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Regularity of minimal and almost minimal sets and cones:

J. Taylor’s theorem for beginners

Guy DAVID

Abstract. We discuss various settings for the Plateau problem, a proof of
J. Taylor’s regularity theorem for 2-dimensional almost minimal sets, some
applications, and potential extensions of regularity results to the boundary.

1. Introduction

The main purpose of this text is to present some of the techniques used to prove
the local regularity of minimal and almost minimal sets in a domain of Rn. The
notion of minimality that we shall use is a minor modification of Almgren’s notion
of “restricted sets” (see [Al3]), which seems to be very good to describe soap films
or bubbles away from the boundary sets where the films are attached.

We shall first present a natural context where Almgren minimal sets arise (typ-
ically, Plateau problems for soap films). This will provide a motivation for the rest
of the paper, but we shall refer to an oncoming paper in a conference proceedings
[D8] for more detail about the different settings for Plateau problems.

In the present text, we shall insist more on regularity properties of minimizers
away from the boundary, and in particular we shall explain a proof of Jean Taylor’s
theorem from [T2], which says that if E is a two-dimensional soap film or bubble
in R

3 (we shall say, an almost minimal set), then each interior point of E has a
neighborhood where E is C1-equivalent to a minimal cone. In this case, the list
of minimal cones is known; there are only three simple types, which can be easily
seen in real soap films and bubbles.

Incidentally, we give a slightly different meaning to films and bubbles here.
For soap films, we think about sets that locally minimize the area, which in the
case of smooth surfaces would imply that the mean curvature vanishes. For soap
bubbles, there may be air trapped inside, which leads to minimizing a slightly more
complicated functional and would in the smooth case yield surfaces with constant
mean curvature (given by the difference between two pressures). In the case of
bubbles, and also if we add smaller forces, our sets will only be almost minimal
(but most of the known theorems will still be true with similar proofs).

After the initial presentation of Plateau problems (and some easier variants)
in Section 2, we shall define minimal and almost minimal sets, and list the known
general interior regularity results, which happen to be valid in larger classes of
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quasiminimal sets: these sets (of all dimensions d) are locally Ahlfors-regular and
uniformly rectifiable, the Hausdorff measure Hd is lowersemicontinuous along se-
quences of reduced (uniformly) quasiminimal sets, and finally the various classes
are stable under limits (Section 3).

Then we shall state J. Taylor’s result and a partial generalization to two-
dimensional almost minimal sets in higher ambient dimensions, and describe the
main ingredients of a proof (a long Section 4).

In Section 5 we shall address a Bernstein problem (if E is a reduced minimal
set of dimension 2 in the whole R

3, is it a cone?), and its variant in the slightly
different Mumford-Shah setting.

In Section 6 we shall mention two cases of simpler variants of a Plateau problem
(but without boundary conditions) for which the regularity results presented above
lead to existence theorems.

We shall also rapidly present a program of extension of some regularity results,
all the way up to the boundary, for potential solutions of some type of Plateau
problem, with sliding boundary conditions. See Section 7.

This text partially relies on transparencies that the author used for series of
lectures in Evian (2008) and Grenoble (2010), and its content is somewhat different
from the lectures in Montreal. The author wishes to thank the organizers of the
seminar for their kind welcome and perfect organization, Ken Brakke for the au-
thorization to use pictures from his site, T. De Pauw, F. Morgan, and V. Feuvrier
for useful discussions and help with the references, and the referee for a careful and
indulgent reading.

2. Plateau problems

Joseph Plateau (1801-1883) was really interested in soap films, and in particular
described the typical singularities that will be mentioned below. See the book
[Pl] from 1873, which is also very interesting for the description of lots of other
funny experiments in physics. Some people also mention Lagrange (near 1760)
in connection with the Plateau problem; he was clearly interested in variational
problems, but I am not sure about soap films in particular.

Plateau’s problem usually refers to the question of existence of sets of minimal
area that are bounded by a given set (typically, a curve in R

3). Everyone agrees
on this, but the precise meaning of the words “area” and “bounded by” may differ
considerably. This is why I decided to talk about Plateau problems in the plural.

In this section we shall mention a few ways to state a Plateau problem; this will
provide a good motivation for the rest of the paper, but we shall announce no new
solution to any Plateau problem. Please forgive the very schematic descriptions
below; the author will try to be more precise and give more simple examples in
[D8].

2.1. Douglas and the parameterized surfaces. Let Γ ⊂ R
n be a reason-

ably smooth simple loop. Denote by D the unit disk in R
2, and parameterize Γ by

g : ∂D → R
n. The simplest way to state a Plateau problem is to look for Lipschitz

mappings f : D → R
n, such that f|∂D = g, and which minimize the area

(2.1) A(f) =

∫

D

Jf (x)dx,

where Jf (x) denotes the positive Jacobian of f at x.
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This looks nice, but there are two problems with this approach. The first
one is that many functions g and even more functions f may describe the same
objects Γ and f(D), and it is not always clear which ones to choose. Also, and as
a consequence of this too, we get the following obvious complication when we try
to prove an existence result. Take a minimizing sequence {fk}; this means that

(2.2) lim
k→+∞

A(fk) = inf
{
A(f) ; f : D → R

n is Lipschitz and f|∂D = g
}
.

We cannot assume that the Lipschitz constant for fk stays bounded (we would be
solving a quite different problem). So, even if (usually after extracting a subse-
quence) the sets fk(D) converge nicely to a set E, it is unlikely a priori that the
fk will converge to an acceptable limit f , instead of having badly degenerating
Lipschitz constants, or even that E will remember something useful from (2.2).

In the present case where Γ is a curve and we look for a 2-dimensional surface,
we can decide to use conformal parameterizations, which have the good properties
to exist in dimension 2, and to have good compactness properties. This approach
was taken (among many others) by R. Garnier [Ga], and Tibor Radó [Ra] (1930). In
1931, J. Douglas [Do] obtained an optimal existence theorem, using the following
simple but bright idea. We decide that f will be the harmonic extension of g
in D (not unrealistic given what conformal parameterizations can be), translate
everything in terms of g, and get that we just need to minimize the functional

(2.3) B(g) =

∫ 2π

0

∫ 2π

0

∑n
j=1 |gj(θ) − gj(ϕ)|2

sin2
(
θ−ϕ
2

) dθdϕ,

where the gj are just the coordinates of g. It turns out that this is easy to do.

This is beautiful, and the paper [Do] is very pleasant to go through, but the
problem that Douglas solves is not exactly what Plateau intended; the surface g(D)
that he gets may cross itself, and near a crossing point everything happens as if
f(D) was composed of completely independent pieces that happen to pass through
the same point. Soap films do not do that: the different pieces would interact and
give different singularities. Typically, they would do one of two things. Either the
two pieces would merge along some set (think about pinching two pieces of surfaces
together), taking advantage that this makes the surface measure of the set f(D)
(which is what the soap film really minimizes) strictly smaller than A(f). Or some
hole would open, giving a minimal set that has a different topology and is no longer
injectively parameterized by a disk.

2.2. Reifenberg and the homology groups. Even if our boundary data Γ
is a nice curve, we do not necessarily want to assume that our solutions are smooth
surfaces, so we shall use Hausdorff measures to define their area. Let us recall that
for d ≥ 0 and E ⊂ R

n, the d-dimensional (exterior) Hausdorff measure of E is

(2.4) Hd(E) = lim
δ→0

Hd
δ(E),

where

(2.5) Hd
δ(E) = cd inf

{∑

j∈N

diam(Dj)
d
}
,

cd is a normalizing constant, and the infimum is taken over all coverings of E by a
countable collection {Dj} of sets, with diam(Dj) ≤ δ for all j.
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Figure 1. Two films that don’t fit Reifenberg’s setting (K. Brakke)

Let us choose the normalizing constant cd so thatHd coincides with the Lebesgue
measure on subsets of Rd; then Hd(E) is the total surface of E when E is a smooth
d-dimensional surface. The advantage is that Hd(E) is defined for all E ⊂ R

n, and
its restriction to Borel sets is a Borel measure (not σ-finite, but this is all right).

Return to the Plateau problem. Let 1 ≤ d < n and a boundary set Γ be given
(for instance, d = 2 and Γ is a nice closed curve). We want to find a “surface” E
“spanned” by Γ, and for which H2(E) is minimal.

For Reifenberg [R1] (1960), this last condition means that E is a compact set
that contains Γ, and the boundary condition is stated in terms of Čech homology
on some commutative group G. We require the inclusion i : Γ → E to induce a
trivial homomorphism from Ȟd−1(Γ;G) to Ȟd−1(E;G). Or we could also take a
subgroup of Ȟd−1(Γ;G), and require that its image vanishes in Ȟd−1(E;G). In
other words, we select a certain number of elements in Ȟd−1(Γ;G), and we want
these elements to be boundaries inside E. In the simple case when d = 1 and Γ
is a curve, we can take the obvious generator γ of Ȟ1(Γ;G), and require that E
contains (the support of) a chain that fills γ.

Then we minimize the area Hd(E) under these constraints. Reifenberg proves

the existence of minimizers in all dimensions, but when G = Z2 or G = R/Z.
This is a Beautiful (although technical) proof by hands, with minimizing sequences
and initial haircuts to make the sets look nicer. Recently, De Pauw obtained the

existence in the 2-dimensional case when the boundary is a finite union of curves
and G = Z (using currents); he also proved that in that case the infimum for this
problem is the same as for the size-minimizing currents of the next subsection. But
even then it is not known whether we can define size-minimizing currents supported
on the sets that he gets. See [Dp].

Reifenberg’s solutions are nice and seem to give a good description of many
soap films. Using finite groups G like Z2, one can even get non-orientable sets E
like Möbius strips. But there are some “real-life” soap films spanned by a curve
that cannot be obtained as Reifenberg solutions. The two films of Figure 1 are like
this (there happens to be a problem with the orientation); see K. Brakke’s home
page for more examples, and maybe [D8] for a short discussion.

Anyway, a more general existence result (as in [Dp] but in the general case)
would be very welcome.
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2.3. Plateau problems for currents. The most celebrated and successful
model is probably the description of films in terms of currents, initiated by Federer,
Fleming, De Giorgi, and others. See for instance [FF], [Fe1].

The most logical way to try to solve a Plateau problem would be to take a
minimizing sequence of (smooth) surfaces, take a subsequence that converges in
some reasonable topology, and show that the limit is a solution to our problem.
The obvious difficulty is that when we choose a topology that is so rough that
subsequences converge, the limit is very unlikely to be smooth.

The approach with currents is in the same spirit as for weak solutions for PDE’s:
first set the initial problem on a much larger class where pleasant compactness
theorems exist, prove existence theorems in this class, and then show that the weak
solutions that we just found are in fact much more regular than expected, and are
acceptable solutions for our initial problem. We need a few definitions.

A d-dimensional current is a continuous linear form on the space of smooth
d-forms. This is thus the same as a d-vector valued distribution. In fact, most of
the distributions that will be used here are (d-vector valued) measures.

The most basic example is the current S′ of integration on any smooth, oriented
surface S of dimension d, which is simply defined by 〈S′, ω〉 =

∫
S ω for every d-form

ω. But the point of the approach is that currents provide a much larger class of
objects, with good compactness properties.

Another standard example that is relevant here is the rectifiable current T de-
fined on a d-dimensional rectifiable set E such that Hd(E) < +∞, on which we
choose a measurable orientation τ and an integer-valued multiplicity m.

Recall that a rectifiable set of dimension d is a set E such that E ⊂ N ∪
⋃

j∈N

Gj ,

where Hd(N) = 0 and each Gj is a C1 embedded submanifold of dimension d. But
we could have said that Gj is the Lipschitz image of a subset of Rd, and obtained an
equivalent definition. We shall only consider sets E such that Hd(E) < +∞ here.
For such a set E and Hd-almost every x ∈ E, E has what is called an approximate
tangent d-plane x + V (x) at x, which of course coincides with the usual tangent
plane in the smooth case. A measurable orientation can be defined as the choice of
a d-vector τ(x) that spans V (x), which is defined Hd-almost everywhere on E and
measurable. We set

(2.6) 〈T, ω〉 =
∫

E

m(x) ω(x) · τ(x) dHd(x),

where we let the reader guess the precise definition of the number ω(x) · τ(x) when
ω is a (smooth) d-form.

The boundary of a d-dimensional current T is defined by duality with the
exterior derivative d on forms, by

(2.7) 〈∂T, ω〉 = 〈T, dω〉 for every (d− 1)-form ω.

When S is a smooth oriented surface with boundary Γ, Green’s theorem says
that ∂S′ = Γ′. Notice that ∂∂ = 0, just because dd = 0.

A normal current is a rectifiable current T such that ∂T is rectifiable too. We
will like to work with normal currents here; the additional constraint on ∂T will not
disturb us, because we are interested in solutions of the equation ∂T = S, where S
defines the boundary constraint and is assumed to be nice.
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Figure 2. A mass minimizer and a size minimizer with the same
boundary (composed of 2 circles oriented the same way)

There are two interesting quantities associated to a current. The first one is
the mass of T , which is just the operator norm of T , where we put a L∞-norm on
the vector space of d-forms. That is, we see T as a measure, and compute its total
mass. When T is the rectifiable current given by (2.6),

(2.8) Mass(T ) =

∫

E

|m(x)| dHd(x).

But we shall also consider the size of T , which when T is given by (2.6) is equal to

(2.9) Size(T ) = Hd
(
{x ∈ E ; m(x) 6= 0}

)
.

Return to Plateau’s problem. The classical way to state it in the setting of
currents is to take a (d − 1)-dimensional integral current S, with ∂S = 0, and
minimize Mass(T ) among all the d-dimensional currents T such that ∂T = S. Of
course the condition ∂S = 0 is needed if we want to solve ∂T = S, since ∂∂ = 0.

With this setting, the use of currents is a great success. There is a compact-
ness theorem that says the following. Let {Tk} be a sequence of normal currents
of dimension d, with supports in a fixed compact set in R

n, and assume that
Mass(Tk)+Mass(∂Tk) ≤M for some fixed M < +∞. Then there is a subsequence
that converges (in some weak norm) to a normal current T . Moreover,

(2.10) Mass(T ) ≤ lim inf
k→+∞

Mass(Tk) and Mass(∂T ) ≤ lim inf
k→+∞

Mass(∂Tk).

We apply this to a minimizing sequence for the problem above (assuming that S
is an integral current that lives on a compact set), and get a current T that solves
∂T = S and minimizes Mass(T ). See [FF] and [Fe1].

Moreover, there are good regularity theorems for mass-minimizing currents,
and the solution T that we find is quite nice. For instance, if d = n − 1 ≤ 7, the
closed support of T is a smooth manifold away from the support of S [Fe2].

Unfortunately, mass-minimizing is not a great model for soap films. We can
guess that, because we know from experience that unlike mass minimizers, 2-
dimensional soap films can have singularities. The problem is the same as for
the solutions of Douglas: rather than minimizing the mass of T , we should prob-
ably minimize its size Size(T ). The difference is illustrated in Figure 2, where the
current suggested on the right has multiplicity 2 on the central disk, and a smaller
size than the sum of the two disks on the left.

But the situation for size minimizers is far from clear. Even when d = 2 and
S is the current of integration on a smooth curve Γ, there is no general existence
result for an integral current T such that ∂T = S and Size(T ) is minimal. The main
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difficulty is that if we want to apply the compactness theorem above to a minimizing
sequence {Tk}, it is not clear that the masses Mass(Tk) will stay quietly bounded,
because we only control the sizes.

There are some encouraging recent partial results by T. De Pauw and R. Hardt
[DpH] where the scheme would be to minimize Size(T ) + εMass(T ), get some uni-
form control on the minimizers, and let ε tend to 0. Also, when d = 2 and S
comes from a finite collection of smooth closed curves Γ, De Pauw showed that the
infimum for the problem is the same as for Reifenberg’s problem above, but for
the moment failed to show that the solutions for Reifenberg’s problem, which exist,
give size-minimizing currents.

We should also mention that some real soap films are not orientable (they may
be Möbius bands, for instance), and then the problem ∂T = Γ does not fit well.
Some ad hoc solutions to this exist (see for instance the clever constructions in
[Br4], with covering spaces), but apparently no general scheme is available.

One can go further in the direction of weak solutions, where the idea is that
maybe currents are not general enough to describe all the soap films. Almgren
[Al2] used varifolds to give another proof of existence for the Reifenberg solutions.
J. Harrison and H. Pugh state the problem and get existence results in terms of
even more general objects called differential k-chains (see [Ha1], [Ha2]); the next
question in such a context is probably a description of what the obtained minimizers
look like, and hence whether they also minimize in a smaller category.

2.4. Sliding Almgren minimizers. Let us propose yet another Plateau
problem, where we return to sets and a possibly more natural existence problem,
but also where we have no good existence result so far.

We give ourselves a finite collection of simple compact boundary sets Γj ⊂ R
n,

0 ≤ j ≤ jmax, and an initial candidate E0 (a compact set such that Hd(E0) < +∞).
We want to minimize Hd in a class F(E0) of deformations of E0 that we define

now. We shall say that E is a sliding deformation of E0, relative to the boundary
pieces Lj, when F = ϕ1(E0) for a one-parameter family {ϕt}, 0 ≤ t ≤ 1, of
mappings such that

(2.11) (t, x) → ϕt(x) : [0, 1]× E0 → R
n is continuous,

(2.12) ϕ0(x) = x for x ∈ E0,

(2.13) ϕt(x) ∈ Γj when 0 ≤ j ≤ jmax and x ∈ Γj,

and

(2.14) ϕ1 is Lipschitz.

We decided to require (12.14) mostly by tradition, but this is negotiable and anyway
we do not require any Lipschitz bound for ϕ1. Let us denote by F(E0) the class of
sliding deformations of E0 (relative to the boundary pieces Lj), and set

(2.15) m = inf
{
Hd(E) ; E ∈ F(E0)

}
.

Obviouslym ≤ Hd(E0) < +∞, but we have to choose E0 and the Lj so thatm > 0,
because otherwise the problem below is not too interesting. Then we ask for the
existence of E ∈ F(E0) such that Hd(E) = m.

A few comments are in order. First, the use of deformations as above is not
really new: the definition by Almgren of restricted sets in [Al3] uses competitors
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for E0 that are Lipschitz images ϕ(E0), even though there is no boundary piece Lj

that one wants to preserve there. A similar problem is implicitly mentioned in [T2],
in the proof of minimality for the cone T over the edges of a regular tetrahedron.
The Surface Evolver software [Br2] also allows this as an option.

We think of our initial set E0 as an elastic shower curtain, which is attached
to the boundary pieces so that it can slide along them, but not be detached.

The most obvious case is when there is a single Γj , which is a nice curve, but we
can also take 2-dimensional boundaries (think about a soap film leaning on a tube),
or mixed problems. Incidentally, 2-dimensional boundaries in R

3 seem interesting
too, and could be easier to treat than curves.

The author likes this problem because it has a nice physical flavor, and also
because it is simple and seems to give a lot of flexibility. We do not need to think too
much about orienting sets, choosing a group, or defining acceptable multiplicities
on them, the initial set E0 will decide about many things for us, and various choices
of E0 will probably lead to most realistic examples.

We could also ask for local minimizers, where we would only allow as competi-
tors the sets E ∈ F(E0) for which Hd(ϕt(E0)) stays below a certain threshold for
all t. Of course it is fairly easy to conceive situations where a real soap film E exists
and is stable, even though there is a long homotopy that deforms E into a point
while preserving the boundary pieces.

But the main problem with this definition of the Plateau problem is that so
far there is no good existence result. Again we are messing around with param-
eterizations (why should there be a nice parameterization ϕ1 for the limit of a
minimizing sequence?), but we can always hope that we will be able to find min-
imizing sequences with a good control on parameterizations. See Section 6 for a
simpler example where something like this can be done.

In spite of the potential difficulties with this problem, we would like to convince
the reader that it is probably interesting to study the regularity of its solutions.
Firstly, it is probably a good idea to study the boundary regularity of solutions of
Plateau problems in general; to the author’s knowledge, very little has been done
in this direction, and the sliding setting that we just described seems to be fairly
appropriate, both because we can keep some control on the minimizers (because
we authorize some sliding of the solutions at the boundary), and because solutions
to other Plateau problems (Reifenberg solutions, or the closed supports of size-
minimizing currents) may be sliding minimizers as well (when we choose them as
the initial E0). [See [D8] for a rapid verification of this fact.] Also, understanding
the boundary behavior is possibly an important step if we want to produce solu-
tions, both because we will know better what to expect and because the proofs
of regularity for minimizers often come with interesting ways to produce better
competitors (and hence better minimizing sequences). We shall give an example of
this, in a much simpler context where there is no boundary condition, in Section 6.

Let us say a little more on this topic. One nice way to try and produce existence
results is to use weak solutions and an appropriate compactness result. But then
it is important to see how regular these weak solutions are, and it would be nice to
do this even near the boundary. It is also possible that the compactness result, or
the verification of boundary conditions for the weak limit of a minimizing sequence,
will be easier if we know that we can restrict to some subclass where we already
have some control near the boundary. At the opposite end, it is possible (and in
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principle much easier) to produce what the author would like to call lazy solutions
to the Plateau problem. In the context of sets (as in this section), a lazy solution
would be a set E such that Hd(E) ≤ Hd(F ) for every F = ϕ1(E), but only for
all the deformations {ϕt} as above that fix every point of the given boundary set
Γ, or even possibly of a neighborhood of Γ. It is easier to produce such solutions,
because you just need to keep a control of a locally minimizing sequence away from
Γ, and you don’t even need to look precisely at what happens along Γ. But then we
cannot say exactly which Plateau problem is solved by our set E, and at the same
time its boundary behavior will probably be much harder to predict. In spite of
this, the author does not know of any example of a lazy minimizer that would look
suspiciously irregular near the boundary, and after all the minimality away from Γ
could imply some regularity at the boundary too.

See Section 7 for some first regularity results for sliding minimizers.

2.5. Other minimization problems. The Plateau problem has the advan-
tage of being simple and celebrated, but there are other problems with the same
flavor, and which are possibly easier to solve. Here we partially repeat suggestions
made in [D5]. We shall also return to this in Section 6, with just a little more
detail.

For instance, fix a simple domain Ω ⊂ R
n, preferably closed (so that our sets

E can lay along a boundary) and with some holes (so that the problem below is
not trivial). Also let M > 0 and a continuous bounded function g : Ω → [1,M ] be
given, and set

(2.16) Jg(E) =

∫

E

g(x) dHd(x) for closed sets E ⊂ Ω.

Then fix a class F of closed subsets, and look for E ∈ F that minimize Jg(E).
It is reasonable to restrict to classes that are stable under small deformations

in Ω. That is, if E ⊂ F and if {φt}, t ∈ [0, 1], is a continuous one-parameter family
of mappings ϕt : E → Ω such that (2.11)-(2.14) hold with the single Γj = Ω, then
ϕ1(E) ∈ F .

Maybe also, if we want to restrict to localized deformations, let r0 > 0 be given
and only require that ϕ1(E) ∈ F for families {φt} such that in addition there are
balls Bt of radius r0 such that for 0 ≤ t ≤ 1,

(2.17) ϕt(x) = x for x ∈ E \Bt and ϕt(E ∩Bt) ⊂ Bt.

The additional flexibility provided by the weight g is not so much the issue here;
we added it to make the existence and computation of minimal sets less trivial in
the following examples. Also, we put this example in a different subsection because
the only left boundary piece Ω plays a much smaller role than above, and we expect
to get existence results more easily than with the standard Plateau problems.

Now there are different types of classes F that one can use, with possibly
different answer. We expect this to depend mostly on how easy it will be to prove
that the limit of a minimizing sequence in F will lie in F as well.

Example 2.18: separation conditions. When d = n− 1, we can give ourselves
two or more sets Aj in R

n \Ω, and take for F the class of sets that separate them.
A simple case is when Ω is an annulus, or the difference between a big ball and a
smaller solid torus, and the Aj are the components of the complement. Here and
below, we need to select Ω and the Aj so that infE∈F Jg(E) > 0, which is why we
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Figure 3. Suggested solutions for Example 2.20. On the left: 2
possibilities for E (d=2). On the right: a section of the solution
with a wire (d=3)

prefer when Ω is not trivial topologically. For such separation problems, we can
state the problem in terms of the separated components, use the compactness prop-
erties of BV to find sets of finite perimeter that minimize, and obtain minimizers
for our initial problem. We do this in [DS2], for instance, but this is very classical.

Example 2.19: homology conditions. We try to do the same thing as before,
but with possibly higher codimensions. We select smooth surfaces ωj in R

n\Ω, that
represent non trivial elements in the (n − d − 1)-dimensional homology of Rn \ Ω,
and we let F be the collection of closed sets E ⊂ Ω for which ωj still represents a
nonzero element in the homology of Rn \ E. Existence results exist, following X.
Y. Liang’s thesis [Li1]. See Section 6 and [Li3].

Example 2.20: deformations of a given set. We just proceed as in the last
section: we give ourselves an initial closed set E0 ⊂ Ω, and call F(E0) the class of
continuous deformations E = ϕ1(E0), where the ϕt are as in (2.11)-(2.13) with the
single Γj = Ω. That is, we are allowed to deform E0, but points are not allowed to
leave Ω. We may (or not) require that ϕ1 be Lipschitz, as in (2.14), and the author
does not know wether this changes the problem.

For instance, we can take n = 2, d = 1, Ω = R
2 \ [B1 ∪B2] (two disjoint open

balls), g = 1, and E0 = ∂B(0, R) (with R large). Here the minimizers are easy to
guess; two cases can occur, depending on whether the balls are far from each other;
see the left part of Figure 3.

Or we can take n = 3, d = 2, Ω = R
3 \ A for some open solid torus A,

g = 1, and E0 = ∂A. Again two cases occur; when A is quite thin compared to its
diameter, the minimizer should be ∂A itself; when A is quite thick, the minimizer
should be the boundary of the convex hull of A, plus an additional wire, which is
part of the topological problem but plays no role in the minimization. See the right
part of Figure 3.

Example 2.20 may look like Examples 2.18 and 2.19, but here we do not
say what topological properties of E0 prevent it from disappearing into a lower-
dimensional subset; thus the minimization problem of Example 3 may be more
precise than in the previous example. Also, in more complicated situations, it may
ve very hard for a nonspecialist to decide whether different topological conditions
will lead to really different classes F or minimizers.

We shall return to this in Section 6 and say why in some cases, existence results
can be derived from regularity results for minimizers.
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3. Almost minimal sets; general regularity results and limits

We shall now focus on the interior regularity of potential solutions of Plateau
problems for sets. We expect the boundary regularity to be somewhat more com-
plicated. We shall only say a few fords about it in Section 7, and in the meantime,
we stay inside.

3.1. Almost minimal sets, reduced sets. The best descriptions of soap
films or bubbles away from the boundary seem to given by Almgren’s notion of
restricted sets, or variants. The definition of almost minimal sets that we give now
is a minor modification of Almgren’s definition, which we just simplify a little.

We work in an open set U ⊂ R
n, to make the definition local and avoid bound-

ary problems. We also use a small gauge function h : R+ → R+ to account
for perturbations (small additional forces, gently inhomogeneous space, etc.), but
please feel free to take h = 0 and concentrate on minimal sets. For the moment we
just assume that h is continuous, nondecreasing, and such that

(3.1) lim
r→0

h(r) = 0,

but a standard choice would be h(r) = Crα, with α > 0 and C ≥ 0.
We consider closed sets E ⊂ U with locally finite Hd-measure and (to make

things simpler) only define competitors F for E in compact balls B ⊂ U .

Definition 3.2. Let B = B(x, r) ⊂ U be a compact ball in U . A competitor
for E in B is a set F = ϕ(E), where ϕ : U → U is Lipschitz (but no bounds are
required), with

(3.3) ϕ(y) = y for y ∈ U \B, and ϕ(B) ⊂ B.

And we say that the closed set E ⊂ U is an almost minimal set in U , with gauge
function h, when for every compact ball B = B(x, r) ⊂ U , Hd(E ∩B) < +∞ and

(3.4) Hd(E ∩B) ≤ Hd(F ∩B) + rdh(r)

for every competitor F for E in B.

Remarks. Again this is a minor variation of Almgren’s definition, which also
allowed competitors in other compact subsets of U , and used an accounting that
was slightly different from (3.4). A few other variants exist, but they would not be
significantly different for what we want to say here.

It is an important feature of the definition that ϕ is not required to be injective.
That is, we are allowed to compare E with other sets obtained from E by pinching
and merging pieces. Generally speaking, in these problems the definition of the
competitors is as important as the accounting.

Note that since B is convex, ϕ = ϕ1 for a one-parameter family of continuous
mappings ϕt that satisfy (3.3) (take ϕt(x) = tϕ(x) + (1− t)x).

It is then clear that solutions of the sliding Plateau problem mentioned in
Section 2.4 are minimal sets in the complement of the Γj , or rather of the ∂Γj (when
some of the Γj are n-dimensional), but this stays true for other Plateau problems.
For instance, the closed support of a size minimizing current T is minimal in the
complement of the (closed) support of the current S that defines the boundary
condition ∂T = S. See for instance [D8].
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The fact that we require ϕ to be Lipschitz is useful to prove this last fact, and
does not make the proofs of regularity of E any harder; otherwise the Lipschitzness
of ϕ is not so important. In the opposite direction, J. Harrison observed that it
may be useful to show that we get the same class of almost minimizers if we require
the functions ϕ in Definition 3.2 to be smooth. This seems true, but we did not
write the proof yet.

A certain number of (unfortunately not so precise) regularity results hold in all
dimensions and codimensions, which we shall state soon.

But let us first observe that even minimal sets of dimension 1 may have sin-
gularities. Indeed, let Y ⊂ R

2 be the union of three half lines emanating from the
origin, and making 120◦ angles. It is fairly easy to see that Y is a minimal set in
R

2, and hence also Y ∩ U is minimal in any open set U .
Smooth minimal surfaces are minimal in small domains, but not necessarily in

big ones. For instance, let E ⊂ R
3 be a catenoid. Then E∩B is minimal in B when

B is a small enough ball, but this is not true when B is a very large ball with the
same center as E: in very large balls B(0, R), E looks a lot like the union of two
parallel very large disks of radius R, that lie at distance log(R) from each other,
and pinching these disks in the middle gives a significantly better competitor.

There is a minor detail that we need to address. If we add to the almost minimal
set E any (closed) set of vanishing Hd-measure, we get another almost minimal set
E′ because (3.4) does not change. This could make our set E look unnecessarily
ugly, so we shall focus our attention to the so-called reduced almost minimal sets.

Definition 3.5. We say that the closed set E ⊂ U is reduced, or coral, when
E = E∗, where

(3.6) E∗ =
{
x ∈ U ; Hd(E ∩B(x, r)) > 0 for all r > 0

}

is the closed support of the restriction Hd
|E of Hd to E.

It is fairly easy to see that Hd(E \ E∗) = 0, and that if E is almost minimal
in U , then E∗ is a reduced almost minimal set in U , with the same gauge function
as E. Because of this, we shall be able to restrict to reduced sets without loss of
generality. See for instance Remark 2.14 in [D6].

In other sources such as [D2, 6, 7], we may say coral rather than reduced,
because there was an earlier notion of reduction with a different definition. The
name “core” for E∗ was introduced in [D2], and is not really widespread. But we
shall mostly say reduced because there is no danger of confusion here.

Notice also that when E minimizes Hd or some functional like Jg above in a
class of F of competitors, we do not say that E∗ lies in the same class, but only
that it is an almost minimal set too. We shall not get any information on E \ E∗,
but such information would be virtually impossible to get anyway.

3.2. Ahlfors regularity and uniform rectifiability. The first important
property of our almost minimal sets is their local Ahlfors regularity.

Theorem 3.7 [Al3], [DS3]. There exist constants ε > 0 and C ≥ 1, that
depend only on n and d, such that if E is a reduced almost minimal set of dimension
d in U ⊂ R

n, with the gauge function h, and if x ∈ E and r > 0 are such that

(3.8) B(x, 2r) ⊂ U and h(r) ≤ ε,
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then

(3.9) C−1rd ≤ Hd(E ∩B(x, r)) ≤ Crd.

We just gave two references here because Almgren did not explicitly state (3.9),
but his statement was very close and his proof essentially works.

Note that local Ahlfors regularity is not really a regularity property, but just a
size condition that says thatE is neither too large, nor too small locally. But it turns
out to be quite useful. The upper bound in (3.9) is not surprising (otherwise, one
imagines that we could deform a part of E into a somewhat smaller d-dimensional
skeleton); for the lower bound, one proves that if E gets too thin near a point,
we can even deform it locally into a (d− 1)-dimensional skeleton and make Hd(E)
smaller. For both estimates, deformations known as Federer-Fleming projections
are used.

To the author’s knowledge, the strongest regularity property that holds for
general almost minimal sets of any dimension is the following uniform rectifiability
result.

Theorem 3.10 [DS3]. There exist constants ε > 0, θ > 0 and N ≥ 0, that
depend only on n and d, such that if E is a reduced almost minimal set of dimension
d in U ⊂ R

n, with the gauge function h, and if x ∈ E and r > 0 are such that (3.8)
holds, then we can find an N -Lipschitz graph G of dimension d such that

(3.11) Hd(E ∩G ∩B(x, r)) ≥ θrd.

Here “N -Lipschitz graph” means that Γ is the image under an isometry of
R

n of the set GA =
{
(x,A(x)) ; x ∈ R

d
}
, where A : R

d → R
n−d is such that

|A(x)−A(y)| ≤ N |x− y| for x, y ∈ R
d.

In the appropriate technical language, E is locally uniformly rectifiable, with
big pieces of Lipschitz graphs (in short, BPLG). We shall not try to discuss here
what it means to be uniformly rectifiable; let us just say that Lipschitz graphs and
images of Rd by bilipschitz maps are uniformly rectifiable, and that the general
uniformly rectifiable set is not much less regular than that. See [DS1] or [D3] for
lots of information on uniform rectifiability. But logically we could expect more
regularity from almost minimal sets than BPLG, even if we can’t prove it.

Almgren [Al3] already knew the rectifiability, and at the time uniform rectifi-
ability did not exist. But Theorem 3.10 is significantly more complicated to prove
than the rectifiability of E.

3.3. Limits of almost minimal sets. The next result helps proving the
stability almost minimality under limits. It is proved in [D1], as a consequence of
Theorem 3.10. But in fact, to the author’s recent surprise, we could also deduce it
from the rectifiability of almost minimal sets and a compactness argument.

Theorem 3.12 [D1]. For each δ > 0, there exist constants ε > 0, and c > 0,
that depend only on n, d, and δ, such that if E is a reduced almost minimal set of
dimension d in U ⊂ R

n, with gauge function h, and if x ∈ E and r > 0 are such
that (3.8) holds, then we can find y ∈ E and t > 0 such that

(3.13) t ≥ cr , B(y, t) ⊂ B(x, r) , and

(3.14) Hd(E ∩B(y, t)) ≥ (1− δ)Hd(P ∩B(y, t))



14 GUY DAVID

for any d-plane P through y.

Of course Hd(P ∩B(y, t)) does not depend on P . In the language of Dal Maso,
Morel and Solimini, E satisfies a uniform concentration property (Hd is almost as
concentrated on E ∩ B(y, t) as on P ∩ B(y, t)). This property was introduced in
[DMS], to prove the lowersemicontinuity of Hausdorff measure along some minimiz-
ing sequences, and then get an existence result for minimizers of the Mumford-Shah
functional for image segmentation. And it is tempting to use it here for the same
sort of purposes. We first need to define local Hausdorff distances and limits.

When E,F are closed sets in U and for B(x, r) ⊂ U , we set

(3.15)
dx,r(E,F ) = r−1 sup

{
dist(y, F ) ; y ∈ E ∩B(x, r)

}

+ r−1 sup
{
dist(y, E) ; y ∈ F ∩B(x, r)

}
,

with the convention that sup
{
dist(y, F ) ; y ∈ E ∩ B(x, r)

}
= 0 when E ∩ B(x, r)

is empty, and similarly for F ∩B(x, r).
Next let {Ek}k≥0 be a sequence of closed sets in U , and E be a closed set in

U . We say that {Ek} converges to E in U when

(3.16) lim
k→+∞

dx,r(Ek, E) = 0 for every choice of x, r such that B(x, r) ⊂ U.

The reader may easily check that this is equivalent to various other natural defini-
tion of local convergence in E for the Hausdorff distance. For instance, we could
have used an exhaustion of U by compact subsets instead of our balls B(x, r). The
advantage of this notion of convergence is that for each sequence {Ek}k≥0, we can
extract a subsequence that converges to a limit E. Maybe see Section 34 in [D2]
for additional (easy) detail. But of course we expect more difficulties when we try
to prove that E inherits good properties of the Ek. Unless we start with a sequence
{Ek} with some uniform good properties.

Theorem 3.17 [D1]. Let {Ek}k≥0 be a sequence of d-dimensional reduced
almost minimal sets in U , with the same gauge function h, and suppose that {Ek}
converges to E in U . Then

(3.18) Hd(E ∩ V ) ≤ lim inf
k→+∞

Hd(Ek ∩ V ) for every open set V ⊂ U

and E is a reduced almost minimal set in U , with the same gauge function h as the
Ek.

The main ingredient in the proof is the lowersemicontinuity estimate (3.18),
which is a consequence of Theorem 3.12 and [DMS] (but see [MoS] for a more
general statement); but some amount of local cutting and pasting is needed too.
Observe that if we did not assume something on the sets Ek, (3.18) would fail
miserably. For instance, Ek could be a dotted line segment of total length 1/2,
which converges to E = [0, 1]; the uniform concentration property above precisely
prevents this behavior.

In the world of mass minimizing currents, the analogue of Theorem 3.17 is a
consequence of lowersemicontinuity of the mass, and is easy to apply because of the
compactness theorem for integral currents. Almgren [Al2] proved a similar theorem
on limits of varifolds, which may be the reason why he apparently did not try (or
care) to prove Theorem 3.17.
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Theorem 3.17 will be used a lot in the next section, because it allows easy
compactness arguments. It also looks like a good tool to prove existence results,
and this was the initial motivation in [D1]. We shall see in Section 6 two examples
where it can be used this way, but often the difficulty will be that E does not
necessarily lie in the same class of competitors as the Ek.

In the context of existence theorems, it may be hard to find an appropriate
sequence of almost minimal sets, but fortunately Theorem 3.17 also works with the
following less restrictive notion of quasiminimal sets.

3.4. Quasiminimal sets. In some contexts it is useful to consider the larger
class of quasiminimal sets, which was introduced by Almgren [Al3], who called them
“restricted sets”.

This time let us give a definition which is essentially Almgren’s. As before, E
is a closed set in U , with Hd(E ∩ B) < +∞ for every compact ball B ⊂ U . We
still compare E with sets F = ϕ(E), where ϕ is Lipschitz, but now we only require
that if

(3.19) Wϕ =
{
x ∈ R

n ; ϕ(x) 6= x
}
,

then Wϕ ∪ ϕ(Wϕ) ⊂⊂ U . Also, the accounting will be different.

Definition 3.20. We say that E is a quasiminimal set with constants M and
scale δ0 if

(3.21) Hd(E ∩Wϕ) ≤MHd(ϕ(E ∩Wϕ))

whenever ϕ : U → U is as above and diam(Wϕ ∪ ϕ(Wϕ)) ≤ δ0.

Before, we only allowed mappings ϕ such that Wϕ ∪ ϕ(Wϕ) is contained in

a compact ball B ⊂ U . We could also do this here, this would give an ap-
parently weaker notion of quasiminimal set, but all the known regularity results
would remain true with the same proofs: we only use mappings ϕ such that
Wϕ ∪ ϕ(Wϕ) ⊂ B ⊂ U in the proofs.

In addition, we could also add an error term and replace (3.21) with

(3.22) Hd(E ∩Wϕ) ≤MHd(ϕ(E ∩Wϕ)) + h(δ)δd,

where h is a gauge function as near (3.1), and where δ = diam(Wϕ ∪ ϕ(Wϕ).
The corresponding class of generalized quasiminimal sets is introduced in [D6], and
the main point is that the usual proofs go through in this case, with only minor
modifications.

The accounting in (3.21) may seem a little strange, but at least it fits well with
functionals like Jg in (2.16). If E minimizes such a functional in a class of sets that
is stable under mappings ϕ as above, then E is a quasiminimal set with constant
M as soon as 1 ≤ g(x) ≤ M everywhere. This is easy to see: if F = ϕ(E) is an
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acceptable competitor,

(3.23)

Hd(E ∩Wϕ) ≤
∫

E∩Wϕ

g(x)dHd(x) = Jg(E)−
∫

E\Wϕ

g(x)dHd(x)

≤ Jg(ϕ(E)) −
∫

E\Wϕ

g(x)dHd(x)

=

∫

ϕ(E)

g(x)dHd(x)−
∫

E\Wϕ

g(x)dHd(x)

≤
∫

ϕ(E∩Wϕ)

g(x)dHd(x) ≤MHd(ϕ(E ∩Wϕ))

by (2.16), because E is minimal, and because

(3.24) ϕ(E) = ϕ(E ∩Wϕ) ∪ ϕ(E \Wϕ) = ϕ(E ∩Wϕ) ∪ (E \Wϕ)

(recall that ϕ(x) = x on E \Wϕ). The same argument shows that E is almost
minimal when g is continuous, with a relation between the gauge function h and
the modulus of continuity of g.

Theorems 3.7, 3.10, 3.12, and 3.17 are still true for generalized quasiminimal
sets. We just need to let ε, C, θ, N , and c depend onM as well, and in Theorem 3.18
the conclusion is that E is quasiminimal with the same M and h as the elements
Ek of the sequence. See [DS3], [D1], and [D6].

The advantage of quasiminimality is a greater flexibility, which will be used
in Section 6. Also see [DS2] for a use of this flexibility in codimension 1 and in a
slightly different context. Finally observe that Theorem 3.10 (the uniform rectifia-
bility of E) is a little less far from optimality in the context of quasiminimal sets,
because Lipschitz graphs and bilipschitz images of d-planes are easily shown to be
quasiminimal (the class of quasiminimal sets is closed under bilipschitz mappings).

4. Jean Taylor’s regularity theorem

Recall that one of the main goals of this paper is to present a proof of Jean
Taylor’s celebrated theorem on the local regularity of 2-dimensional almost minimal
sets.

4.1. Minimal cones. A minimal cone is just a cone which is also a minimal
set. As before, we restrict to reduced sets to avoid ugly additional sets of vanishing
measure. But we shall also accept the cones that are not necessarily centered at the
origin. As we shall see soon, a good knowledge of the minimal cones is important if
we want to understand the local behavior of the minimal sets of the same dimension.

It is easy to check that the (nonempty) minimal cones of dimension 1 in R
n

are the lines, and the sets Y composed of three half lines with the same origin and
that make 120◦ angles at that point. Thus Y is contained in a plane. Also, the
union of two perpendicular lines in R

2 is not minimal (pinch near the center to
make a better competitor). Similarly, the union in R

3 of four half lines with the
same origin is not minimal either (pinch gain). See for instance [M4] or Section 10
of [D6] for the fairly easy description above.

The list of 2-dimensional minimal cones in R
3 is also known, and there are

exactly three types of (nonempty) minimal cones. These are the planes (which we
shall also call cones of type P), the cones of type Y obtained as unions of three
half planes with a common boundary line L and that make 120◦ angles along L,
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Figure 4. Left: A piece of cone of type T. Right: A soap bubble
where the two types of singularities are visible

and the cones of type T obtained as the (positive) cone over the union of the edges
of a regular tetrahedron, centered at the center of the tetrahedron (see the left of
Figure 4). Thus a cone of type T has six faces, that meet by sets of three and with
120◦ angles along four edges (half lines emanating from the center).

We can observe these minimal cones as tangent objects in soap films and bub-
bles; this is not a surprise because we shall see soon that every blow-up limit of
an almost minimal set at one of its points is a minimal cone (see the right part of
Figure 4).

The fact that cones of types P and Y are minimal is easy; for cones of type T,
the best is to use a calibration argument [M2] (see also [LM1]) (integrate against a
carefully chosen vector field and use Green’s theorem to proove that any competitor
(that separates) has a large measure).

The fact that no other cone in R
3 is minimal is more complicated. It is not

too hard to see that the intersection of such a cone with the unit sphere would be
composed of arcs of great circles that make 120◦ angles, but there are quite a few
possible configurations, and one needs to describe them and remove the ones for
which the corresponding cone is not minimal. For instance, the cone over the union
of the edges of a cube is not minimal, but again there are other examples. This
discussion was done by Plateau, Lamarle [La], Heppes [He], and Taylor [T2]. Also
see Ken Brakke’s home page (http://www.susqu.edu/brakke/) for pictures of the
non-minimal cones and better competitors.

The list of 2-dimensional minimal cones in R
n is not known yet. It is fairly

easy to see that the cones of type P, Y, and T are still minimal in R
n, but many

more may exist.
The first new candidates are unions P1∪P2 of two planes of dimension 2. If P1

is orthogonal to P2, a small projection argument shows that P1 ∪ P2 is minimal. If
P1 and P2 make a small angle (and in particular if they are not transverse), we can
pinch P1 ∪ P2 and get a better competitor, so it is not minimal. A recent theorem
of X. Y. Liang [Li1,2] says that if P1 and P2 are almost orthogonal (i.e., assuming
that 0 ∈ P1 ∪ P2, if for some small constant ε > 0, |u · v| ≤ ε|u||v| for u ∈ P1 and
v ∈ P2), then P1 ∪ P2 is minimal. There is a conjecture of Morgan [M3] on the
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precise values of the angles that d-planes P1 and P2 need to make when P1 ∪ P2 is
minimal, but (when d = 2) only the necessary condition was proved [Lw].

The last known new candidate is the product Y × Y of two one-dimensional
sets Y contained in orthogonal 2-planes. This cone is composed of 9 faces (that
correspond to 9 arcs of circles in ∂B(0, 1)), which meet along 6 half lines (that
correspond to the vertices where the arcs meet). At the time of the lectures it was
not known whether it is minimal, but this was recently proved by Liang [Li4].

Other than that, we only have a general knowledge on what the minimal cones
of dimension 2 in R

n, n ≥ 4, look like. Let E be such a cone (centered at 0), and
set K = E ∩ ∂B(0, 1). Then K is a finite union of great circles (circles centered
at 0), and of arcs of great circles. The great circles do not meet each other or the
rest of K, and the arcs of great circles meet at their endpoints, by sets of three and
with 120◦ angles. And in addition we have a lower bound on the length of each arc
of circle. See [D6].

For instance, Y corresponds to 3 half circles, T to 6 shorter arcs, and P1 ∪ P2

to 2 disjoint great circles. But even in R
4 we do not have a full list of candidates

for K and E.
Even less is known for higher-dimensional minimal cones. Almgren [Al1] proved

that if K is a smooth 2-dimensional surface in the 3-sphere, then the cone over K
is not minimal, except if it is a hyperplane. Also, the cone over the union of the
(n− 2)-dimensional faces of the hypercube in R

n is minimal when n ≥ 4 [Br1].

4.2. A statement of Jean Taylor’s theorem (1976), and an extension.

Theorem 4.1 [T2]. LetE be a reduced local almost minimal set of dimension 2
in some open set U ⊂ R

3, with gauge function h(r) ≤ Crα (for some choice of α > 0
and C ≥ 0). Then for each x ∈ E, there is a ball B(x, r) where E is the image of a
minimal cone centered at x by a C1-diffeomorphism of R3 that fixes x.

See Definitions 3.2 and 3.5 for reduced almost minimal sets. Also recall that
there are only three types of minimal cones: the planes and the cones of type Y or
T.

We can make the conclusion a little more precise. There is a minimal cone Z
centered at x and a C1+β-diffeomorphism φ : R3 → R

3, such that φ(x) = x, Dφ(x)
is the identity mapping, and φ(Z) ∩ B(x, r) = E ∩ B(x, r). Here β > 0 is a small
constant, that can be computed in terms of α, but, as far as the author knows, the
optimal β is not known. We have uniform bounds on rφ(r−1x), but an unfortunate
point is that we do not have a good lower bound for r; in particular, we cannot
prove yet that if E is very close to a minimal cone of type T in B(x, r) ⊂ U , and if
h(r) = 0, then E is C1-equivalent to a T in B(x, r/100).

The reader should probably not pay too much attention to the C1 diffeomor-
phism φ, the main point of the conclusion is that near x, E is composed of C1 faces,
that meet along C1 curves with 120◦ angles and with the same combinatorics as for
a minimal cone; the rest would follow from the implicit function theorem anyway.

The two types of singularities (Y and T) really occur in soap films and bubbles,
where they are very easy to produce. See the right side of Figure 4 again.

Our assumption on h is not optimal; if

(4.2)

∫ 1

0

h(r)
dr

r
< +∞



REGULARITY OF MINIMAL AND ALMOST MINIMAL SETS AND CONES 19

we get a biHölder equivalence, and if we ask a little more (for instance, that h(r) ≤
C[log(A/r)]−b for some b > 30) we obtain the C1 equivalence, but the conditions
that we get are probably not optimal. See [D7], Section 13.

The author does not know what is the optimal regularity near the singularities
of E, but away from them (at points where E is locally equivalent to a plane), E
is a standard minimal surface, and hence real-analytic!

Let us mention a slightly more recent generalization of Theorem 4.1 to higher
ambient dimensions.

Theorem 4.3 [D6]. Let E be a reduced local almost minimal set of dimen-
sion 2 in some open set U ⊂ R

n, with a gauge function h such that (4.2) holds.
Then for each x ∈ E, there is a ball B(x, r) in which E coincides with the image,
under a bi-Hölder diffeomorphism of Rn, of a minimal cone.

This looks like Theorem 4.1, and certainly many of the estimates are similar,
but the author suspects that there are also differences in the proof, and does not
really know wether J. Taylor’s proof can be made to work in R

n.
The statements too are different, and Theorem 4.3 is far from being as perfect

as Theorem 4.1. Its main defect is that when n ≥ 4, we do not know the list of
minimal cones. Our statement is less precise because of this: we get that E is close
to a minimal cone, and we can use the general description of minimal cones given
in the last subsection to say that E decomposes into faces, with some combinatorial
and angle constraints, but this is not such a precise information after all.

The bi-Hölder exponent can be taken to be as close to 1 as we want, but even
if h(r) ≤ Crα as above we do not get a C1 equivalence in general. We only prove
the C1 equivalence when some bow-up limit of E at x is a minimal cone with the
so-called “full length” property (see [D7]). This property holds for all the minimal
cones of dimension 2 that we know so far, but other minimal cones could exist, that
maybe don’t satisfy it.

Let us give a definition of the full length property, just to give an idea. Write
K = X ∩ ∂B(0, 1) as a union of great circles or arcs of great circles. Cut them in 2
or 3 pieces when their length is larger than 9π/10, so as to get a collection of arcs
γ of lengths less than 9π/10; thus K = ∪γγ. Call V the set of vertices where the
different arcs meet.

Consider any mapping ϕ : V → ∂B(0, 1), with supx∈V |ϕ(x) − x| small. When
γ is an arc of K with endpoints x and y ∈ V , call ϕ∗(γ) the geodesic from ϕ(x) to
ϕ(y); it is unique because H1(γ) ≤ 9π/10. Set ϕ∗(K) = ∪γ ϕ∗(γ) and call ϕ∗(X)
the cone over ϕ∗(K).

We say that the cone E satisfies the full length property when there exists
c > 0 such that, whenever ϕ above is such that H1(ϕ∗(K)) > H1(K), there is a

competitor X̃ for ϕ∗(X) in B(0, 1) (as in Definition 3.2) such that

(4.4) H2(X̃ ∩B(0, 1)) ≤ H2(ϕ∗(X) ∩B(0, 1))− c[H1(ϕ∗(K))−H1(K)].

There are slightly simpler sufficient conditions, but anyway it seems complicated
to check (4.4) without knowing more precisely what K is. The minimal cones in
R

3 and the known minimal cones in R
n have the full length property (and the

verification is not hard), but the author did not have the courage to check whether
the cone Y × Y ⊂ R

4 has the full length property. Recall that we do not know
whether it is minimal either.
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Figure 5. How to find a deformation of E (on the left) that looks
like the cone over E∩∂B(0, r). The thin annulus is mapped to the
thick one

4.3. The density is (almost) monotone. From now on we describe the
main points of the proof of Theorem 4.1 that was given in [D6], which again is
probably not so different from the original proof. As we shall see, the details are
sometime a little long, but the scheme is fairly easy to understand.

The first main ingredient is a standard of minimal surfaces: the monotonicity
of density.

Proposition 4.5. Let E be a reduced minimal set of dimension d in U ⊂ R
n,

and set

(4.6) θ(x, r) = r−dHd(E ∩B(x, r))

for x ∈ E and 0 < r ≤ dist(x,Rn \ U). Then

(4.7) θ(x, ·) is nondecreasing.

The idea of the proof is simple. Observe that r → Hd(E ∩ B(x, r)) is nonde-
creasing, so it is the integral of its derivative (seen as a Stiljes measure), which is
at least as large as its almost-everywhere derivative. Because of this (and a small
computation), it is enough to check that for a.e. r ≤ dist(x,Rn \ U),

(4.8) r−d ∂

∂r

(
Hd(E ∩B(0, r)

)
≥ d r−d−1Hd(E ∩B(0, r)).

But for almost every r,

(4.9)
∂

∂r

(
Hd(E ∩B(0, r)

)
≥ Hd−1(E ∩ ∂B(0, r))

[we know that E is rectifiable, so we can reduce to C1 surfaces, where eventually
we just need to compute the contribution of a small element of surface to both sides
of (4.9)], so it is enough to show that

(4.10) Hd(E ∩B(0, r)) ≤ r

d
Hd−1(E ∩ ∂B(0, r)).

Then we observe that

(4.11)
r

d
Hd−1(E ∩ ∂B(0, r)) = Hd(Γ ∩B(0, r)),

where Γ denotes the cone over E ∩ ∂B(0, r)). Now [Γ∩B(0, r)]∪E \B(0, r)] is not

directly a competitor for E, but we can approximate it by Lipschitz deformations
of E in B(0, r). [Expand a lot a small annulus near ∂B(0, r) and contract most
of B(0, r) to the origin, as suggested by Figure 5.] The comparison and a limiting
argument yield (4.10) and the monotonicity of θ. �
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Proposition 4.5 has two useful extensions. If E is merely almost minimal in E,
but (4.2) holds, a similar argument yields that θ(x, ·) is almost nondecreasing, in
the sense that
(4.12)

θ(x, r) exp
{
C

∫ r

0

h(2t)
dt

t

}
is a nondecreasing function of r ≤ dist(x,Rn \ U).

Notice that by (4.2) the exponential tends to 1 when r tends to 0, so (4.12) really
means that θ(x, ·) is almost nondecreasing. Also, the nondecreasing function in
(4.12) has a limit when r tends to 0, and so

(4.13) θ(x) = lim
r→0

θ(x, r) exists for every x ∈ E

when (4.2) holds.
Besides, the case when θ(x, ·) is locally constant in Proposition 4.5 is under

control:

(4.14)

if x ∈ E and E is a (reduced) minimal set in B(x, r0)

and θ(x, ·) is constant on ]0, r0[, then E coincides

in B(x, r0) with a (reduced) minimal cone centered at x.

Surprisingly (and maybe out of clumsiness) this requires some additional work
in [D6]; it is not hard to see that equality almost-everywhere in (4.9) implies that
for almost every y ∈ E ∩B(x, r0), the tangent plane to E at y goes through x, but
then we still need to show that E contains the line segment [x, y], and this takes
some time and the complicated construction of a competitor.

We shall often use the following consequence of (4.14).

Lemma 4.15. For each small δ > 0, we can find ε > 0 (that depends on δ
and the dimensions n and d) such that the following holds. Still assume that (4.2)
holds, and that E is a reduced almost minimal set in U , with gauge function h. Let
x ∈ E and B(x, 2r) ⊂ U be such that h(2r) ≤ ε and

(4.16) θ(x) − ε ≤ θ(x, ρ) ≤ θ(x) + ε for 0 < ρ ≤ 2r,

where θ(x) = limt→0 θ(x, t) as above. Then there is a minimal cone Z centered at
x such that

(4.17) dx,r(E,Z) ≤ δ

and, for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(x, r),

(4.18)
∣∣Hd(E ∩B(y, t))−Hd(Z ∩B(y, t))

∣∣ ≤ δrd.

See (4.6), (4.13), and (3.15) for the definitions. When E is minimal, instead
of (4.16) we just need to say that θ(x, 2r) ≤ θ(x) + ε, because of (4.7), but in the
almost minimal case, it is simpler to require (4.16). Also, do not be shocked by
(4.18); when t/r is very small, Hd(E ∩ B(y, t)) is much smaller than rd anyway,
and (4.18) does not say much.

We shall sometimes refer to Lemma 4.15 as the almost-constant density prop-
erty. Lemma 4.15 is deduced from (4.14) and Theorem 3.17 (about limits) by a
standard compactness argument; let us just sketch the proof, and refer to Proposi-
tion 7.24 (which follows from Proposition 7.1) in [D6] for details.

We proceed by contradiction and suppose that for some small δ > 0, Lemma 4.15
does not hold with εk = 2−k. Pick an almost minimal set Ek in a domain Uk ⊂ R

n,



22 GUY DAVID

and a ball B(xk, 2rk) ⊂ Uk which satisfy the hypotheses of the lemma, but not
the conclusion. By dilation invariance, we can assume that xk = 0, rk = 1, and
Uk ⊃ B(0, 2). Then replace {Ek} with a subsequence that converges to some limit
E in B(0, 2). By Theorem 3.17, E is minimal in B(0, 2). More precisely, for each

k0 we can apply Theorem 3.17 with the gauge function h̃k0 = supk≥k0
hk; we use

the fact that hk(2) ≤ εk = 2−k to show that h̃k0 is a gauge function, and apply

Theorem 3.17 to show that E is almost minimal with the gauge h̃k0 . Then we

observe that h̃k0(2) ≤ 2−k0 and get that in fact E is minimal in B(0, 2).
By (3.18),

(4.19) Hd(E ∩B(y, t)) ≤ lim inf
k→+∞

Hd(Ek ∩B(y, t)) when B(y, t) ⊂ B(0, 2).

But the proof of Theorem 3.17 also gives the uppersemicontinuity estimate

(4.20) Hd(E ∩B(y, t)) ≥ lim sup
k→+∞

Hd(Ek ∩B(y, t)) when B(y, t) ⊂ B(0, 2);

the idea of the proof is that if (4.20) did not hold, some Hausdorff measure would
drop when we pass to the limit, and we could use this to construct a strictly better
competitor for Ek. But the proof relies on the construction of Theorem 3.17 and
the fact that the Ek are asymptotically minimal.

Let θ denote the density function associated to E (as in (4.6)) and θk its
analogue for Ek. Notice that for almost every t ∈ (0, 2), Hd(E ∩ ∂B(0, t)) = 0
(the set of t where this fails is at most countable, because the sets E ∩ ∂B(0, t) are
disjoint and Hd(E ∩B(0, r)) < +∞ for r < 2). For such t,

(4.21)

lim sup
k→+∞

θk(0, t) = t−d lim sup
k→+∞

Hd(Ek ∩B(0, t)) ≤ t−dHd(E ∩B(0, t))

= t−dHd(E ∩B(0, t)) = θ(0, t) ≤ lim inf
k→+∞

θk(0, t)

≤ lim inf
k→+∞

θk(0)

by (4.20), (4.19), and (4.16). Set L = lim infk→+∞ θk(0). Since L ≤ lim supk→+∞ θk(0, t)
by (4.16) again, (4.21) says that lim supk→+∞ θk(0, t) = L, and then (looking at
the intermediate inequalities)

(4.22) lim
k→+∞

θk(0, t) = L and θ(0, t) = L.

This holds for almost every t ∈ (0, 2), hence θk(0, t) = L for all t ∈ (0, 2), by (4.7)
and because E is minimal. Then (4.14) says that E coincides, in B(0, 2), with a
minimal cone Z centered at 0.

Since (our subsequence of) {Ek} converges to E, we get that (4.17) holds for
k large. We can also use (4.19) and (4.20) to get that (4.18) holds for some large
k; the verification takes a little time, but is not too complicated (see the proof of
Proposition 7.1 in [D6] for details); the desired contradiction and Lemma 4.15 then
follow. �

4.4. Blow up limits. Let E be a reduced almost minimal set in U , and pick
x ∈ E. A blow-up limit of E at x is any set

(4.23) E∞ = lim
k→+∞

1

rk
[E − x],

where {rk} is a sequence in (0,+∞) that tends to 0. Here the definition of con-
vergence is slightly different, because the domains vary. That is, Uk = 1

rk
[U − x]
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tends to R
n, in the sense that dist(0,Rn \ Uk) =

1
rk

dist(x,Rn \ U) tends to +∞.

Then (4.23) is defined by requiring that

(4.24) lim
k→+∞

d0,R(E∞,
1

rk
[E − x]) = 0 for every R > 0.

By (the proof of) the standard fact that the set of compact subsets of any B(0, R),
with the Hausdorff distance, is itself compact, it is easy to see that from any se-
quence {rk} that tends to 0, we can extract a subsequence such that the 1

rk
[E− x]

converge. So some blow-up limits of E at a given x ∈ E exist. But, without addi-
tional information, we have to expect that E has more than one blow-up limit at
x. We claim that if E is a reduced almost minimal set and E∞ is a blow-up limit
of E at some x ∈ E,

(4.25)
E∞ is a reduced minimal cone in R

n, centered at 0,

and Hd(E∞ ∩B(0, 1)) = θ(x).

Indeed, let {rk} be such that Ek = 1
rk

[E − x] converges to E∞. Notice that Ek is

almost minimal in the domain Uk above, and with the gauge function hk(r) = h(rrk)
(just apply Definition 2.3 and conjugate with a dilation). Then apply Theorem 3.7
in any fixed ball B(0, R), and observe that the hk tend to 0 uniformly in [0, 2R].
We get that E∞ is minimal in R

n (because, as above (4.19), it is almost minimal
in any B(0, R) and with arbitrarily small gauge functions). By (3.18) and as for
(4.19), we get that for t > 0,

(4.26)

Hd(E∞ ∩B(0, t)) ≤ lim inf
k→+∞

Hd(Ek ∩B(0, t))

= lim inf
k→+∞

r−d
k Hd(E ∩B(x, trk))

= td lim
k→+∞

θ(x, trk) = tdθ(x).

Similarly, the same uppersemicontinuity estimate that is hidden in the proof of
Theorem 3.7 and that we used for (4.20) shows that

(4.27)

Hd(E∞ ∩B(0, t)) ≥ lim sup
k→+∞

Hd(Ek ∩B(y, t))

= lim sup
k→+∞

r−d
k Hd(E ∩B(x, trk))

≥ td lim sup
k→+∞

θ(x, trk) = tdθ(x).

So Hd(E∞∩B(0, t)) = tdθ(x) for a.e. t > 0, hence for all t > 0. That is, the density
associated to E∞ at the origin is constant on (0,+∞), and (4.14) says that E∞ is
a reduced minimal cone. We already checked that Hd(E∞ ∩ B(0, t)) = tdθ(x) for
all t, so (4.25) holds.

Of course we expect the minimal cones to be significantly easier to study than
the minimal sets of the same dimension. Thus the almost monotonicity of density
implies a better control on blow-up limits of minimal sets, that in turn we can
try to use to get a good local control of the minimal sets themselves. One could
even dream of using this control to get regularity results for minimal cones of one
more dimension, and prove regularity results by induction. To some extent, this
is what we will do for the 2-dimensional minimal sets, but the program seems
hard to continue, because when we try to go from 3-dimensional minimal cones to
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3-dimensional minimal sets, we apparently need topological information that we
can’t get easily. See Remark 4.78.

Let us say two words about blow-in limits. Suppose that E is a reduced minimal
set in the whole R

n. A blow-in limit of E is any limit of a sequence { 1
rk
E}, where

this time limk→+∞ rk = +∞. We could have used 1
rk

[E − x] for some x, but it
is easy to see that we would have obtained the same limit. The same proof as for
(4.25) yields that if E∞ is a blow-in limit of E,

(4.28)
E∞ is a minimal cone in R

n, centered at 0, and

Hd(E∞ ∩B(0, 1)) = lim
r→+∞

θ(0, r).

4.5. Reifenberg’s topological disk theorem. The following extension of
Reifenberg’s topological disk theorem [R1] will allow us to parameterize our set E,
as in the statements of Theorems 4.1 and 4.3, once we have significant information
on its geometry. It is nice to know that Reifenberg initially proved this theorem in
connection to minimal sets. But, at least in the author’s opinion, we should not put
too much stress on the use of this result, especially for the C1 regularity theorem; it
is natural that a good control on the distance between E and minimal cones, at all
scales and locations, should yield the existence of a nice parameterization. On the
other hand, Reifenberg’s theorem is quite nice in itself, and will be quite agreeable
to use, because it will spare us the tedious construction of a parameterization.
See [To] and [DT] for some other applications and generalizations of Reifenberg’s
argument.

Theorem 4.29 [DDT]. For each τ > 0, we can find ε0 > 0, that depends only
on τ and the dimension n, such that if E ⊂ R

n is a closed set, with 0 ∈ E and such
that for each x ∈ E∩B(0, 2) and r ∈ (0, 2], we can find a minimal cone Z = Z(x, r)
of dimension 2 such that

(4.30) dx,r(E,Z) ≤ ε0,

then there is a minimal cone Z0 of dimension 2 and a bi-Hölder homeomorphism
f : Rn → R

n such that

(4.31) |f(x) − x| ≤ τ for x ∈ B(0, 2),

(4.32) (1− τ)|x − y|1+τ ≤ |f(x)− f(y)| ≤ (1 + τ)|x − y|1−τ for x, y ∈ B(0, 2),

and

(4.33) E ∩B(0, 1− τ) ⊂ f(Z0 ∩B(0, 1)) ⊂ E ∩B(0, 1 + τ).

In the sketch of proof below, we shall just use the special case when n = 3.
Then the minimal cones are known to be of type P, Y, or T. But the general case
is used for Theorem 4.3.

In Reifenberg’s original theorem, one only uses affine d-planes, but on the other
hand all the dimensions and codimensions are allowed.

Notice that Z(x, r) is not necessarily centered at x, (which is better because
otherwise the assumptions would not even hold when E is a cone of type Y centered
near the origin).

We would have preferred to have a quasiconformal mapping f , but even in the
original theorem of Reifenberg this is not always possible, for instance, when E is
the product of a line with a flat snowflake.
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Theorem 4.29 has a C1 variant where one assumes that dx,r(E,Z) ≤ ε0r
α for

some α > 0, and one gets a C1 parameterization at the end. This is the version
that we use in [D7], but although it is obtained in [DDT] as a corollary of the proof
of Theorem 4.29, it could probably be obtained directly and with somewhat less
work.

Reifenberg’s theorem is a nice example where some small local information on
E (namely (4.30)), but known at every scale and location, gives a much better
global control on the set that one would expect a priori. For instance, (4.30) for
the pair (x, r) seems to allow small holes in E, of size ε0r, but in fact, due to the
fact that potential holes have to be small at every scale, they just don’t exist. A
similar theorem that the author likes a lot is the John and Nirenberg theorem on
the exponential integrability of functions in BMO.

An important information that we use many times in the proof is that (4.30)
also forces Z(x, r) to depend fairly nicely on x and r. Because of this, we can rapidly
decompose E ∩ B(0, 2) into the sets of points of type P, Y, and T, depending on
the closeness of Z(x, r) to a cone of type P, Y, and T at small scales r, and one can
show, for instance, that B(0, 1) contains at most one point of type T.

The proof in [DDT] uses the same ideas as in Reifenberg’s original theorem. It
is a typical “top-down” algorithm. We start from an initial cone Z0 (typically, Z0 =
Z(0, 2)), and construct the final mapping f : Z0 → R

n as an infinite composition
of mappings gk that we construct at geometrically decaying scales rk. At the scale
rk, E is locally approached by minimal cones, and we construct gk so that it pushes
the points of the image of Z0 in the direction of E (and of these minimal cones).
Technical details (with partitions of unity and distortion estimates) are needed
because we need to make sure that our mappings are injective, and make the proof
a little long, but the idea is fairly simple.

4.6. J. Taylor’s theorem near a point of type P. Let us now try to
describe the proof of the biHölder part of J. Taylor’s theorem that was given in
[D6].

Of course many technical details will be ignored, and we should also say that
getting the local C1 equivalence is much more difficult than the mere biHölder
equivalence, but at least the scheme of the proof, and some of the challenges for
future generalizations, are reasonably clear in this context. Also, one can argue
that the biHölder equivalence should be enough for many purposes.

So let E be a reduced almost minimal set in U , and let x0 ∈ E be given. We
want to find a small neighborhood of x0 where Theorem 4.29 can be used, and for
this we need to show that E is well approximated by minimal cones near x0. Let
us state this more precisely. For x ∈ E and r > 0, set

(4.34) βc(x, r) = inf
{
dx,r(E,Z) ; Z is a minimal cone

}
;

we want to find r0 > 0 such that

(4.35) βc(x, r) ≤ ε0 for x ∈ E ∩B(x0, 2r0) and 0 < r ≤ 2r0,

with ε0 as in Theorem 4.29. Once this is done, we just have to apply Theorem 4.29
to 1

r0
[E − x0] and conclude.

Now something needs to be done. It is true that

(4.36) lim
r→0

βc(x, r) = 0 for each x ∈ E.
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Indeed, otherwise we could find ε > 0 and a sequence {rk} that tends to 0, such
that βc(x, rk) ≥ ε. Then we could extract a subsequence for which the sets Ek =
1
rk

[E−x] converge to a limit E∞, and by (4.25)E∞ is a minimal cone. By definition,

d0,1(E∞, Ek) tends to 0 for this sequence, but since βc(x, rk) ≤ dx,r(E, x+rkE∞) =
d0,1(E∞, Ek) by definitions, we get a contradiction that proves (4.36).

But (4.36) is not enough for (4.35); we also need some uniform estimates, and
this is the whole point of the arguments that we shall describe below.

To make things simpler, we shall assume that E is actually minimal near x; the
difference is not enormous, but this way we won’t have to deal with error terms.
We shall only describe the argument in R

3; the proof extends to R
n, with some

modifications in the topological parts, but the general idea is the same. Finally, we
may assume that x0 = 0.

Recall from (4.25) that all the blow-up limits of E at 0 are minimal cones,
with the same density θ(0) = limr→0 r

−2H2(E ∩ B(0, r)). There are three types
of minimal cones (P, Y, or T), with different densities π, 3π

2 , and some number

dT > 3π
2 , so all the blow-up limits of x0 are of the same type, determined by the

density θ(0).

In this subsection we just deal with the easiest case when 0 is of type P, which
means that θ(0) = π and all the blow-up limits of E at 0 are planes.

Let ε1 > 0 be small, to be chosen later, and chose a small radius r1 > 0 such
that E is minimal in B(0, 2r1) ⊂ U and

(4.37) θ(0, 2r1) ≤ θ(0) + ε1 = π + ε1.

Let ε2 be very small, to be chosen later. If ε1 is small enough (depending on ε2),
the almost constant density property Lemma 4.15, applied with δ = ε2, says that
we can find a minimal cone Z centered at 0 such that

(4.38) d0,r1(E,Z) ≤ ε2

and

(4.39)
∣∣Hd(E ∩B(y, t))−Hd(Z ∩B(y, t))

∣∣ ≤ ε2r
d
1 .

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(0, r1). We apply this with B(y, t) =

B(0, r1) and get that

(4.40)
Hd(Z ∩B(0, r1)) ≤ Hd(E ∩B(0, r1)) + ε2r

d
1 = [θ(0, r1) + ε2] r

d
1

≤ [θ(0, 2r1) + ε2] r
d
1 ≤ [π + ε1 + ε2] r

d
1

because θ(0, ·) is nondecreasing (by (4.7)), and by (4.37). Hence Z is a plane (cones
of type Y and T have a larger density).

Now let y ∈ B(0, r1/2) be given. Apply (4.39) with t = r1/2 to get that

(4.41)
θ(y, r1/2) = (r1/2)

−dHd(E ∩B(y, r1/2))

≤ (r1/2)
−dHd(Z ∩B(y, r1/2)) + 2dε2 ≤ π + 2dε2

because Hd(Z ∩B(y, r1/2)) ≤ π(r1/2)
d (recall that Z is a plane). By monotonicity

(i.e., (4.7)),

(4.42) θ(y, r) ≤ π + 2dε2 for 0 < r ≤ r1/2.

Then θ(y) = limr→0 θ(y, r) ≤ π + 2dε2 by (4.7). If ε2 is small enough, θ(y) < 3π/2
(the density of cone of type Y), y is a point of type P, and θ(y) = π.



REGULARITY OF MINIMAL AND ALMOST MINIMAL SETS AND CONES 27

Now apply Lemma 4.15 (the almost constant density property) with δ = ε0.
If ε2 is small enough, we deduce from that lemma that there exists a minimal
cone Z = Z(y, r/2), such that dy,r/2(E,Z) ≤ ε0. Therefore, βc(y, r/2) ≤ ε0 for
0 < r ≤ r1/2. Since y was any point of E ∩B(0, r1/2), we just proved (4.35) with
r0 = r1/8.

Notice that we could fairly easily show that Z(y, r/2) is a plane, as we did for
Z near (4.40), and so the standard Reifenberg theorem would have been enough in
this case.

Anyway, this concludes our description of Theorem 4.1, but with a biHölder
equivalence only and when E is locally minimal and x is a point of type P.

4.7. A topological lemma for the existence of Y-points. In the previous
argument, we were lucky with the densities, because we found approximating cones
Z which had the minimal possible density, and this allowed us to apply the almost
constant density property (see below (4.42)). Let us see what happens when we
assume that 0 is a point of type Y, i.e., when

(4.43) θ(0) = lim
r→0

r−dHd(E ∩B(0, r)) =
3π

2
.

We start as above, choose r1 > 0 such that E is minimal in B(0, 4r1) ⊂ U and
θ(0, 4r1) ≤ θ(0) + ε1 ≤ 3π

2 + ε1. Since θ(0, ·) is monotone, we also get that

(4.44)
3π

2
= θ(0) ≤ θ(0, r) ≤ θ(0, 4r1) ≤

3π

2
+ ε1 for 0 < r ≤ 4r1.

Let ε2 be small, as above, and apply the almost constant density property to the
pair (0, 2r1). If ε1 is small enough (depending on ε2, not on r1), we obtain a minimal
cone Z centered at 0 such that

(4.45) d0,2r1(E,Z) ≤ ε2

and

(4.46)
∣∣Hd(E ∩B(y, t))−Hd(Z ∩B(y, t))

∣∣ ≤ ε22
drd1

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(0, 2r1). Apply (4.46) with y = 0 and

t = 2r1 to get that

(4.47)
Hd(Z ∩B(0, 2r1)) ≤ Hd(E ∩B(0, 2r1)) + ε22

drd1

= θ(0, 2r1) r
d
1 + ε22

drd1 ≤
(3π

2
+ ε1 + 2dε2

)
rd1

by (4.44). If ε1 and ε2 are small enough, 3π
2 + ε1 + 2dε2 < dT (the density of a

cone of type T), and Z, which is centered at the origin, cannot be of type T. By
the same argument,

(4.48)

Hd(Z ∩B(0, 2r1)) ≥ Hd(E ∩B(0, 2r1))− ε22
drd1

= θ(0, 2r1)2
drd1 − ε22

drd1

≥
(3π

2
− 2dε2

)
2drd1 > π2drd1

by (4.46) and (4.44), and if ε2 is small enough, so Z is not a plane either. That is,
Z is of type Y. Then

(4.49) Hd(Z ∩B(y, t)) ≤ 3π

2
td
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for every ball B(y, t); the easiest way to see this is to observe that since Z is a
minimal set, t−dHd(Z ∩ B(y, t)) is a nondecreasing function of t (in fact, (4.7) is
also true with the same proof when the center x lies out of E), whose limit at +∞
is 3π

2 . Return to (4.46), and apply it with y ∈ E ∩B(0, r1) and t = r1; this yields

(4.50) Hd(E ∩B(y, r1)) ≤ Hd(Z ∩B(y, r1)) + ε22
drd1 ≤ 3π

2
rd1 + ε22

drd1 ,

by (4.49). Then, by (4.7),

(4.51) θ(y, ρ) ≤ θ(y, r1) = r−d
1 Hd(E ∩B(y, r1)) ≤

3π

2
+ 2dε2

for y ∈ B(0, r1) and 0 < ρ ≤ r1. Denote by

(4.52) EY =
{
y ∈ E ; θ(y) =

3π

2

}

the set of points of type Y in E; (4.51) will be easier to use when y ∈ EY , because
since θ(y) = 3π

2 , we can apply the almost constant density property again, to the
pair (y, ρ/2). We get that for

(4.53) y ∈ EY ∩B(0, r1) and 0 < ρ ≤ r1/2,

we can find a minimal cone Z(y, ρ), centered at y, such that

(4.54) dy,ρ(E,Z(y, ρ)) ≤ ε3

and, as in (4.18),

(4.55)
∣∣Hd(E ∩B(x, r)) −Hd(Z(y, ρ) ∩B(x, r))

∣∣ ≤ ε3ρ
d

for x ∈ R
n and r > 0 such that B(x, r) ⊂ B(y, ρ), with an ε3 > 0 which is as small

as we want (provided that we take ε2 small enough).
This is essentially as good as before, except that it only applies to y ∈ EY .

If we want to continue the argument, we need to be able to find sufficiently many
points of EY . The following existence lemma will help.

Lemma 4.56. Let E be a reduced and minimal set of dimension 2 in B(0, 4),
and assume that there is a cone Y of type Y, centered at 0, such that d0,4(E, Y ) ≤ ε.
Then (if ε is small enough) E ∩B(0, 1) contains at least a point of type Y.

Let us sketch the proof. Incidentally, this is one of the places where it is clear
that J. Taylor used similar arguments. We first need to check that

(4.57) θ(x, 1) ≤ 3π

2
+ η for x ∈ B(0, 2),

where η > 0 is as small as we want.

We prove this by contradiction and compactness. If this fails, we can find
Ek and Yk, with d0,4(Ek, Yk) ≤ εk = 2−k but for which (4.57) fails. By rotation
invariance, we may assume that Yk = Y for a fixed Y , and then {Ek} converges to
Y in B(0, 4).

Since (4.57) fails, we can find xk ∈ B(0, 2) such that θk(xk, 1) ≥ 3π
2 + η, where

θk is the density function for Ek. We may replace {Ek} with a subsequence, so
that {xk} converges to some x ∈ B(0, 2).
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Let ρ > 1 be very close to 1, to be chosen soon. By the analogue of (4.49) for Y
and the uppersemicontinuity estimate that follows from the proof of Theorem 3.17
(and as for (4.20)),

(4.58)

3πρd

2
≥ Hd(Y ∩B(x, ρ)) ≥ lim sup

k→+∞
Hd(Ek ∩B(x, ρ))

≥ lim sup
k→+∞

Hd(Ek ∩B(xk, 1)) ≥
3π

2
+ η

because B(xk, 1) ⊂ B(x, ρ) for k large, and by definition of xk. This is impossible
if ρ is close enough to 1; (4.57) follows.

Return to the sets E and Y of the lemma. Choose η so small that 3π
2 +η < dT ,

where dT denotes the density of a cone of type T. Then θ(x) ≤ θ(x, 1) < dT for
x ∈ E ∩ B(0, 2), by (4.7) and (4.57), and so E ∩ B(0, 2) contains no point of type
T.

Let us proceed by contradiction, and assume that E ∩ B(0, 1) contains no
point of type Y. Then every point x ∈ E ∩ B(0, 1) is of type P, and the part of
Theorem 4.1 that we already proved implies that x has a neighborhood where E is
biHölder equivalent to a plane.

We want to find a curve in B(0, 1) which intersects E three times transversally;
then we will deform this curve to a point inside B(0, 1), say that the number of
intersections stays odd, and get the desired contradiction.

Let us assume for simplicity that Y is composed of three vertical half planes.
Denote by P the horizontal plane through 0, set S = P ∩ ∂B(0, 1/2), and denote
by a1, a2, a3 the three points of S ∩ Y . Since d0,4(E, Y ) ≤ ε, we can find xi ∈ E
such that |xi − ai| ≤ 4ε.

Let Pi denote the (vertical) plane parallel to the face of Y that contains ai,
and which passes through xi. Notice that

(4.59) dxi,10−1(E,Pi) ≤ 100ε

by elementary geometry and because d0,4(E, Y ) ≤ εk. Because of (4.59), and by
the same proof by compactness as for (4.57), we get that

(4.60) θ(xi,
1

20
) ≤ π + η.

Then (if η is chosen small enough) our proof of Theorem 4.1 for points of type P

shows that in B(xi, 10
−4), E is equivalent to a plane, through a biHölder mapping

fi such that |fi(z)− z| ≤ 10−5 for z ∈ R
n, as in (4.31).

We then use the three fi to replace three short arcs of S near the ai with
three short curves, obtained as images of line segments by the fi, and that cut E
transversally (in the local coordinates given by the fi). The rest of S does not meet
E (recall that d0,4(E, Y ) ≤ ε). So we get a curve γ that meets E exactly three
times.

We contract γ inside B(0, 1/2), to a point of B(0, 1/2) \E. With a little bit of
topology, we show that along the contraction, the number of intersections with E
stays odd, which contradicts the fact that it is null at the end. For the topological
verification, which we shall not do here, we manage to reduce to the situation where
we just need to compare two curves that coincide out of a small neighborhood of a
point x ∈ E ∩B(0, 1), where we have seen that E is equivalent to a plane through
a biHölder mapping. In addition, we choose our contraction so that in these local
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coordinates, both curves are piecewise linear and cross E transversally; the fact
that the parity of the number of intersections is preserved is then easy.

This completes our description of the proof of Lemma 4.56. In higher codimen-
sions, the lemma stays true, but we need to replace the final argument with curves
by a little bit of degree theory. �

4.8. How to end the proof at a point of type Y or T. We return to the
the proof of the biHölder variant of Theorem 4.1 near a point of type Y. As we
shall see, nothing very exciting happens after we use Lemma 4.56 to find points
in EY , but we describe the argument with some detail to convince the reader of
precisely that.

Recall that we chose a small radius r1 below (4.43); we want to take r0 =
10−3r1, and prove that

(4.61) βc(x, r) ≤ ε0 for x ∈ E ∩B(x0, 2r0) and 0 < r ≤ 2r0,

which means that we want to find a cone Z(x, r) such that dx,r(E,Z(x, r)) ≤ ε0.
For points of EY , we already found Z(x, r), by (4.53) and (4.54) (and if we

choose ε3 < ε0). So let us consider x ∈ E ∩B(x0, 2r0) \ EY , and set

(4.62) δ(x) = dist(x,EY ) ≤ |x| ≤ 2r0 = 2 · 10−3r1,

where the inequalities come from the fact that 0 is of type Y and x ∈ B(0, 2r0).
Choose y ∈ EY such that

(4.63) |y − x| ≤ 2δ(x) ≤ 4 · 10−3r1.

Let 0 < r ≤ 2r0 be as in (4.61), and set

(4.64) ρ = 10δ(x) + 10r < 10−1r1;

then (4.53) holds, and we can find Z(y, ρ) such that (4.54) and (4.55) holds. In
particular, dy,ρ(E,Z(y, ρ)) ≤ ε3.

If r ≥ δ(x)
20 , we can use Z(x, r) = Z(y, ρ), because then

(4.65)

dx,r(E,Z(x, r)) = dx,r(E,Z(y, ρ)) ≤
ρ

r
dy,ρ(E,Z(y, ρ))

≤ ρε3
r

=
10δ(x) + 10r

r
ε3 ≤ 300ε3 ≤ ε0

since B(x, r) ⊂ B(y, ρ) and if ε3 is small enough. So we may assume that 0 < r ≤
δ(x)
20 .

Denote by L the singular set of Z(y, ρ). Thus L is the line at the intersection
of the faces of Z(y, ρ) if it is of type Y, the union of four half lines emanating from
the center of Z(y, ρ) if it is of type T, and the empty set if Z(y, ρ) is a plane (which
is unlikely). Let us check that

(4.66) dist(x, L) ≥ δ(x)

4
.

Otherwise, we can find ξ ∈ L such that |ξ − x| ≤ δ(x)
2 and, if Z(y, ρ) is of type T,

such that the distance from ξ to the center of Z(y, ρ) is larger than δ(x)
5 . Because

of this, Z(y, ρ) coincides in B(ξ, δ(x)20 ) with a minimal cone Y of type Y, centered
at ξ. Notice that

(4.67) |y − ξ|+ δ(x)

40
≤ |y − x|+ |x− ξ|+ δ(x)

40
≤ 2δ(x) +

δ(x)

2
+
δ(x)

40
<
ρ

3
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by (4.63) and (4.64), so B(ξ, δ(x)40 ) ⊂ B(y, ρ) and hence

(4.68)

d
ξ, δ(x)

40

(E, Y ) = d
ξ, δ(x)

40

(E,Z(y, ρ)) ≤ 40ρ

δ(x)
dy,ρ(E,Z(y, ρ))

≤ 400(δ(x) + r) ε3
δ(x)

≤ 500 ε3

by definition of Y , (4.64), (4.54), and because r ≤ δ(x)
20 . If ε3 is small enough, (4.68)

will allow us to apply Lemma 4.56 to E′ = 160
δ(x) (E − ξ). Indeed E is minimal in

U ⊃ B(0, 4r1), and B(0, 4r1) ⊃ B(ξ, δ(x)40 ) because |ξ|+ δ(x)
40 ≤ |x|+ |ξ−x|+ δ(x)

40 ≤
2r0+

δ(x)
2 + δ(x)

40 ≤ 2r0+ δ(x) ≤ 4 ·10−3r1 by (4.62). Then E′ is minimal in B(0, 4),
and d0,4(E

′, Y − ξ) = d
ξ, δ(x)

40

(E, Y ) ≤ 500ε3 (recall that Y is centered at ξ, and use

(4.68)). So Lemma 4.56 gives a point of type Y in E′∩B(0, 1), and so E∩B(ξ, δ(x)40 )
contains a point of type Y. But then

(4.69) δ(x) = dist(x,EY ) ≤ |x− ξ|+ δ(x)

40
≤ δ(x)

2
+
δ(x)

40
< δ(x);

this contradiction proves (4.66). Then Z(y, ρ) coincides with a plane in B =

B(x, δ(x)10 ). In addition, B ⊂ B(y, ρ) by (4.63) and (4.64), so we can apply (4.55)
to it. We get that

(4.70) Hd(E ∩B(x,
δ(x)

10
)) ≤ Hd(Z(y, ρ) ∩B(x,

δ(x)

10
) + ε3ρ

d ≤
(δ(x)
10

)d
π + ε3ρ

d.

By the monotonicity property (4.7), we obtain that

(4.71) θ(x, t) ≤ θ(x,
δ(x)

10
) ≤ π + ε3

( 10ρ
δ(x)

)d

for 0 < t ≤ δ(x)
10 . Obviously θ(x) ≥ π because x ∈ E, so if ε3 is small enough, we can

apply the almost constant density property (Lemma 4.15) one last time, and get

that for 0 < r ≤ δ(x)
20 we can find a minimal cone Z(x, r) such that dx,r(E,Z(x, r)) ≤

ε0. This is exactly what we needed for (4.61) in our last remaining case, and this
completes our description of the proof when the origin is a point of type Y.

Let us finally say a few words about the last case when 0 is a point of type T.
We do not need an existence lemma for points of type T, because we already have
the origin, and we expect no other point of type T.

Let us only sketch the argument, because it is almost the same as when 0 is
a point of type Y, but longer. We start as before: we choose r1 so small that
θ(0, 4r1) ≤ θ(0) + ε1, and hence also θ(0, r) ≤ θ(0) + ε1 for 0 < r ≤ 4r1. By the
almost constant density property, we can find minimal cones Z(0, r), 0 < r ≤ 2r1,
centered at 0, and such that

(4.72) d0,r(E,Z(0, r)) ≤ ε2

and

(4.73)
∣∣Hd(E ∩B(y, t)) −Hd(Z(0, r) ∩B(y, t))

∣∣ ≤ ε2r
d

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(0, r).

When we apply this with y = 0 and t = r, we see that Hd(Z(0, r) ∩B(y, t)) >
3π
2 t

d (because θ(0, r) ≥ θ(0) = dT ), hence Z(0, r) is of type T.
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When we apply (4.73) to pairs (y, t) such that r
10 ≤ |y| ≤ r

2 and t = |y|
10 , we get

that

(4.74) Hd(E∩B(y, t)) ≤ Hd(Z(0, r)∩B(y, t))+ε2r
d ≤ 3πtd

2
+ε2r

d ≤ 3πtd

2
+Cε2t

d

because Z(0, r) coincides with a cone of type P or Y in B(y, t). Thus θ(y, |y|10 ) ≤
3π
2 + Cε2.

If in addition y ∈ EY , this allows us to apply the almost constant density

property and find, for 0 < ρ ≤ |y|
20 , a minimal cone Z(y, t) such that

(4.75) dy,ρ(E,Z(y, ρ)) ≤ ε3

and

(4.76)
∣∣Hd(E ∩B(x, t)) −Hd(Z(y, ρ) ∩B(x, t))

∣∣ ≤ ε3ρ
d

for x ∈ R
n and t > 0 such that B(x, t) ⊂ B(y, ρ).

Now we claim that we control the balls centered at the origin (by (4.72)), the

balls B(y, ρ) centered on EY and for which ρ ≤ |y|
20 (by (4.75)), but also for which

ρ > |y|
20 , because in this last case we can use Z(y, ρ) = Z(0, 2(|y|+ ρ)), just because

(4.77) dy,ρ(E,Z(y, ρ)) ≤
2(|y|+ ρ)

ρ
d0,2(|y|+ρ)(E,Z(y, ρ)) ≤ Cε2

by (4.72).
We are thus left with the balls B(x, t) centered on E \ [EY ∪ {0}]. For these

we proceed as before. We set δ(x) = min(|x|, dist(x,EY )), and notice that we have
a control on B(x, 10δ(x)) because of one of the balls that we already treated. So
we get a nearby cone Z, and we can take Z(x, t) = Z if t ≥ 10−5δ(x), say. For

t < 10−5δ(x), we first show that B(x, δ(x)100 ) does not meet the singular set of Z, as we

did before (4.70), use this to show that Hd(Z ∩B(x, δ(x)
1000 )) ≤ π

( δ(x)
1000

)d
+Cε3δ(x)

d,

deduce from this that θ(x, 2t) ≤ θ(x, δ(x)
1000 ) ≤ π+Cε3, and use the almost constant

density property to find the good cone Z(x, t). The details are a little long and
boring, but no difficulty appears.

This completes our description of Theorem 4.1, in the simpler case of minimal
sets, and with the easier bi-Hölder conclusion. �

4.9. Last comments, C1 regularity, and epiperimetry.

Remark 4.78. At this date we do not have an existence lemma for points of
type T, that would be similar to Lemma 4.56. Such a lemma would say that if E is
a reduced almost minimal set in B(0, 4r), with a sufficiently small gauge function
h, and if d0,4(E, T ) ≤ ε for some minimal cone T of type T centered at the origin,
then there is a point of type T in B(0, 1).

We did not need this for J. Taylor’s result, but it would be enough to prove
that every reduced minimal set in the whole R

3 is a minimal cone (see Section 5).
Also, if we want to establish a J. Taylor theorem for 3-dimensional sets in R

4, we
will probably need a lemma that finds points of type T×R when E looks a lot like
the minimal cone T× R in the unit ball.

The corresponding extension of Lemma 4.56 for points of type Y× R in R
4 is

true, and leads to a Hölder regularity result for 3-dimensional almost minimal sets
near points of type Y× R; see [Lu].
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Remark 4.79 on C1 regularity. Theorem 4.1 is significantly more delicate than
its bi-Hölder variant. Here we just needed to check that the numbers βc(x, r) that
control the Hausdorff distances to minimal cones stay small. For the C1 result, we
would need to prove that they have some definite decay.

Almost equivalently, we proved that the density θ(x, r) is a nondecreasing func-
tion of r, and for the C1 result, it seems that we need to prove that the density
excess f(r) = θ(x, r) − θ(x) decays when r tends to 0, at some definite speed.

As we have seen, the monotonicity of θ(x, ·) is obtained rather easily, essentially
by comparingE with the cone overE∩∂B(x, r). The necessary decay for the density
excess is harder to get. In [T2] it is obtained as the consequence of some anterior
epiperimetry result [T1], which I am not sure I understand.

In [D7], the decay for f is obtained in the following way. Because of Theorem 4.3
(the bi-Hölder estimate), we can reduce to situations where E is quite close to a
minimal cone X . We suppose that E does not coincide with X , measure the
difference in terms of the density excess f(r) = θ(x, r)− θ(x), use this difference to
construct a competitor which is even better than the cone over E ∩ ∂B(x, r), make
sure that the improvement over the cone is large enough compared to the density
excess, and use this to get a differential inequality on f that implies the desired
decay. Finally we check that f controls other geometric quantities like the βc(x, r).

Somehow, the fact that we can suppose that E is close to a the minimal cone
X acts as a linearization of our problem: a situation where E is completely wild
would be much harder to control at once.

We use X in the following way. Since X is a minimal cone, X ∩ ∂B(x, r) is
a collection of geodesics gi on ∂B(x, r) that may meet by sets of three at vertices
(see the description in Subsection 4.1). We use the fact that E is close to X to
find a net of nearby curves γi, with almost the same vertices, and such that the
symmetric difference between E ∩ ∂B(x, r) and ∪iγi has small H1 measure. We
can even modify the γi so that they are Lipschitz graphs with small constants.

Recall that we want to construct good competitors for E, better than the cone
over E∩∂B(x, r), and after a first deformation that is not too costly, we are reduced
to constructing good competitors for the cone over ∪iγi. This is much easier now.
For instance, we can proceed independently for each i, find a competitor for the
cone Γi over γi with the same boundary (i.e., γi and the two segments from x to
the extremities of γi), and then glue.

We then observe that for each i, Γi is the graph of a radial extension, and
the graph of the corresponding harmonic extension does significantly better, with
a good control on the difference in terms of how close γi is to a geodesic. This is
what we mean by a linearization: we are able to reduce to a situation that is so
close to a flat case that we can use asymptotic expansions.

This works well when (some of) the γi are not too close to geodesics, but we
also need to do something when the γi are almost geodesics, but not with the
same endpoints as that gi. This situation should be simpler now because we can
compute better with the cone over a collection of geodesics, but this is the place
where additional information on the metric properties of our cone X comes into
play. We want to know how the sum of the lengths of the gi changes when we move
the vertices, and the full length property discussed near (4.4) is the notion that
comes out from the computations.
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It is probable that the two different ways to get the desired decay estimates
for f are similar; in both cases, some specific knowledge of metric properties of the
minimal cone X are needed.

5. Mumford-Shah minimal sets and a Bernstein problem

We start with a variant, for minimal sets, of the classical Bernstein problem
where you take a graph over the plane, assume that it is a minimal surface, and
ask whether it must be a plane.

(5.1) Is every 2-dimensional reduced minimal set in U = R
3 equal to a cone?

See Definitions 3.2 and 3.5 for reduced minimal sets. We expect this to happen
because this is the only way for the set not to get worse at infinity. The question
would also make sense in higher dimensions, but it should be harder and we don’t
even know the answer in the present case.

The author discovered this question (and Almgren minimal sets at the same
time) because of the Mumford-Shah functional in image segmentation, where a
positive answer helps describe the blow-up limits of minimal segmentations, and
then get some regularity properties for the minimal segmentations themselves.

Fortunately the answer to this question is easier in the Mumford-Shah context.
Let us define the notion of Mumford-Shah minimal set only in the domain U = R

n

(this is simpler), and refer the reader to [AFP], [D2], [D4], [MoS] for information
on the Mumford-Shah functional and image processing.

Definition 5.2. Let E be a closed set in R
n, and let B ⊂ R

n be a closed ball.
An MS-competitor for E in B is a closed set F ⊂ R

n such that

(5.3) F \B = E \B
and, for x, y ∈ R

n \ [B ∪ E],

(5.4) F separates x from y if E separates x from y.

Here we say that E separates x from y when x and y lie in different connected
components of Rn \E. Clearly, if F is an MS-competitor for E in B, then it is also
an MS-competitor for E in any larger ball B. In R

2, for example, R ∪ ∂B(0, 1) is
a competitor for R in (any ball that contains) B(0, 1), while R \ (−1, 1) is not a
competitor for R (in any ball).

Definition 5.5. An MS-minimal set in R
n is a closed set E ⊂ R

n such that
Hn−1(E ∩B) < +∞ for every ball B, and

(5.6) Hn−1(E ∩B) ≤ Hn−1(F ∩B)

whenever B ⊂ R
n is a closed ball and F is an MS-competitor for E in B.

Thus d = n − 1 here. Sets of dimensions smaller than n − 1 do not separate
points in R

n, so the notion would not be relevant for d < n − 1. Notice also that
(5.6) stays true if we replace B with a larger ball.

In terms of Alexis Bonnet’s definitions relative to the Mumford-Shah functional,
E ⊂ R

n is an MS-minimal set if and only if the pair (u,E), where u is constant
on every component of Rn \E, is a global Mumford-Shah minimizer. Of course we
shall not use this here.
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It is not so hard to check that if E is a closed subset of Rn and if F is an Almgren
competitor for E (i.e., if F = ϕ(E) for some Lipschitz mapping ϕ : Rn → R

n such
that ϕ(x) = x for |x| large, as in Definition 3.2), then F is an MS-competitor for
E. That is, if x, y lie far from the origin and in different connected components of
R

n \ E, then ϕ(E) also separates them.
Because of this, every MS-minimal set in R

n is a minimal set as in Defini-
tion 3.2, with h = 0 (we shall say Al-minimal to distinguish). And it is true that

(5.7) every 2-dimensional reduced MS-minimal set in R
3 is a cone.

Here reduced is still meant as in Definition 3.5. Of course, our set is then a plane
or a cone of type Y or T, as in Section 4.1, because it is Al-minimal. We don’t
know whether something like this is true in higher dimensions.

Let us describe the proof of (5.7) given in [D6] because it is amusing. Its idea
(the amusing part) was known from F. Morgan; see [M1], even though he was
working in a different context. If we had an existence lemma for points of type
T (like Lemma 4.56), we would easily get a positive answer to (5.1) by the same
argument.

So let E be a reduced Al-minimal set of dimension 2 in R
3 (we shall mention

it explicitly when we use the MS-minimality). Pick any origin x ∈ E, and recall
from (4.7) that θ(x, r) = r−2H2(E ∩ B(x, r)) is nondecreasing. Then it has limits
θ(x) = limr→0 θ(x, r) and θ∞ = limr→+∞ θ(x, r), and the last one is easily seen not
to depend on x.

If for some x ∈ E, θ(x) = θ∞, then θ(x, ·) is constant and (4.14) says that E is
a minimal cone. So we may assume that

(5.8) θ(x) < θ∞ for all x ∈ E.

Recall that we can find blow-in limits of E (as above (4.28)), and by (4.28) they are
minimal cones with density θ∞. Let us distinguish cases, depending on the value
of θ∞.

If θ∞ = π, i.e., if the blow-in limits of E are planes, we pick any x ∈ E, and
any blow-up limit of E at x. Such blow-up limits exist, and they are cones of type
P, Y, or T. Then θ(x), which is the density of such a cone, cannot be smaller than
θ∞ = π. This contradicts (5.8) and we get the result.

Next suppose that θ∞ = 3π
2 , i.e., that the blow-in limits of E are cones of type

Y. Select a sequence {r−1
k E}, with limk→+∞ rk = +∞, that tends to a cone Y of

type Y. Recall that this implies that for R > 0,

(5.9) lim
k→+∞

d0,R(r
−1
k E, Y ) = 0,

as in (4.24). We apply this with R = 4, and choose k so large that d0,4(r
−1
k E, Y ) ≤

ε, where ε is as in Lemma 4.56. Then this lemma says that r−1
k E contains a point

y of type Y, and of course w = x+ rky is a point of type Y in E. This is impossible
again, because (5.8) says that θ(w) < θ∞ = 3π

2 .
We are left with the case when θ∞ = dT , where dT is the density at the origin

of a cone of type T. If we had an existence lemma for points of type T, we could
proceed as above, find a point w ∈ E such that θ(w) = dT , and get a contradiction
with (5.8). And in fact we will essentially prove an existence lemma in the present
situation with an MS-minimal set.
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So let us assume that E contains no point of type T (otherwise, we get a
contradiction with (5.8)). Let T be a blow-in limit of E; it is a minimal cone of
type T, centered at the origin. As before, we can find a radius rk such that if we
set F = r−1

k E,

(5.10) δ0,4(F, T ) ≤ ε,

where ε > 0 is as small as we want. Of course, F is also a minimal set, and it has
no point of type T. Denote by FY the set of points of type Y in F .

Denote by L the singular set of T ; thus L is the union of four half lines Li,
1 ≤ i ≤ 4. Denote by ai, 1 ≤ i ≤ 4, the point of Li ∩ ∂B(0, 2) (you may start to
look at Figure 6). If ε is small enough, we can apply Lemma 4.56 to B(ai, 10

−10)
to find a point yi of type Y in F , with |yi − ai| ≤ 10−10.

We shall use Theorem 4.3 (the biHölder equivalence) rather than the full theo-
rem of J. Taylor (Theorem 4.1), because it is easier to prove. But the reader is free
to apply Theorem 4.1 secretly and work with C1 curves below. Near each yi, F
is biHölder equivalent to a minimal cone of type Y , and FY is biHölder equivalent
to a line. In fact, the proof of Theorem 4.3 also says that this happens in the ball
B(yi, 10

−3), say, and that in this ball FY coincides with a simple curve that really
crosses ∂B(0, 2), in the sense that one of its ends lies out of B(0, 2+ 10−6) and the
other one lies inside B(0, 2− 10−6).

We also need to know that outside of the B(yi, 10
−6), ∂B(0, 2) never gets close

to FY . This is true because near such points of ∂B(0, 2), T and F are very close
to a plane, and Theorem 4.3 implies that F is equivalent to a plane and contains
no point of type Y.

Return to FY . We know that near yj , FY coincides with a simple (biHölder)
curve γi. We want to follow this curve as it gets inside B(0, 2), and follow it as long
as we can. That is, we try to continue γi into a simple curve contained in FY , as
long as possible and as suggested by Figure 6.

By Theorem 4.3 again, we know that every point y ∈ FY has a small neighbor-
hood where FY is a simple curve. We use this to continue γi, little by little. We
never hit a point x where we cannot continue γi, because x ∈ F (which is closed),
x cannot be of type T (there is no such point), nor a point of type P (because such
points lie at positive distance from FY , by Theorem 4.3), and because at a point of
type Y we can continue the curve. Similarly, γi does not return to itself (the first
point where this happens would not be of type Y), nor accumulate on a complicated
set (any point of this set would be of type Y, a contradiction), so the only thing
that it can do is eventually leave B(0, 2). In addition, this does not happen near
the same ai (as above, the curve does not return to itself). This means that γi goes
from yi to some other yj .

Let y be any point of FY . By Theorem 4.3, there is a small neighborhood of y
where Rn \E is equivalent to the complement of a cone of type Y. This means that
there are at most three connected components of B(0, 3) \F that touch y. Some of
these three components may coincide (because we don’t know what happens away
from y), but this is all right. Let us denote by H(y) this set of at most three
components. By definitions and the description of F near y, H(y′) = H(y) for
y ∈ FY close to y. That is, H is locally constant along FY .

Denote by Ok the connected component of B(0, 3)\F that contains −ak. Recall
that we have a biHölder equivalence in the large ball B(yi, 10

−3), and because of
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Figure 6. The set T and the curves γi (imagine that F is very
close to T )

this it is fairly easy to check that H(yi) is composed of the three Ok, k 6= i. Again
two of these components could be equal.

But when we go from yi to yj along γi, H(y) stays constant. So H(yi) = H(yj).
But H(yj) is composed of the three components Ok, k 6= j. Altogether, each of the
four components Ok lies in H(yi), and since H(yi) has at most three elements, we
find that there exist k 6= l such that Ok = Ol.

In the context of Al-minimal sets, this would not yet give a topological con-
tradiction: one can produce sets that are locally C1 equivalent to a cone of type Y

or P at each point, and that coincide with a cone of type T on R
n \ B(0, 1). We

only proved that for such a set F , Rn \ F has at most 3 components (in fact, at
most 2 if we use another curve γk in FY ). See [D6] for an example of such a set,
which was probably also known before by B. Hardt and F. Morgan. See for instance
[M5], page 110. But Liang [Li1] showed that an Al-minimal set which is not a cone
cannot be modelled on this example, because the two tubes in R

3 \F that connect
opposite components are not knotted.

In the context of MS-minimal sets, we are happy because we find out that the
big wall between −ak and −al is not needed. That is, set w = −ak+al

2 (see Figure 6
again). This point lies on the middle of a face of T , the face that separates −ak
from −al. Theorem 4.3 (applied to a point of F near w) shows that B(w, 10−3)
does not meet any other component of B(0, 3) \ F than Ok and Ol. Then set
G = F \B(w, 10−3). It is not hard to see that G is a competitor for F in B = B(0, 4)
(the only components that could possibly become equal when we replace F with
G are Ok and Ol, which happen to be equal before we start). Also, H2(G ∩ B) <
H2(F ∩ B), so (5.6) fails, F is not minimal, and we get the desired contradiction.
This completes our description of the proof of (5.7); see [D6] for details. �

Since the situation is already fairly complicated in R
3, the author does not

expect an analogue of (5.7) in higher dimensions to be easy.

Remark 5.11 about topological minimal sets in higher codimensions. The notion
ofMS-minimal is nice, because of its connections to the Mumford-Shah functional,
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and also because in this context existence results could be easier. The definition
above only makes sense in codimension 1, but a generalization of the notion was
recently proposed by Xiangyu Liang [Li1,3]. Let us discuss this rapidly. As above,
we only define her topological minimal sets in R

n, because this is simpler.

Definition 5.12. Let E be a closed set in R
n, and let B ⊂ R

n be a closed
ball. A topological competitor of dimension d for E in B is a closed set F ⊂ R

n

such that

(5.13) F \B = E \B
and, for each Euclidean sphere S of dimension n − d − 1 that is contained in
R

n \ [B ∪ E], if S represents a nonzero element in the singular homology group
Hn−d−1(R

n \E;Z), then S also represents a nonzero element in Hn−d−1(R
n \F ;Z).

When d = n − 1, S is composed of two points, and it represents a nonzero
element in H0(R

n \ E;Z) if and only if these two points lie in different connected
components of Rn \E, so Definition 5.12 is really a generalization of Definition 5.2.
The corresponding notion of topological minimal set is as follows (we just change
the class of competitors).

Definition 5.14. A topological minimal set of dimension d in R
n is a closed

set E ⊂ R
n such that Hd(E ∩B) < +∞ for every ball B, and for which

(5.6) Hd(E ∩B) ≤ Hd(F ∩B)

whenever B ⊂ R
n is a closed ball and F is a topological competitor of dimension d

for E in B.

There is an analogue of the Bernstein problems (5.1) and (5.7) for this notion,
but even the case of 2-dimensional topological minimal sets in R

4 is unclear.
Topological minimal sets have some nice properties. First, one can show that

they are Al-minimal sets. For this, using homology groups was a good idea, be-
cause it turns out that the nonvanishing of S in Hn−d−1(R

n \E;Z) is stable under
deformations of E in R

n (away from S); a corresponding attempt with homotopy
groups would fail.

Liang shows that the almost orthogonal union of two planes of dimension d in
R

n is topologically minimal, and that the product by R of a topologically minimal
set is topologically minimal; note that the corresponding property for Al-minimal
sets is not known. A consequence of this is that some non transversal unions of
3-planes in R

5, for instance, are topological, and hence also Al-minimal sets. See
[Li1,3] for details.

Another nice feature of the notion is that, as for the MS-minimality, related
existence theorem can be proved. See the next section.

6. Existence results for simpler problems

Simpler means, compared to the Plateau problems above. In this section we
describe how a construction of V. Feuvrier [Fv1,2] can be used to prove some
existence results for minimizers.

We start with notation for a general situation. Let Ω be a simple “domain”,
which we often want to be closed, so that limits of sets in Ω stay in Ω. Or Ω can
be a manifold. Let F be a class of closed subsets of Ω. Also let g : Ω → [0,+∞) be
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a given continuous function, and assume that 1 ≤ g(x) ≤ N for some N ≥ 1. We
want to minimize the functional

(6.1) Jg(E) =

∫

E

g(x) dHd(x)

over the class F . Of course we expect many things to depend on the specific choice
of F , and for our construction to have a chance to work we will need F to be closed
under some class of deformations.

It is better to choose Ω and F so that

(6.2) 0 < mg(F) := inf
{
Jg(E) ; E ∈ F

}
< +∞,

because otherwise nothing interesting happens. This is why we like to take domains
Ω with some topology, to make sure that sets E ∈ F cannot be deformed to one
point, for instance.

Here is the most obvious way to try to get a minimizer. Take a minimizing
sequence, i.e., a sequence {Ek} in F such that

(6.3) lim
k→+∞

Jg(Ek) = mg(F),

and extract a subsequence (which will also be denoted by {Ek}) which converges
to a limit E∞. If we want to be sure that this is possible, we usually have no choice
on the notion of convergence: we take the convergence for the Hausdorff distance
(locally in Ω if Ω is open). That is, we could also hope to work in a subclass of
F for which we have better compactness properties, but this will probably happen
because in that subclass some apparently stronger notion of convergence is implied
by the Hausdorff convergence, so let us not bother yet.

There are two main problems now. The first one is that it is not always true
that

(6.4) Jg(E∞) ≤ lim
k→+∞

Jg(Ek),

i.e., Jg is not lowersemicontinuous. For instance, dotted lines segments Ek ⊂ [0, 1]
may converge to E∞ = [0, 1], while H1(Ek) = 1/2 for all k. This is the main issue
that the Feuvrier construction addresses. The other problem is that we cannot be
sure that

(6.5) E∞ ∈ F .
This part will depend on F ; some classes will be easier to deal with than others,
and we shall just give two examples where we can get something like (6.5). But in
general, we can expect serious difficulties. For instance, if F is the class of all the
sliding deformations of an initial set E0, as in Example 3 in Section 2.4, we have
the usual problem relative to parameterizations: each E′′

k is a obtained through a
deformation by mappings ϕt,k, but we have no reason to believe that the ϕt,k will
converge to nice mappings ϕt,∞.

Example 6.6. This example is related to Example 2.20, but we will need extra
assumptions. We try to follow [Fv1,3], but where unfortunately the details of this
precise example are not carried out; the reader will thus have to trust the sketchy
proof below. Here Ω will be a simple manifold without boundary obtained by
pasting faces of dyadic cubes in R

n. That is, we start from a finite collection of
dyadic cubes Qj of unit length, and glue some faces together so as to get a manifold
without boundary M; it does not matter whether the manifold is orientable or not.
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For instance, we could get a torus R/Z × R/Z ≃ S
1 × S

1 from a single square,
by gluing the opposite faces correctly. The fact that we have no boundary left is
convenient because they would restrict our definition of deformations. The precise
form of rigid manifold is also convenient, because polyhedral grids are much easier
to construct there.

We also have to assume that d = 2, and that the function g : M → [1, N ] is
Hölder-continuous, say. This is because we intend to use Theorem 4.3.

Let us proceed as in Example 2.20. Select a closed set E0 ∈ Ω, and denote by
F(E0) the class of continuous deformations of E0 inside Ω. That is, F ∈ F(E0) if
F = ϕ1(E0), for some mappings ϕt : E0 → M, 0 ≤ t ≤ 1, such that (x, t) → ϕt(x) :
E0 × [0, 1] → M is continuous, and ϕ0(x) = x on E0.

Claim 6.7. Under all these assumptions, we can find F ∈ F(E0) such that

(6.8) Jg(F ) = inf
{
Jg(E) ; E ∈ F(E0)

}
.

Let us explain how we can prove this. The construction may be more general,
but it is simpler under our assumptions. Its main point is that we want to have
(6.4), for a minimizing sequence that we shall need to select carefully. The idea is
not new, this is what Reifenberg did in [R1], already in the context of the Plateau
problem (with homology).

We start from any minimizing sequence {Ek} as above, and our first idea (that
will not work) is to replace each Ek with its Federer-Fleming projection on a dyadic
net. Recall that in codimension 1, this would be done in one step, as follows. We
cut M into dyadic cubes Q of sidelength 2−m, for some large integer m = m(k).
For each such Q, we select a center ξQ ∈ Q \ Ek, and use the radial projection
centered at ξQ to project E ∩ Q on ∂Q. (Notice that we do not change E on the
boundaries ∂Q.) When d < n− 1, we have to iterate this procedure, project again
on faces of dimension n− 2, and so on. After a few steps, we get a new candidate
which is contained in the d-dimensional skeleton of our dyadic net. Usually, when
we get to faces of dimension d, we cannot continue because our set covers the full
face. But if by chance it meets a face without containing it, we can iterate once
more. Eventually we get a new competitor E′

k, which is a finite union of faces of
dimensions at most d.

Unfortunately, Jg(E
′
k) may be significantly larger than Jg(Ek) and mg(F(E0));

even in the 2-plane, we may have projected the diagonal of a square onto a
√
2 times

longer pair of sides. But given Ek, V. Feuvrier constructs a polyhedral net, similar
to the usual dyadic net, but which near the flat rectifiable parts of Ek has faces that
are almost parallel to Ek, so that after the Federer-Fleming projection on the net,
Jg(E

′
k)−Jg(Ek) is as small as we want. This also uses the fact that g is continuous

(and then we work at scales that are so small that g acts like a constant). The
construction of the polyhedral nets is the main part of [Fv1] and [Fv2], and the
main difficulty is to be able to complete a collection of non parallel dyadic nets
living in disjoint regions, in such a way as to keep a lower bound on all the angles
in the various faces of all the dimensions. The reason why we decided to stick to
our rigid manifold M is because Feuvrier’s construction of polyhedral nets has not
yet been adapted to manifolds. [There are difficulties even with the definition of
polyhedral nets, because of the non-affine changes of charts.]

The fact that this lower bound on angles is independent of Ek and the small
scale 2−m at which we decide to work is important for the next part of the argument.



REGULARITY OF MINIMAL AND ALMOST MINIMAL SETS AND CONES 41

We replace E′
k (the Federer-Fleming projection of Ek on our net) with another

finite union E′′
k of faces of the same net, obtained as a deformation of E′

k in M
(and hence also of Ek, since Federer-Fleming projections are deformations), and
for which Jg(E

′′
k ) is minimal. The existence is easy, because there are only finitely

many combinations of faces.
When we do this, we do not increase Jg(E

′
k), and we gain something because

can use the minimality property of E′′
k (among unions of faces) to prove that it

is quasiminimal (as in Section 3.4.) in our manifold M. The quasiminimality
constant M that we get depends only on N and the lower bound for the angles
in the grid, and not on k or m = m(k). The proof of quasiminimality uses more
Federer-Fleming projections, and is not really difficult (see below (6.39) for some
hints); again the main difficulty was the construction of the grid.

There is another issue that needs to be addressed: E′′
k is a union of d-dimensional

faces, and also of lower-dimensional faces where we were able to contract more, and
we can only control the d-dimensional part correctly. That is, set

(6.9) Fk = (E′′
k )

∗ =
{
x ∈ E′′

k ; Hd(E′′
k ∩B(x, r)) > 0 for all r > 0

}

as in (3.6). This is the d-dimensional part that we control, and for the rest we only
know that

(6.10) Hd−1(E′′
k \ Fk) < +∞,

but with no control on precisely where E′′
k \Fk may lie. So we only want to take a

limit of the sets Fk.
Notice that Fk is a reduced quasiminimal set (it is easy to see that E∗ is quasi-

minimal when E is quasiminimal). We replace {Fk} with a subsequence for which
{Fk} converges to a limit F , and use the fact that Theorem 3.17, and in partic-
ular the lowersemicontinuity estimate (3.18), stays true for sequences of reduced
quasiminimal sets (with uniform estimates, as here). We get that

(6.11) Jg(F ) ≤ lim inf
k→+∞

Jg(Fk) = lim inf
k→+∞

Jg(E
′′
k ) = inf

{
Jg(E) ; E ∈ F(E0)

}
.

[It is not hard to see that the continuous function g in (6.1) does not disturb the
lowersemicontinuity estimate.]

So this takes care of (6.4) and (6.8), but we still need to show that some minor
modification of F lies F(E0), and this is where we shall use Theorem 4.3 and need
more assumptions.

By the proof of Theorem 3.17, and if g was identically equal to 1, we would
get that F is locally minimal in M. Here g may vary, and we only get, by an
argument similar to what we did near (3.23), that F is almost minimal, with a
gauge function h that depends on the modulus of continuity of g. If g is Hölder-
continuous, h(r) ≤ Crα for some α > 0, which is more than enough to apply
Theorem 4.3.

We get that near each point x ∈ F , F is biHölder equivalent to a minimal cone.
Then, near x, there is a Hölder retraction onto F , defined on a small neighborhood
of F . We claim that we can make this global, i.e., that there is an ε-neighborhood
Vε of F , and a Hölder retraction R : Vε → F , so that R(x) = x on F .

Let us check this in a probably too brutal way. For each x ∈ F , there is a
radius r(x) > 0 such that the conclusion of Theorem 4.3 holds in B(x, 10r(x)),
with uniform estimates. We use the biHölder equivalence provided by Theorem 4.3
to get a Hölder retraction Rx : B(x, 5r(x)) → F , which we obtain by conjugating a
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Lipschitz retraction on the minimal cone provided by Theorem 4.3 with the biHölder
mapping also provided by that theorem. Thus

(6.12) Rx(y) = y for y ∈ F ∩B(x, 5r(x)),

and

(6.13) |Rx(y)−Rx(z)| ≤ C|y − z|α for y, z ∈ B(x, 5r(x)),

where the exponent α < 1 can be chosen as close to 1 as we want, because we can
take the exponent in Theorem 4.3 arbitrarily close to 1.

We don’t like the fact that the radius r(x) depends on x, so we cover the
compact set F by a finite number of balls B(xi, r(xi)), and then set r = infi r(xi).
For each x ∈ F , we now pick i such that x ∈ B(xi, r(xi)), and denote by Sx the
restriction of Rxi

to B(x, 4r) ⊂ B(xi, 5r(xi). Obviously

(6.14) Sx(y) ∈ F for y ∈ B(x, 4r),

(6.15) Sx(y) = y for y ∈ F ∩B(x, 4r),

and

(6.16) |Sx(y)− Sx(z)| ≤ C|y − z|α for y, z ∈ B(x, 4r).

We need mappings defined on the whole M, so we define Tx : M → M by

(6.17) Tx(y) = y for y ∈ M \B(x, 3r),

(6.18) Tx(y) = Sx(y) for y ∈ B(x, 2r),

and, for y ∈ B(x, 3r) \B(x, 2r),

(6.19) Tx(y) =
3r − |y − x|

r
Sx(y) +

|y − x| − 2r

r
y.

There is a small abuse of notation here, because in principle M is a manifold, but
we can choose r so small that the convex combination in (6.19) makes sense.

Pick a (new) maximal collection of points xi ∈ F , i ∈ I, so that |xi−xj | ≥ r/2
when i 6= j. Then the B(xi, r) cover F and the B(xi, 5r) have bounded overlap.
Set Ti = Txi

for i ∈ I. We take for R the composition of all the Ti (taken in any
order that we like), restricted to Vε =

{
y ∈ M ; dist(y, F ) ≤ ε

}
, and where ε is

very small, to be chosen soon.
Let us verify that R is the desired retraction. Let y ∈ Vε be given, and let us

see what happens when we apply the successive Ti to it. To simplify the notation,
assume that I = {1, · · · ,m}, and that we apply the Ti in the natural order. Set
y0 = y and, by induction, yi = Ti(yi−1) for i ≥ 1. We want to check that

(6.20) dist(yi, F ) ≤ εi,

for some small numbers εi that we shall compute along the way. This is the case
when i = 0, with ε0 = ε. Suppose i ≥ 1 and this is true for i − 1. If yi−1 ∈ M \
B(xi, 3r), then yi = Ti(yi−1) = yi−1 by (6.17), and (6.20) holds (if εi ≥ εi−1). So
we may assume that yi−1 ∈ B(xi, 3r). Pick zi−1 ∈ F such that |zi−1−yi−1| ≤ εi−1.
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Then zi−1 ∈ B(xi, 4r) (if εi−1 ≤ r; we shall take care of this later). Notice that
Ti(yi−1) ∈ [Sxi

(yi−1), Ti(yi−1)] by (6.17)-(6.19); then

(6.21)

|yi − yi−1| = |Ti(yi−1)− yi−1| ≤ |Sxi
(yi−1)− yi−1|

≤ |Sxi
(yi−1)− Sxi

(zi−1)|+ |zi−1 − yi−1|
≤ C|zi−1 − yi−1|α + |zi−1 − yi−1| ≤ Cεαi−1 + εi−1

by (6.20), because Sxi
(zi−1) = zi−1 by (6.15), and by (6.16). Then

(6.22) dist(yi, F ) ≤ dist(yi−1, F ) + Cεαi−1 + εi−1 ≤ Cεαi−1 + 2εi−1

by (6.20) for i− 1. We choose

(6.23) εi = Cεαi−1 + 2εi−1

and get (6.20). This gives a definition of all εi in terms of ε0 = ε, and now we
choose ε so small that

∑m
i=0 εi ≤ r/2, say. This way we can be sure that

(6.24) |yi − y| ≤
∑

j≤i

|yj − yj−1| ≤ r/2 for 1 ≤ i ≤ m

and (as was used before) εi < r for 0 ≤ i ≤ m.
A consequence of (6.24) is that yi = yi−1 most of the time. Even more, let

w ∈ Vε ∩ B(y, r/2) and define wi = Ti ◦ · · · ◦ T1(w) as we did for yi. By (6.17),
wi = wi−1 as soon as wi−1 lies out of B(xi, 3r); by (6.24) (applied to w) this
happens as soon as |w − xi| > 7r

2 , hence also as soon as |y − xi| > 4r. This means
that in Vε∩B(y, r/2), R is also the composition of the mappings Ti, i ∈ I(y), where
I(y) =

{
i ; |xi − y| ≤ 4r

}
. Because of this (and the fact that the balls B(xi, 5r)

have bounded overlap), R is still Hölder-continuous, with a new exponent that is as
close to 1 as we want. We don’t care about the Hölder constant for that exponent,
just the exponent. Also, it appears that we have been too conservative in our choice
of ε (because we could have counted how many times yi changes), but this is all
right.

The fact that R(y) ∈ F for y ∈ Vε is easy. Since the B(xi, r) cover F , we can
find i ≥ 1 such that y ∈ B(xi, r + ε), and then yi−1 ∈ B(xi, 2r) by (6.24). Then
yi = Ti(yi−1) = Sxi

(yi−1) ∈ F by (6.18) and (6.14). The ulterior mappings Tj
leave yj alone, by (6.15) and (6.17)-(6.19), so R(y) = ym ∈ F . Finally, R(y) = y
for y ∈ F , for the same reason using (6.15). This completes our definition of the
Hölder retraction R.

We want to use R to define a one parameter family of deformations gt. Set
dF (x) = dist(x, F ), and let τ > 0 be much smaller than ε. We want to keep

(6.25) gt(x) = x when d(x) ≥ 2τ,

and otherwise we set

(6.26) gt(x) = ψt(x)R(x) + (1− ψt(x))x when d(x) ≤ 2τ,

where

(6.27) ψt(x) = tMin
(
1,

2τ − d(x)

τ

)
when dF (x) ≤ 2τ.

We abuse notation slightly again, becauseM is a manifold. But it is locally the same
as Rn, which is enough to define the intermediate points ψt(x)R(x) + (1− ψt(x))x
and compute with them locally. Notice that g0(x) = x for x ∈ Ωε, and gt(x) is a
continuous function of x and t.
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Return to the sets E′′
k . By construction, Ek, E

′
k, and finally E′′

k are defor-
mations of E0, which means that E′′

k = ϕ1(E0), for some acceptable family of
continuous mappings ϕt, 0 ≤ t ≤ 1, as above. Now we define a new family {ft},
0 ≤ t ≤ 1, by

(6.28) ft(x) = ϕ2t(x) for x ∈ E0 and 0 ≤ t ≤ 1/2

and

(6.29) ft(x) = g2t−1(ϕ1(x)) for x ∈ E0 and 0 ≤ t ≤ 1/2.

Again ft is a continuous function of x ∈ E0 and t ∈ [0, 1], and f0(x) = x for x ∈ E0.
Set

(6.30) Gk = f1(E0) = g1 ◦ ϕ1(E0) = g1(E
′′
k )

by definitions; then Gk ∈ F(E0). We want to check that for k large,

(6.31) Jg(Gk) ≤ inf
{
Jg(E) ; E ∈ F(E0)

}
,

because as soon as we do this, we will know that Gk is a minimizer, and Claim 6.7
will follow.

The main piece of E′′
k is Fk = (E′′

k )
∗; since F is the limit of the Fk, we get

that for k large, dF (y) ≤ τ for y ∈ Fk. Then (6.27) and (6.26) yield ψ1(y) = 1 and
g1(y) = R(x) ∈ F . Thus

(6.32) g1(Fk) ⊂ F.

The remaining part is Zk = E′′
k \ Fk. By (6.10), Hd−1(Zk) < +∞. But g1 is

Hölder-continuous with the same exponent as R, which can be taken as close to 1
as we want. Then Hd(g1(Zk)) = 0. Altogether,

(6.33)

Jg(Gk) =

∫

Gk

g(x)dHd(x) =

∫

g1(Fk∪Zk)

g(x)dHd(x)

=

∫

g1(Fk)

g(x)dHd(x) ≤
∫

F

g(x)dHd(x)

= Jg(F ) ≤ inf
{
Jg(E) ; E ∈ F(E0)

}

because Gk = g1(E
′′
k ) = g1(Fk ∪ Zk) by (6.30), and by (6.32) and (6.11). Thus

(6.31) holds, Gk is a minimizer, and our proof of existence is complete. �

Remarks 6.34. The reader noticed that our assumptions were probably not op-
timal. Perhaps we can allow simple domains Ω (rather than our flat manifolds
without boundary), but at least the argument used for the next example would
have to be modified.

When n > 2, we could be in trouble if our definition of deformations demanded
that ϕ1 be Lipschitz, because we only know that R is Hölder. When n = 2, we can
apply Theorem 4.1 to get a Lipschitz retraction, and conclude as above. Otherwise
we would need to prove a better regularity or a better retraction theorem.

When d > 2, we do not know the existence of neighborhood retractions near
almost minimal sets, even though this would look like a weak regularity property
to prove, so we don’t have an existence theorem.

Example 6.35. We return to Example 2.19 and its homology conditions (which
also includes simpler separation conditions, as in Example 2.18). Let Ω be our
closed domain. We shall assume that for some ε > 0, there is a Lipschitz retraction
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R : Ωε → Ω. Here Ωε =
{
x ∈ R

n ; dist(x,Ω) ≤ ε
}
, and retraction means that

R(x) = x for x ∈ Ω and R(x) ∈ Ω for x ∈ Ωε \ Ω.

Theorem 6.36 [Li3]. Let Ω ⊂ R
n be compact, and suppose that for some

ε > 0 there is a Lipschitz retraction R : Ωε → Ω. Let g : Ω → [1, N ] be continuous,
and let ωj , j ∈ J , be a collection of smooth (n − d − 1)-dimensional surfaces in
R

n \Ωε, such that ωj represents a nonzero element in the singular homology group
Hn−d−1(R

n \ Ω;Z). Set

(6.37)
F =

{
E ⊂ Ω ; E is closed and each ωj represents

a nonzero element in Hn−d−1(R
n \ E;Z)

}
.

Then there is a set E ∈ F such that Jg(E) = inf
{
Jg(F ) ; F ∈ F

}
.

The proof is based on the same program as for Example 6.6, but there are
minor complications because Ω has a boundary. We explain one way to fix this; it
could be that the organization in [Li3] is a little more efficient, but probably not
too much.

First extend g to Ωε in a continuous way, so that we can talk about Jg(E)
when E ⊂ Ωε. The simplest is to take g ◦R on Ωε, and observe that this does not
change g on Ω.

Now let {Ek} be a minimizing sequence as above, and for each k choose a
Feuvrier polyhedral netRk with two constraints. The first one is that diam(Q) ≤ αk

for every polyhedron Q of the net, where αk << ε will tend to 0. The main one
is that Rk is adapted to Ek, in the sense that if E′

k denotes the Federer-Fleming
projection of Ek on this net, then Jg(E

′
k) ≤ Jg(Ek) + 2−k. The fact that g is

continuous is used here, because somewhere in the argument we compare Hd(E′
k)

and Jg(E
′
k) in small balls. The details are as in Example 6.6.

Notice that E′
k ⊂ Ωnαk

⊂ Ωε by construction (we never move a point by more
than αk when we do a step of the Federer-Fleming projection). Thus we shall not
change Jg(E

′
k) when we replace g with the larger gk defined by

(6.38) gk(x) = g(x) for x ∈ Ωnαk
and gk(x) = N1 for x ∈ Ωε \ Ωnαk

,

where N1 is a very large constant, that depends on N and the Lipschitz constant
for the retraction R.

Choose a (fixed) union Ω1 of (standard) dyadic cubes, that contains a neigh-
borhood of Ω and is contained in Ωε. It will be more convenient to work in Ω1. For
k large, Ω2nαk

⊂ Ω1; we use this and Feuvrier’s result to modify our network Rk

so that it stays the same in Ωnαk
, and coincides with a dyadic refinement of the

usual dyadic net in Ω1 \ Ω2nαk
.

Now replace E′
k with E′′

k , which is a finite union of faces of our new network Rk

and a deformation of E′
k in Ω1, and minimizes Jk(E

′′
k ) =

∫
E′′

k

gk(x)dHd(x) under

these constraints. The existence is easy because the total number of competitors is
finite. Then

(6.39) Jk(E
′′
k ) ≤ Jk(E

′
k) = Jg(E

′
k) ≤ Jg(Ek) + 2−k

by definitions.
Now E′′

k is a quasiminimal set in Ω1, with (bad) constants that depend on N1

and the angles of our networks, but do not depend on k. The verification requires
some computations, but the idea is not too complicated. If F = ϕ1(E

′′
k ) is a
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deformation of E′′
k in Ω1, we cannot compare F directly to E′′

k , because it is not
a union of faces in Rk, but we can replace F with its Federer-Fleming projection
G on Rk. Then Jk(E

′′
k ) ≤ Jk(G) by definition of E′′

k . When we replace F with
G, we only move the points of Z = F \ Sd, where Sd denotes the d-dimensional
skeleton of Rk. Because of the angle conditions on the faces, when we apply the
projection we can only multiply the contribution of Z to Jk(F ) by CN1. At the
same time Z ⊂ ϕ1(W ), where W =

{
x ∈ E′′

k ; ϕ1(x) 6= x
}
, because E′′

k ⊂ Sd by

definition. Now if (3.21) fails, i.e., if Hd(ϕ1(W )) is much smaller than Hd(W ), then
Hd(ϕ1(Z)) ≤ Hd(ϕ1(W )) << Hd(W ), and the contribution of its Federer-Fleming
projection to Jg(G) is still small compared to Hd(W ). The rest of ϕ1(W ) stays the
same, so its contribution stays very small too. When we sum up, we find that G is
strictly better than E′′

k , a contradiction.
So the E′′

k are quasiminimal with bad, but uniform constants. Set Fk = (E′′
k )

∗;
the Fk are also quasiminimal with uniform constants. Replace {Fk} with a subse-
quence for which Fk tends to a limit F . We can apply (3.18), which yields that

(6.40)

Jg(F ) ≤ lim inf
k→+∞

Jg(Fk) ≤ lim inf
k→+∞

Jg(E
′′
k )

≤ lim inf
k→+∞

[Jg(Ek) + 2−k] = inf
{
Jg(F ) ; F ∈ F

}

because the fact that we multiplied Hd with the continuous function g does not
matter for the first inequality, then because Fk ⊂ E′′

k , by (6.39), and because {Ek}
is a minimizing sequence.

We now want to check that F ∈ F . We first need to see that Fk stays close to
Ω. We claim that

(6.41) Fk ⊂ Ωβk
,

where βk can be computed from αk, and tends to 0 when k tends to +∞. Again
the computation is a little long, but the idea is simple: since gk is so much larger
on Ω\Ωnαk

(see (6.38)), it is not interesting for Fk to get far from Ω. The existence
of the Lipschitz retraction R will be used here, to provide competitors that have a
substantial piece in Ω where gk is so much smaller. But we’ll have to try different
competitors before we find one for which the thin annulus where we distort things
without winning is small.

Set al = 2lnαk for l ≥ 0, and

(6.42)

V −
l =

{
x ∈ Ω1 ; dist(x,Ω) ≤ al

}
,

Vl =
{
x ∈ Ω1 ; al < dist(x,Ω) ≤ 2al

}
, and

V +
l =

{
x ∈ Ω1 ; dist(x,Ω) > 2al

}
.

We define a competitor ϕ(E′′
k ) for E

′′
k by

(6.43)

ϕ(x) = x for x ∈ V −
l ,

ϕ(x) =
2al − dist(x,Ω)

al
x+

dist(x,Ω)− al
al

R(x) for x ∈ Vl, and

ϕ(x) = R(x) for x ∈ V +
l .

It would be easy to write down a one-parameter family {ϕt} of mappings that ends
with ϕ, but let us not bother the reader with this. Notice that we can expect to
win a lot when we apply ϕ in the last region, because gk(x) = N1 in the last two
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regions (by (6.38)), while gk(R(x)) = g(R(x)) ≤ N (which is much smaller) because
R(x) ∈ Ω. That is,

(6.44)

Jk(ϕ(E
′′
k )) ≤

∫

ϕ(E′′

k
∩V −

l
)

gk +

∫

ϕ(E′′

k
∩Vl)

gk +

∫

ϕ(E′′

k
∩V +

l
)

gk

≤
∫

E′′

k
∩V −

l

gk +N1Hd(ϕ(E′′
k ∩ Vl)) +NHd(ϕ(E′′

k ∩ V +
l ))

≤
∫

E′′

k
∩V −

l

gk + CN1Hd(E′′
k ∩ Vl) + CNHd(E′′

k ∩ V +
l )

by (6.43) and because ϕ is C-Lipschitz (including on Vl where we can use the fact
that |R(x) − x| ≤ C dist(x,Ω) ≤ Cal). At the same time,

(6.45)

Jk(E
′′
k ) =

∫

E′′

k
∩V −

l

gk +

∫

E′′

k
∩Vl

gk +

∫

E′′

k
∩V +

l

gk

=

∫

E′′

k
∩V −

l

gk +N1Hd(E′′
k ∩ Vl) +N1Hd(E′′

k ∩ V +
l )

by (6.38), so

(6.46) Jk(ϕ(E
′′
k ))− Jk(E

′′
k ) ≤ CN1Hd(E′′

k ∩ Vl)−
N1

2
Hd(E′′

k ∩ V +
l )

if N1

N is large enough. If we were allowed to compare ϕ(E′′
k ) directly to E′′

k , we
would deduce from (6.46) that

(6.47) Hd(E′′
k ∩ V +

l ) ≤ 2CHd(E′′
k ∩ Vl).

Now we cannot do that, but we can compose ϕ with a Federer-Fleming projection
that sends ϕ(E′′

k ) back to our net, and by the same computations we eventually
obtain (6.47) anyway (but with a larger constant).

Observe that (6.47) shows that Hd(E′′
k ∩V +

l ) decays exponentially fast. Indeed,

V +
l is the disjoint union of Vl+1 and V +

l+1 by (6.42) and because ak+1 = 2ak, so

(6.48) Hd(E′′
k ∩V +

l ) = Hd(E′′
k ∩Vl+1)+Hd(E′′

k ∩V +
l+1) ≥ (1+

1

2C
)Hd(E′′

k ∩V +
l+1)

by (6.47) and, after some iterations,

(6.49) Hd(E′′
k ∩ V +

l ) ≤
( 2C

2C + 1

)k

Hd(E′′
k ).

Now we could modify the definition of the al to make the sequence { al

αk
} bounded

(but with very large values), and still get, with the same computations as above,
that liml→+∞ Hd(E′′

k ∩ V +
l ) = 0. Let us cheat slightly instead, and use the local

Ahlfors-regularity of Fk = (E′′
k )

∗ to get a less precise estimate which is enough. If
Fk meets Vl at some point x, then

(6.50) Hd(Fk ∩ (Vl−1 ∪ Vl ∪ Vl+1)) ≥ Hd(Fk ∩B(x, al/2)) ≥ C−1adl .

We are now ready to prove (6.41). Let β > 0 be small, and denote by lk the largest
integer such that al = 2lnαk < β. Obviously lk is well defined for k large, and tends
to +∞ when k tends to +∞. Then (6.49) says that Hd(Fk ∩ (Vlk−1 ∪ Vlk ∪ Vlk+1))
tends to 0 (recall that Hd(E′′

k ) stays bounded). But the right-hand side of (6.50)
is comparable to βd, so it does not tend to 0. This contradiction proves that for
k large, Fk ∩ Vlk = ∅. Then Hd(E′′

k ∩ Vlk) = 0 by definition of Fk = (E′′
k )

∗, (6.47)
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implies that Hd(E′′
k ∩ V +

lk
) = 0, and (by local Ahlfors-regularity of Fk again) Fk

does not meet V +
lk

either. In other words, Fk ⊂ V −
lk

⊂ Ωβ for k large; (6.41) follows.

Recall that we want to show that F ∈ F . By (6.41), we know that F ⊂ Ω; we
still need to check that for j ∈ J , ωj represents a nonzero element in Hn−d−1(R

n \
F ;Z). We know this with Ek (instead of F ), just because Ek ∈ F . This is then
true for E′

k and E′′
k , because they are deformation of Ek in Ω1, and it is known that

such deformations away from ωj preserve the fact that ωj 6= 0 in homology. This is
also true for Fk, because removing pieces of (d−1)-dimensional faces from E′′

k does
not change the fact that ωj represents a nonzero element in Hn−d−1(R

n \ E′′
k ;Z),

this time by a general position argument (we could move the support of a n − d
chain that closes ωj so that it does not meet the faces). Finally, ωj represents a
nonzero element in Hn−d−1(R

n \F ;Z), because if the support of a chain that closes
ωj does not meet F , it does not meet Fk for k large. This completes the verification
of the fact that F ∈ F , and the description of the proof of Theorem 6.36. We refer
to [Li3] for details. �

7. Boundary regularity

The author believes that the logical way to try to prove existence results under
sliding boundary conditions (as in Section 2.4) is to first prove regularity properties
for potential solutions. Apparently there has not been so much work on the subject
of boundary regularity, but one can hope that the sliding context of Section 2.4 and
Definition 7.6 below will provide sufficient flexibility to allow some positive results.

Here we just give definitions, announce some partial results (that still need to
be written down or proofread) and mention plans for the future.

We give ourselves a finite collection of simple compact boundary sets Γj ⊂ R
n,

0 ≤ j ≤ jmax; for instance, each Γj can be a finite union of (closed) faces (of various
dimensions) of dyadic cubes. Or we can choose the Γj like this, and consider their
images under a (same) biLipschitz mapping. Other options are possible, but the
author decided to restrict to these for the moment.

We shall also proceed locally, in an open ball B. Let E ⊂ B be closed in B,
and assume that Hd(E ∩ K) < +∞ for every compact subset K of B. A sliding
competitor for E in B is a set F = ϕ1(E), where the one-parameter family {ϕt},
0 ≤ t ≤ 1, has the following properties (similar to what we asked in Section 2.4):

(7.1) (t, x) → ϕt(x) : [0, 1]× E → R
n is continuous,

(7.2) ϕ0(x) = x for x ∈ E0,

(7.3) ϕt(x) ∈ Γj when 0 ≤ j ≤ jmax and x ∈ Γj,

(7.4) ϕ1 is Lipschitz

(which we again keep out of respect for traditions); for the locality, we set

(7.5) Wt = {x ∈ E ; ϕt(x) 6= x}, W =
⋃

t∈[0,1]

(Wt ∪ ϕt(Wt)),

and demand that W be contained in a compact subset of B (in short, W ⊂⊂ B).
Notice that if the first set Γ0 contains E, it may play the role of a closed domain

where everything happens (the set Ω that we used in examples).
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Definition 7.6. We say that E is a sliding almost minimal set with gauge
function h (and relative to the choice of boundaries Γj) when

(7.7) Hd(E ∩W ) ≤ Hd(ϕ(E) ∩W ) + h(diam(W )) diam(W )d

when the ϕt and W are as above.

As usual, we would like to write Hd(E) ≤ Hd(ϕ1(E))+h(diam(W )) diam(W )d,
but Hd(E) may be infinite, and anyway E and ϕ1(E) coincide out of W . There is
also a notion of sliding quasiminimal set, as in Definition 3.20 but with the sliding
competitors, but let us not write the definition here.

Of course we set things so that the minimizers of the sliding Plateau problem
of Section 2.4, if they exist, are sliding almost minimizers with this definitions.
This may also be the case for the solutions of some other problems (for instance,
minimize the size of a current under a boundary constraint), but the author did
not take the time to check yet.

So we want to see to which extent the interior regularity theory described above
extends to the sliding context. Here are a few things that seem to work.

The local Ahlfors-regularity of E for almost minimal and quasiminimal sets (as
in Theorem 3.7) seems to extend without real trouble.

The situation for the uniform rectifiability of E (Theorem 3.10) is a little more
complicated; the main stopping time argument in the proof does not go through,
and we only seem to be only able to prove that E is uniformly rectifiable under
additional dimension conditions. The case when d = 2 and the boundaries Γj are
at most 2-dimensional is still all right, but in fact the uniform rectifiability up to
the boundary, when we can prove it, does not mean much more than what we knew
anyway from the interior regularity.

Fortunately, sliding quasiminimal sets are still rectifiable, and even every Haus-
dorff limit of reduced quasiminimal sets (with uniform estimates) is rectifiable.
This is somewhat easier, and it is still enough to prove the concentration property
(Theorem 3.12), and then (with some work) an analogue of Theorem 3.17 (the low-
ersemicontinuity of Hd and the stability under limits), which therefore still hold in
the sliding context.

The monotonicity of the density r−dHd(E ∩B(0, r)), when all the Γj are cones
centered at the origin and E is minimal, seems to be true, and maybe also the fact
that E coincides with a cone when the density is constant, yielding the fact that
blow-up limits at the boundary are sliding minimal cones.

What should be done next is still a long program. First, we should try to
get a list of the sliding minimal cones at a boundary point, depending on the list
of boundary cones Γj . But also, some more precise understanding of how the set
converges to a blow-up limit will be welcome, starting with the simple blow-up
limits that we already know.

We should mention that we cannot expect the monotonicity of r−dHd(E ∩
B(x, r)) at some point x near the boundaries to be true as before, so we should
then estimate and quantify more precisely the lack of monotonicity (or equivalently
define something like a density profile).

Figure 7 (probably the best time of the author’s Montreal lectures), which
comes from the link on Soap films on the Borromean Rings in K. Brakke’s homepage,
is supposed to illustrate the fact that it may be hard to study precisely the boundary
behaviour of soap films. See also [Br3], [LM2], and Figure 13.9.3 on page 137 in
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Figure 7. A soap film which leaves one of the boundary curves
(K. Brakke). Guess how it looks like at small scales; is its behaviour
stable when the width of the wires tend to 0?

[M5] for information and conjectures about boundary regularity (maybe of slightly
different objects).
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d’Orsay, UMR 8628, Bâtiment 425, Orsay F-91405.

E-mail address: guy.david@math.u-psud.fr


