z(x, t) can be expressed from equations (9-17) as:

v = −∂tz =
kΩ2

RT
(∆ue + γ∂xxz),

=
k0Ω

2

RT
(1 + η){(1 + ν)[(σ0

ij + σ1
ij)(σ

0
ij + σ1

ij)− ν(σ0
kk + σ1

kk)

=
k0Ω

2

RT
{(1 + ν)[σ0

ijσ
0
ij − ν(σ0

kk)
2]/4E − ue

ref}

+
k0Ω

2

RT
η{(1 + ν)[σ0

ijσ
0
ij − ν(σ0

kk)
2]/4E − ue

ref}

+
k0Ω

2

RT
{(1 + ν)[2σ0

ijσ
1
ij − 2ν(σ0

kkσ
1
kk)]/4E + γ∂xxz}

i.e., using Eq.(18) for the expression of σ0
ijσ

0
ij − ν(σ0

kk)
2,

a dissolution speed separated between an average homoge-
neous speed v0 and a leading order of the perturbations v1,

Figure 6. Expected stability or instability of the disso-
lution front around a trapped fluid pocket.
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first order in ǫ as

∂tz(x, t) = −v0 − v1(x, t) (22)

with v0 the dissolution speed given by equation (18) and
v1 a deviation of the dissolution speed with respect to the
average dissolution speed v0 expressed as:

v1 =
k0Ω

2

RT

(αp20 − αrefp
2
ref )

E
η(x, z(x))

+
k0Ω

2

RT
γ∂xxz(x)

+
k0Ω

2

RT

(

[(1 + ν)σ0
ijσ

1
ij − νσ0

kkσ
1
ll]

2E

)

(23)

σ1 is the stress perturbation mentioned previously in equa-
tion (2). It is generated by the surface distribution of the
tangential force perturbation δf(x) due to the irregular na-
ture of the interface.

The first term is a quenched disorder term leading to the
roughening of the interface. The second one is a stabilizing
quadratic short-range term arising from the surface tension.
The last term can be expressed via a non-local kernel from
the shape of the interface z(x) by integrating the elastostatic
equations in the solid half-plane.

2.5. Detailed form of the elastic long-range interaction

kernel

The stress perturbation induced by the force perturba-
tion δf(x) (equation 8) exerted on the surface can be de-
termined via the Green function method. Following Landau
and Lifchitz [1986], the displacement induced by an elemen-
tary force x̂ applied at the origin (0, 0, 0) on a semi-infinite
solid is:

ax (x, y, z) =
1 + ν

2πE

{

2(1− ν)r + z

r(r + z)
+

(2r(νr + z) + z2

r3(r + z)2
x2

}

ay (x, y, z) =
1 + ν

2πE

{

2r(νr + z) + z2

r3(r + z)2
xy

}

az (x, y, z) =
1 + ν

2πE

{

(1− 2ν)x

r(r + z)
+

zx

r3

}

(24)

where r is the distance relatively to the force application
point at (0, 0, 0), i.e. r2 = x2 + y2 + z2. The associated
strain applied on the solid is:

ǫeij =
1

2
(∂iaj + ∂jai) (25)

and the associated stress is:

fij(x, y, z) =
E

1 + ν
(ǫeij +

ν

1− 2ν
ǫekkδij) (26)

The stress associated to the point force x̂ applied on the
surface of normal ẑ at the origin is equal at the origin itself
to x̂ẑ + ẑx̂.

Since the model treated here is invariant by translation
along y, the force perturbation δf(u) = σ0

s(∂uz)(u)x̂ is ex-
erted at any v ∈] − ∞,∞[ and the resulting displacement
field at (x, y, z), is solely dependent on (x, z) and can be
expressed, by linearity of the elastostatics equations, (simi-
larly to the elastostatic Green function method detailed in
Eq.(8.14) by [Landau and Lifchitz , 1986]), as a displacement
field w of components

wi(x, y = 0, z) =

∫

∞

u=−∞

∫

∞

v=−∞

ai(x− u,−v, z)dudv δf(u).x̂

(27)

The associated strain perturbation is

ǫpij =
1

2
(∂iwj + ∂jwi), (28)

and the associated stress,

σ1
ij(x) =

E

1 + ν
(ǫpij +

ν

1− 2ν
ǫpkkδij) + δf(x)(δixδjz + δizδjx)δ(z),

(29)

where the first term represents the stress induced by the
elastic deformation, and the second one the direct applica-
tion of the force perturbation on the surface. In the above,
the spatial derivative of Eq.(28) can be exchanged with the
integration in Eq.(27), to obtain

ǫpij(x, y = 0, z) =

∫

∞

u=−∞

∫

∞

v=−∞

ǫeij(x− u,−v, z)dudv δf(u).x̂.

(30)

Recalling the expression of the force perturbation, Eq.(8),
from Eq.(29), the stress perturbation along the surface, at
z = 0, is thus:

σ1
ij(x) = σ0

s · p.p.[

∫

∞

u=−∞

du (∂uz)(u)

∗

∫

∞

v=−∞

fij(x− u,−v, 0)dv]

+σ0
s(∂xz)(x)(δixδjz + δizδjx) (31)

where p.p. refers to the principal part of the integral. Tak-
ing the derivatives of the displacement field (equation 25),
we can calculate the associated stress. Integrating this result
along the y-axis gives:

∫

∞

v=−∞

fij(x,−v, 0)dv = −
2ν

πx
(δixδjx + δiyδjy) (32)

and thus,

σ1(x) = −
2νσ0

s

π
· p.p.[

∫

∞

x′=−∞

du
(∂uz)(u)

x− u
](x̂x̂+ ŷŷ)

+σ0
s · (∂xz)(x)(x̂ẑ + ẑx̂) (33)

The elastic energy perturbation associated to the interface
deformation can be computed using equation (33) and the
relation:

σ0 = −(p0 − σ0
s/3)(x̂x̂+ ŷŷ)− (p0 + 2σ0

s/3)ẑẑ (34)

It results in:

u1
e =

[(1 + ν)σ0
ijσ

1
ij − νσ0

kkσ
1
ll]

2E

=
2ν[(1− 2ν)p0]

πE
∗ σ0

s · p.p.[

∫

∞

u=−∞

du
(∂uz)(u)

x− u
] (35)

2.6. Dynamic equation for the dissolution interface

The equation (22) rules the dynamics of the interface dis-
solution. When computed with equation (18), it gives:

RT

k0Ω2
v1 =

(αp20 − αrefp
2
ref )

E
η(x, z(x))

−γ∂xxz(x)
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+β
p0σ

0
s

E
· p.p.[

∫

∞

u=−∞

du
(∂uz)(u)

x− u
] (36)

where β is a geometrical factor:

β = [2ν(1− 2ν)]/π (37)

Equation (23) can be expressed in a dimensionless form by
using length and time units as:

L∗ = γE/(βp0σs) (38)

τ = (L∗)2RT/(γk0Ω
2) (39)

We define the dimensionless variables in the reference frame
moving at the average velocity −v0 as:

z′ = [z + (v0t)]/L
∗ (40)

x′ = x/L∗ (41)

t′ = t/τ (42)

and the reduced quenched noise as:

η′(x′, z′(x, t)− v0t/L
∗) =

[(αp20 − αrefp
2
ref )/(βp0σs)]η(x, z(x, t)) (43)

The dimensionless stochastic equation for the stylolite
growth process is then:

∂t′z
′(x′, t′) =

η′(x′, z′(x′, t′)− v0τ t
′/L∗) + ∂x′x′z′

−p.p.[

∫

∞

u=−∞

du
(∂uz

′)(u)

x′ − u
] (44)

At large average dissolution speed, the term v0τ t
′/L∗ takes

over z quickly and the noise is annealed, becoming mostly
time-dependent. On the contrary, for sufficiently slow pro-
cesses such as the extend of the surface roughness over sev-
eral grains, the noise can be considered as quenched. This
is the case here as the changes in η′ arising from z(x, t) are
significantly larger than the changes due to some variations
of the average dissolution front position v0τ t

′/L∗. To the
first order, the noise dependence is mainly η′(x′, z′(x′, t′))
and the noise will therefore be considered here as quenched.

The dynamic equation then becomes:

∂t′z
′(x′, t′) = η′(x′, z′(x′, t′)) + ∂x′x′z′

−p.p.[

∫

∞

u=−∞

du
(∂uz

′)(u)

x′ − u
] (45)

Alternatively, in some arbitrary spatial unit ℓ, this can also
be written:

∂tz(x, t) = η′′(x′, z′(x′, t′)) + ∂xxz −
ℓ

L∗

∫

dy
∂yz

x− y
(46)

with L∗ = γE/(βp0σs) and τ = ℓ2RT/(γk0Ω
2), the time

unit.

2.7. Small and large scale behavior of the model

Elastic interactions can be neglected in equation (46) for
small scales such as ℓ ≪ L∗ (the lower limit corresponds to
the resolution of the analyzed signal) reducing the model to
a Laplacian description:

∂tz
′(x, t) = ∂xxz

′ + η(x, z′(x)) (47)

This equation is known as the Edwards Wilkinson model
[Edwards and Wilkinson, 1982] modified with a quenched
random noise. It has been studied in the literature and leads

to the growth of self-affine surfaces of roughness ζ ∼ 1.2
[Roux and Hansen, 1994], in agreement with existing data
on stylolites where ζ ∼ 1.1 [Schmittbuhl et al., 2004].

Conversely, for large scales ℓ ≫ L∗ (the upper limit corre-
sponds to the system size), surface tension can be neglected
reducing equation (46) to a mechanical regime:

∂tz
′(x, t) = −

ℓ

L∗

∫

dy
∂yz

x− y
+ η(x, z′(x)) (48)

In this case, the model is similar to known models describ-
ing the propagation of an elastic line on a disordered pinning
landscape or the propagation of a mode I fracture front in a
disordered solid. It leads to the growth of self-affine surfaces
of roughness ζ ≃ 0.5 [Tanguy et al., 1998]. In summary, the
model derived above predicts the growth of dissolution sur-
faces with different self-affine characteristics at small scale
(ζ1 ∼ 1.2) and large scale (ζ2 ∼ 0.5). The transition between
these regimes is expected to occur at a certain cross-over
length L∗.

3. Numerical approach : Dynamic evolution
of the interface

From a purely analytical point of view and via the similar-
ity of asymptotic form of the dynamic equation with known
models for large and small scales, we have shown that two
different scaling laws are expected for small and large scales,
and that the cross-over length should depend on the far-field
stress magnitude. Independently from this general analyt-
ical analysis, we will now show how to solve the problem
numerically, i.e. implement the dynamic evolution of the in-
terface with all the large and small scale terms and random
variables to represent the disorder and analyse the resulting
morphogenesis.

3.1. Practical implementation of the model

We simulate the dissolution process for a calcite-water
interface. This is done in an event-driven discrete lattice
code, with algorithms corresponding to a discrete Langevin
equation leading to grains getting dissolved one at a time:
for each grain along the interface, a time to dissolution is
computed from the above Langevin equation, and the grain
with the shortest dissolution time is removed. After what,
the times are recomputed for all grains along the interface,
and the next grain with shortest dissolution time is removed,
and so on (see Renard et al. [2004] for details of the practi-
cal implementation). The selected constants correspond to
a calcite-water system, γ = 0.27J · m−2, Ω = 4 · 10−5 m3 ·
mol−1, ν = 0.25, E = 80 GPa and k0 = 10−4mol ·m−2 · s−1

[Renard et al., 2004]. The chosen physical conditions are
T = 420 K, < p >= 10 MPa and < σs >= 40 MPa. The
amount of quenched noise is associated to the natural vari-
ations of grain properties. The typical scale associated to

Figure 7. Snapshot of the pressure-solution profile.
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the quenched disorder (or typical grain size) is considered
here to be around ℓ = 10µm, with no correlation above
this scale. This quenched disorder has a standard deviation
√

< η2 > = [αℓp0/(βL
∗σs)] · [(δE/E) + (δk/k0) + (δα/α)]

corresponding to some relative variations of the dissolution
rate of around 10% (i.e. δk/k0 ∼ 0.1).

The dimensionless surface dynamic equation without dis-
order is:

∂tz(x, t) = v0 + ∂xxz −
ℓ

L∗

∫

dy
∂yz

x− y
(49)

where L∗ = γE/(βp0σs), ℓ is the unit length, and τ =
ℓ2RT/(γkΩ2) is the time unit.

We assume a small disorder in the implied quantities (e.g.
Young’s modulus), that are quenched in the material prop-
erties of the rock heterogeneity associated with micrometric
grains, typically ℓ = 10µm. The interface is supposed to
be normal to the largest stress direction (stabilizing elastic
interactions).

Considering a perturbation to the first order, in the ref-
erential frame of the homogeneously moving average front,
z′ = z−v0t, the equation ruling the surface growth becomes:

∂tz
′(x, t) = ∂xxz −

ℓ

L∗

∫

dy
∂yz

x− y
+ η(x, z(x)) (50)

with a quenched random term η(x, z′(x)) = [αℓp0/(βL
∗σs)]·

[(δE/E) + (δk/k)− (δα/α)]
The first and second terms are stabilizing terms. The

third term refering to the quenched disorder destabilizes the
interface. We perform the simulation of this dynamic equa-
tion with both stabilizing terms and quenched noise.

The prefactors in equation 50 depend on the rock type
and on the applied stress. In addition to these mappings,
the characteristic units are known as function of the rock
properties. The cross-over scale L∗ = γE/(βp0σs) is func-
tion of the pressure during the growth, through p0 and σs.

Determining the cross-over length L∗ for natural samples
allows to determine such stress value during the growth, and
consequently the depth of the rock during the stylolite prop-
agation. Assuming as an order of magnitude p0 ∼ σs and
typical values for the limestone elastic properties and the
water calcite reaction rates, L∗ ∼ 1mm leads to a typical
depth of 1 km. Stylolites can thus be considered as fossils
of the stress magnitude.

We solved the dynamic equation (46) with an event-
driven algorithm where the fastest dissolving grain is re-
moved at each step. The problem is considered as
L−periodic and the long-range elastic kernel p.p.

∫

dy
∂yz

x−y
=

−p.p.
∫

dy z(x)−z(y)

(x−y)2
is replaced by its finite-size form

−p.p.
∫ L

0
dy z(x)−z(y)

sin2(π(x−y)/L)
π2

L2 . This standard form can be ob-
tained by solving the elastostatic equations in the Fourier
space and performing an inverse Fourier integration. When
a new grain is reached, the realization of its quenched dis-
order η is evaluated using a Gaussian distribution. For the
dissolution surface simulated which is 4096ℓ long, 8000000
grains were dissolved.

3.2. Analysis of the small-scale and large-scale

roughness of the saturated interface

The simulation of the calcite-water system leads to the
growth of a dissolution interface. Starting from a flat inter-
face and after a certain transient time, the Fourier modes
saturate to a characteristic amplitude. A snapshot of the
developed stylolitic interface is shown in Figure 7.

This interface fluctuates around the average progress-
ing flat dissolution front. The Fourier power spectrum
P (k, t) = ‖z̃(k, t)‖2 of each front z(x, t) is extracted, and the

ensemble average of this power spectrum P (k) =
〈

‖z̃(k)‖2
〉

is obtained for developed interfaces, by averaging over all
fronts after 80000 grains have been dissolved. The expected
small and large scale self-affine characteristics correspond
to the theoretical predictions, as shown in Figure 8. Indeed,
the power-spectrum is a power-law of scale, with two dif-
ferent exponents at large and small scale, and a cross-over
length around the scale L∗: For k > 2π/L∗ i.e at small
scale, we have P (k) ∼ k−1−2ζ with ζS = 1.2, and for the
large scales, the roughness exponent is found to be around
ζL = 0.35. The straight lines in the bilogarithmic axes (Fig-
ure 8) correspond to these power law behaviors, determined
by linear regression over the two domains k > 2π/L∗ and
k < 2π/L∗. The ensemble used for the roughness estimate is
the following: it corresponds roughly to 100000 grain being
dissolved after the first 80000 first ones, which are discarded.
We thus compute the average power spectral density profiles
over all these states, representative of a saturated situation
with fluctations of the Fourier mode amplitude around some
characteristic magnitude for each wavelength. The linear re-
gression have been performed in bilogarithmic space on the
ranges 0 < log10(k) < 1.5 and 2 < log10(k) < 3, with k−unit
of 2π/L, with L = 4096ℓ and a grain size ℓ = 10µm. The
standard error bar provided by the linear regression over
this two ranges is around ±0.2 in slope (i.e. ±0.1 for the
Hurst exponents ζ).

Thus, we find that the scaling of saturated surfaces in
this model is compatible with observations made on natural
surfaces, and with the previous analytical predictions.

In addition, the dynamic behavior of these models (Ed-
wards Wilkinson in a quenched noise [Roux and Hansen,
1994], or elastic string in a disordered landscape [Tanguy
et al., 1998]) is known. The prefactor (characteristic time)
associated with the dynamics can be evaluated through the
previous computations from the rock material properties.
The time to saturation at an observation scale of a few cen-
timeters is estimated to be around a few thousands of years.
The stylolite roughness is hence always in a saturation state
for a geologist at small observation scale.

However, for longer systems, e.g. decametric ones, much
longer times would be required for saturation. Such long sty-
lolites are sometimes observed but rarely analyzed in terms
of scaling of the height. To our knowledge, the only analysis
performed on decametric size stylolites [Laronne Ben-Itzhak ,
2011; Laronne Ben-Itzhak et al., 2012b] showed that these
large scale structures were not saturated. This means that
the time during which the stylolitization was active on such
very long stylolites was only enough to lead the small scales
to saturated amplitude, but not the large ones (above a few
tenth of centimeters).

Figure 8. Average power spectrum of simulated
stylolitic fronts, in bilogarithmic representation. The
k−unit is 2π/L, with L = 4096ℓ and a grain size ℓ =
10µm. The vertical unit is arbitrary. The crossover is
obtained at 2π/L∗.
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Figure 9. Profiles 1, 2, 3 and 4 from right to left. A
core from the Dogger formation (EST433 well) was cut in
three parts to obtain four profiles. Each profile was pho-
tographed at high resolution. The picture at the bottom
shows the profile number 2.

Figure 10. Functions obtained from profiles 1, 2, 3 and
4. A grey-level threshold was imposed on the pictures to
isolate the stylolites. The functions were then obtained
by selecting the mean limit of the pixels.

4. Example: Application of the model to
natural data

The model is applied to a sedimentary stylolite col-
lected in a core at the Andra (French national radioactive
waste management agency) Underground Research Labora-
tory (URL) at Bure in Eastern France. The selected sample
comes from the borehole EST433 at a depth of 720 m. The
host rock is a fine-grained, homogeneous grainstone from the
Dogger age. The core was cut in three parts thus giving four
profiles for analysis (Figure 9).

Profiles 1 and 2 and profiles 3 and 4 are spaced by 3
mm (thickness of the drilling saw) and profiles 2 and 3 are
spaced by 30 mm. Each profile has a length around 90 mm.
The stylolites were photographed at a resolution of 30 µm.

Table 1. Summary of the cross-over length found for the
four profiles analyzed by Fourier power spectrum (FPS) and
average wavelet coefficient (AWC).

Profile number 1 2 3 4 Average, L̄∗

L∗

FPS (mm) 1.14 0.37 0.37 1.13 0.75±0.51
L∗

AWC (mm) 1.95 1.52 0.72 1.60 1.45±0.64

A systematic method was used to extract profiles from the
photographs. It consists on isolating the black pixels con-
stituting the clay particles in the stylolite from photographs
converted in grey level pictures. The profiles will be used
as functions in the spectral analysis (integral transforms)
and thus are required to be single-valued. Stylolites show a
self-affinity geometry [Schmittbuhl et al., 1995; Barabási and
Stanley , 1995] meaning that they are statistically invariant
under an affine transformation. Thus, for ∆x and ∆y the
horizontal direction amplitude and ∆z the vertical direc-
tion amplitude: ∆x → λ∆x, ∆y → λ∆y and ∆z → λζ∆z,
where λ can take any value and ζ is the Hurst exponent
which describes the scaling invariance [Schmittbuhl et al.,
2004; Renard et al., 2004]. As in Ebner et al. [2009b] we
used both the Fourier power spectrum [Schmittbuhl et al.,
1995] and the averaged wavelet coefficient [Simonsen et al.,
1998] signal processing methods to analyse the profiles (Fig-
ure 10). We used two different methods to check the re-
peatibility of the results. First we calculated the Fourier
power spectrum P (k), which is the square of the modulus of
the Fourier transform, as a function of the wave-number
k (k = 2π/L, where L is the wavelength). The power
spectrum expressed as a function of the length for a self-
affine profile behaves as P (L) ≃ L2ζ+1. We calculated also
the averaged wavelet coefficient spectrum as a function of
the scale a with Daubechies 4 wavelets which behaves as
W (a) ≃ a1/2+ζ .

The results show the two scaling regimes predicted by the
theory presented above, described by two different power
laws. Figure 11 shows the Fourier power spectrum for the
profile 1 as a function of the length L. The raw data are
more concentrated at small scale. The lower limit for the
length corresponds to the Nyquist length which is the reso-
lution multiplied by 2. As the profiles have a finite-size the
upper limit for the analysis (corresponding to small wave-
number) is given by the size of the profile. To analyze the
data, we apply a logarithmic binning so that the weight on
each point is equal. To estimate the cross-over length, we
used a linear-by-part fit with a cross-over function chang-
ing the scaling law from small to large scale as explained in
Ebner et al. [2009b]. The averaged wavelet coefficient spec-
trum (Figure 12) does not require a binning. The same kind
of fitting was used to appraise the cross-over length L∗.

The intersection between both regimes (whose slopes are
imposed by ζS = 1 and ζL = 0.5 for small and large scale
respectively) gives the cross-over length L∗. We summarize
the estimated cross-over length for all the analyzed profiles
with both methods in Table (1). The uncertainties on the
cross-over length (68% and 44% for Fourier power spectrum
and averaged wavelet coefficient respectively) are due to the
spatial variability of the intersection between the small and
large regimes.

5. Discussion

5.1. Interpretations of the estimated paleostress

We discuss three theories about the meaning of the esti-
mated paleostress for the studied sedimentary stylolite:

• Present day stress: if the conditions for pressure-
solution (lithostatic pressure in competition with the pres-
ence of a fluid at an appropriate state of equilibrium) are
present, a stylolite should show the present day state of
morphology and is still evolving. This means that we should
measure the current applied stress and see the last evolution
of the morphology. This can be compared with recent stud-
ies where vertical and horizontal stresses were measured in
boreholes at Bure [Wileveau et al., 2007; Gunzburger and
Cornet , 2007] to assess if the estimated stress corresponds
to the measured ones.
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• Evolution stopped: this can occur if the lithostatic
stress becomes too small to encourage the process (change
in the magnitude due to a tectonic phase for example). It
can also be associated with the closing of the porosity by
recrystallization. Indeed, if the pore size decreases because
of recrystallization at the pore surface, the surface tension
increases preventing more recrystallization. Thus, the wa-
ter is getting more charged in dissolved materials and the
chemistry of the water changes and can stop the stylolite
evolution. Moreover, the decrease of the pore size can limit
or stop the fluid flow and close the system.

• Reactivation: both previous theories can act on the his-
tory of a stylolite. After its initiation, a stylolite can see its
growth stopped by the kind of process we developped just
before. If in the geological history an event as emerged soil
and/or erosion allows to change the applied stress or to me-
teoritic fluids to flow in the soil, the system can have its
properties changed and pressure-solution process can start
again until it is stopped or it can still evolve.

These three theories will be discussed with regard to the
paleostress results.

5.2. Estimation of the paleostresses

5.2.1. Hypothesis on the basin evolution

To estimate the paleostress from the model developped in
this study, we use the average of the cross-over lengths deter-
mined for the four profiles. The cross-over length is related
to the stresses by equation (38). However, this equation
can be simplified by making assumptions on the surround-
ing rock formation. We use the same assumptions as in
Ebner et al. [2009b] for the stylolites from Cirque de Nava-
celle (Cévennes, France) considering that the initiation of
stylolites occurs at the early stage of a basin. The major
principal stress is vertical (σzz) as we analyzed a sedimen-
tary stylolite. The principal horizontal stresses are isotropic
(σxx = σyy). Thus the mean stress p0 and the shear stress
σS are:

p0 = −(2σxx + σzz)/3 (51)

σS = σxx − σzz (52)

As stylolites are known to develop in the early stage of sed-
imentation of basins, the strain is assumed to be uniaxial:

σxx = σyy =
ν

1− ν
σzz (53)

Using equations (51-53), equation (38) becomes:

σ2
zz =

γE

αβL∗
(54)

where

α =
1

3

(1 + ν)

(1− ν)

(1− 2ν)

(1− ν)
(55)

is a dimensionless geometrical factor. The geometrical fac-
tor β (equation 37) is β = ν(1 − 2ν)/π. Using the average
cross-over length L̄∗ in equation (54), we can estimate the
main principal paleostress σzz. The Poisson’s ratio ν of the
host rock was determined by measuring the P and S elastic

Table 2. Summary of the estimated paleostress for the sty-
lolites from the cross-over length.

γ(J ·m−2) Eup(GPa) ν α β

0.27 36.2±0.4 0.37±0.04 0.32±0.01 0.033±0.007

Figure 11. Fourier power spectrum of the profile 1. The
raw data were binned logarithmically to run a linear-by-
part fitting on the data [Ebner et al., 2009b]. Two differ-
ent scaling regimes are observed at small and large scale
with Hurst exponent around 1 and 0,5 respectively. The
fit reveals a cross-over length L∗ around 1.14 mm.

Figure 12. Averaged wavelet coefficient spectrum of
the profile 1. A linear-by-part fitting were run on the
data [Ebner et al., 2009b]. Two different scaling regimes
are observed at small and large scale with Hurst exponent
around 1 and 0.5 respectively. The fit reveals a cross-over
length L∗ around 1.95 mm. This is in good aggreement
with the length inferred using the Fourier power spec-
trum method.

wave velocities (ν = 0.5(VP /VS)2−1

((VP /VS)2−1)
). The relative errors for

the measurements of VP and VS are 1 and 2% respectively
[Benson et al., 2005]. The relative error for the Poisson’s ra-
tio is thus equal to 12%. Consequently, α and β have error
bars equal to 2% and 22%, respectively. The last constant to
be determined is the Young’s modulus. The next paragraph
details our choices for this matter.
5.2.2. Uncertainties on the Young’s modulus E

In their paper, Ebner et al. [2009b] determined E assum-
ing the vertical stress is equal to the lithostatic stress as in
equation (56) where z is the current depth of their samples.
They plotted the determined stress as a function of L−1/2.
The slope of the curve is proportional to E1/2 (see equation
(54)). They found E = 15 GPa which is the lowest accept-
able limit for limestones [Clark , 1966]. Based on uniaxial
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loading made in our laboratory, we determined E = 36.2
GPa for the rock surrounding the analyzed stylolite. Consid-
ering that the limestones from Bure replaced in the geolog-
ical context of the Paris basin cannot be excessively harder
than what we observe today, the value determined in the
laboratory is taken as the upper limit for E. Thus we can
estimate the paleostress in a small range of E. The values
used for the calculation of the paleostress are summarized
in Table (2).

To calculate the paleostress σzz, we take into account
the error bars for each parameter. The computed error for
the calculation of σzz is 66% for the Fourier power spec-
trum method and 54% for the averaged wavelet coefficient
method. The results are summarized in Table (3).

5.3. Geological context

By doing some assumptions on the sedimentary overbur-
den, the depth of development of the stylolite can be as-
sessed. The lithostatic pressure σzz can be expressed as:

σzz = ρgh (56)

where ρ is the density in g · m−3, g is the Earth’s gravity
(g = 9.81 m · s−2) and h is the depth in m. We make the
assumption that at the initiation of the stylolite, linked to
the early stage of formation of the sedimentary basin, the
overburden was made of limestones only. Thus, we consider
the density of limestones ρ = 2710 g · m−3. The estimated
depths of development of the stylolites are summarized in
Figure (4). The error bars on h are of the same order as for
the paleostress.

Now we can wonder what is the interpretation of the esti-
mated paleostress with regard to the three theories exposed
previously:

1. Wileveau et al. [2007] and Gunzburger and Cornet
[2007] measured the vertical stress at Bure which is equiv-
alent to the lithostatic pressure as in equation (56). Our
results show that the calculated depth corresponds to the
depth where we cored the analyzed stylolite. Thus the stud-
ied stylolite is more likely to be still active and to show the
present day stress.

2. André et al. [2010] discussed about a reactivation of
the stylolitization during the Tertiary age (end of Creta-
ceous more precisely) by the change in the stress orienta-
tion or by the emergence of the Cretaceous sediments which

Table 3. Results for the calculation of the paleostress σzz us-
ing the averaged cross-over length for the Fourier power spec-
trum (FPS) and average wavelet coefficient (AWC) methods.
We calculated the paleostress taking into account the variabil-
ity of the Young’s modulus E where Elow is the lower limit for
the Young’s modulus for limestones and Eup is the determined
Young’s modulus for the studied sample.

Paleostress (MPa) L̄∗, Elow L̄∗, Eup

σFPS 22.6±14.9 35.1±23.2
σAWC 16.3±8.8 25.3±13.7

Table 4. Results for the calculation of the depth for the
Fourier power spectrum (FPS) and average wavelet coefficient
(AWC) methods. We consider an early stage of formation of
a sedimentary basin with an overburden made of limestones
only.

Depth (m) L̄∗, Elow L̄∗, Eup

hFPS 850.1±561.1 1320.3±871.4
hAWC 613.1±331.1 951.7±513.9

were eroded and permitted to meteoritic fluid to spread in
the sediments. This reactivation process could have acted
on the growth of the studied stylolite until today. But still
it seems that the theory of the present day stress is more
applicable on that example.

6. Conclusions

Analysing the local boundary conditions due to the fact
that the inside of a stylolite does not sustain shear stress
and an elastic surrounding, we derived the dependence of
the free energy along a stylolite surface on the shape of the
stylolite. Adding up a surface energy term we derived a dy-
namic surface evolution model for a stylolitic interface. This
model, in the situation where a stylolite is perpendicular to
the largest principal stress axis - as in most case - includes
terms that lead to the stabilization of the surface dynam-
ics, i.e. to the vanishing of initial perturbations towards a
flattening surface. Hence, the presence of disorder linked
to the heterogeneities of the material properties is required
to explain the rough nature of stylolites. Introducing such
non correlated quenched disorder, the model predicts the
occurence of two scaling laws. At small scale, a destabi-
lizing disorder competing with a stabilizing surface energy
term give a model similar to the Edwards Wilkinson model
in a quenched noise leasing to a saturated surface with a
Hurst exponent around 1. At large scale, the competition
between destabilizing disorder and stabilizing elastic interac-
tions is similar to models of evolution of an elastic interface
in quenched disorder leading to a Hurst exponent of 0.5.

The cross-over scale between these two scaling regimes
was shown to be directly linked to the stress magnitude.
Hence, the determination of this cross-over and other physi-
cal rock properties allows to use stylolites as markers of the
paleostress magnitude.

Both scaling laws and the dependence of this cross-over
scale on the stress magnitude were derived in two ways: by
purely analytical derivation and similarity to known models
in section 2 and by numerical integration in section 3.

Importantly, it should be noted that the elastic forces,
depending on the boundary conditions, can be stabilizing,
as here, or destabilizing. The existence of several models
and techniques of global or local calculation of the free en-
ergy can raise the question of a stabilizing or destabilizing
nature of the elastic forces in the context of a stylolite. Inde-
pendently from the derivation carried out in details in this
paper, we note the following argument that can distinguish
between stabilizing and destabilizing terms. The only differ-
ence between models with stabilizing or destabilizing elastic
kernel is the sign of the prefactor in front of the elastic op-
erator in the dynamic equation. However, when this sign is
reverted, all large scale wavelength Fourier modes become
unstable (with a selection of fastest growing mode, as e.g.
shown in Misbah et al. [2004] or Bonnetier et al. [2009]). Nu-
merical simulations similar to the ones shown above, with
a destabilizing mode, do not lead to any saturation of the
amplitude of the large modes at long times, and the Fourier
power spectrum at a given time does not display any scal-
ing law at fixed time for the large scales. Thus, the scaling
laws observed in field stylolites are compatible with a model
where elastic forces are stabilizing: we take this as a good
sign of validity of the proposed approximations to take the
boundary conditions into account in the proposed model.

The results from both analytical and numerical indepen-
dent resolutions presented in this study are also consistent
with three other independent observations:

• The existence of two Hurst exponents at small and large
scales, as observed in Schmittbuhl et al. [2004], in the stylo-
lites from the log cores of Bure (section 4).
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• The results of recent molecular dynamic models of dis-
solution with pressure reliance and surface energy terms in
the free energy displaying similar scaling laws and an identi-
cal law for the dependence of the cross-over length over the
applied stress [Koehn, 2012].

• The model was applied in a previous study to stylolites
found at various depths in a limestone formation at Cirques
de Navacelles (Cévennes, France). The inferred formation
stresses were compatible with the derived weight of over-
burden at the time of formation [Ebner et al., 2009b].

We show finally on the example of sedimentary stylolites
in Bure, how the confinement stress can be derived from
morphological studies of stylolites. The ubiquitous nature
of these pressure-solution features makes them a versatile
marker for paleostress magnitude that can give access to
the stress during the growth of stylolites. This easily avail-
able paleostress marker opens the way for systematic studies
of paleostress in large rock formations for different stylolite
families. However, it must be used carefully as the error
bars are not minor. An important number of measurement
is required to constrain the results. Together with dating
indications for the time of occurence of such stylolites (as
e.g. times of tectonic events) and current stress assessment
methods it opens the way for the determination of stress
evolution in large basins, which is a key to understand their
evolution.
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