
HAL Id: hal-00718993
https://hal.science/hal-00718993v1

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Sharing Mechanisms for Parallel Graph
Algorithms on the Intel SCC

Randolf Rotta, Thomas Prescher, Jana Traue, Jörg Nolte

To cite this version:
Randolf Rotta, Thomas Prescher, Jana Traue, Jörg Nolte. Data Sharing Mechanisms for Parallel
Graph Algorithms on the Intel SCC. The 6th Many-core Applications Research Community (MARC)
Symposium, Jul 2012, Toulouse, France. pp.13-18. �hal-00718993�

https://hal.science/hal-00718993v1
https://hal.archives-ouvertes.fr


http://sites.onera.fr/scc/marconera2012

Proceedings of the 6th Many-core
Applications Research Community

(MARC) Symposium

July 19th–20th 2012

ISBN

978-2-7257-0016-8

http://sites.onera.fr/scc/marconera2012
http://hal.archives-ouvertes.fr/MARCONERA2012
http://www.onera.fr


Data Sharing Mechanisms for Parallel Graph

Algorithms on the Intel SCC

Randolf Rotta, Thomas Prescher, Jana Traue, Jörg Nolte

{rrotta,tpresche,jtraue,jon}@informatik.tu-cottbus.de

Abstract—On many-core processors that do not provide hard-
ware cache coherence, using shared memory in parallel com-
putations is challenging. Reverting to pure message passing
would avoid consistency issues, but replicating large shared
datasets by messages is less efficient than accessing them di-
rectly through shared memory. The TACO-MESH framework
provides lightweight remote method calls and shared objects with
software-managed consistency. This paper presents experience
from porting a graph partitioning algorithm to the framework.
A performance evaluation on the experimental Intel SCC pro-
cessor, which has no hardware cache coherence, shows that
parallelization can be efficient despite the overhead of software-
level consistency management.

Index Terms—many-core, shared memory, cache coherence,
graph partitioning

I. INTRODUCTION

The number of cores in current many-core architectures is

increasing while the performance of most cores decreases in

favor of smaller cores [1]. Technically, many-cores are hybrids

combining aspects of distributed as well as shared memory

systems [2], because internal networks connect the cores to

exchange messages between them and connect to memory

modules that provide direct access to shared memory.

Many architectures employ data and instruction caches

distributed over the network to reduce access latencies and

memory traffic by exploiting locality. On cache coherent

architectures (e.g. Intel MIC [3], and Tilera [4]), the caches

implement a coherence protocol in hardware. However, co-

herence protocols face significant scaling issues compared to

message passing [5], [6], [7], [8]. The SCC processor is an ex-

perimental concept vehicle created by Intel Labs as a platform

for many-core software research. All of its cores have private

caches, but these do, deliberately, not provide hardware-level

coherence [9]. Instead, message passing between cores can

be used to implement software-level coherence. At the other

extreme end are architectures without caches that instead use

large shared on-chip memories and a huge number of simpler

cores (e.g. IBM Cyclops64 [10], Adapteva [11], and some

stream processors in GPUs).

The SCC and other architectures without hardware cache

coherence can be treated like distributed systems to work

around this limitation. However, passing large messages inside

shared memory systems is inefficient, because composing and

receiving large messages evicts large portions of the sender’s

and receiver’s caches. Finally, the message data is just copied

from and to main memory and will also compete for space

in shared caches (e.g. on Intel MIC). Consequently, parallel

programming models and frameworks for many-cores should

avoid large unnecessary data copies. Instead, software layers

that manage the cache coherence for actual shared data should

be integrated into the programming models.

TACO [12] provides a partitioned global address space, re-

mote method invocations, and collective operations; it features

a highly efficient messaging backend on the SCC. [13]. On top

of that, MESH [14], a framework for memory-efficient sharing,

introduces direct access to shared data and a consistency layer

for shared objects while using TACO for coordination.

This paper presents experience gained from porting central

parts of a complex graph partitioning software for modular-

ity clustering [15] to the SCC. The next section introduces

the graph partitioning problem, the local search algorithm,

and the employed graph data structures. We combined the

graph data structures with the MESH consistency layer and

extended MESH with SCC-specific software-level cache coher-

ence, which are described in Section III. Section IV discusses

results obtained from micro-benchmarks and the parallelized

graph partitioning algorithm. Finally, we discuss related work

and provide concluding remarks.

II. MODULARITY GRAPH PARTITIONING

Graph partitioning can be applied in the analysis of social,

biological and technical networks and is, in this context, also

known as graph clustering. For example, persons in social

networks can be modelled by graph vertices, edges connect

pairs of related persons, and edge weights quantify how

often both persons interacted in the past. Graph clustering

is searching groups of highly related vertices and, in our

particular application, a partitioning of the vertices with dense

connections within groups and sparse connections in between.

The modularity by Newman and Girvan [16] is a popular

quality measure that directs the search for interesting vertex

partitions. It is based on the difference between the fraction of

observed within-group edges and the expected fraction. The

expected fraction is based on a stochastic model where the

end-vertices of edges are chosen at random, and the probability

that an end-vertex of an edge attaches to a particular vertex

is proportional to the vertex weight [17]. Compared to other

clustering quality measures, the modularity is still easy to

calculate. Nevertheless, in contrast to the more traditional

quality measures for load-balancing, modularity has data

dependencies that disallow some well-known performance

optimizations. Thus, the modularity is a good representative

for a broader class of graph partitioning problems.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Data Sharing Mechanisms for Parallel Graph Algorithms on the Intel SCC 13



1: find best v,D,∆Qv,D over all v ∈ V
by collective operation over all workers

2: if ∆Qv,D ≤ 0 then exit loop

// move vertex v from partition C to D:

3: if D is empty then create new partition D
4: set current partition of v to D
5: update partition weights w(C) and w(D)
6: increment partition size of D
7: decrement partition size of C
8: if size of C is 0 then delete partition C

Figure 1. A step of the globally greedy vertex moving algorithm.

The next subsection introduces a simple parallel graph

partitioning algorithm that will be used for the evaluation

of the software-level consistency management. The second

subsection describes the data structures used by this algorithm.

A. Globally Greedy Vertex Moving

The problem of finding a clustering with maximum modu-

larity for a given graph is NP-hard [18], and existing exact

algorithms are usable only up to a few hundred vertices.

In practice, modularity is almost exclusively optimized with

heuristic algorithms, and experimental results indicate that

relatively simple algorithms based on local search can be

highly efficient and effective (e.g. [15]).

One of the simplest local search algorithms is globally

greedy vertex moving as summarized in Figure 1: In each

step, the modularity improvement ∆Qv,D of moving vertex

v to partition D is computed for all pairs of vertices and

partitions (line 1) and the globally best move is applied by

modifying the partitioning data (lines 3–8). This is repeated

until the best move does not increase the modularity (line

2). Faster algorithms exist that are similarly effective but,

unfortunately, also more complex. We chose the simplest

algorithm to focus on the consistency management of the

shared data. Our parallel algorithm uses a set of worker cores

to parallelize the computation of ∆Q by dividing the vertex set

into equally sized subsets. In each step, the workers compute

the improvements of their vertices and return v, D, and ∆Qv,D

of their best move. Then, the master worker selects and applies

the best of these moves.

Moving a vertex v ∈ V from its current partition C ⊆ V
to another partition D ⊆ V increases the modularity by

∆Qv,D = 2
f(v,D)− f(v, C\v)

f(V, V )

− 2
w(v)w(D)− w(v)w(C\v)

w(V )2
,

where f(A,B) is the sum of edge weights between two

vertex sets and w(A) is the sum of vertex weights in the

vertex set. From an algorithmic perspective, this means that

the modularity of a partitioning can be quickly updated after

each move without recomputing it from scratch. The partition

weights w(C) and w(D) of source and destination partition

can be updated after each vertex move by using the weight

w(v) of the moved vertex.

Vertex Set
with indices 0,...,N

Edge Set
with indices 0,...,M

0 Nu

e

Map: vertex to first edge

Map: vertex to edge count

0 Nu

5

Map: edge to target vertex

0 Me+0

v1

e+4...

v5

Figure 2. A graph with N vertices, M edges, and three mappings that
connect edges and vertices. Highlighted in the mappings is the representation
of 5 edges that start in the vertex u and connect to the vertices v1 . . . v5.

Moreover, the search space is restricted, because moving

a vertex to a non-adjacent partition (f(v,D) = 0) never

increases the modularity more than moving it to a new, pre-

viously empty partition (w(v)w(D) = 0). However, the edge

weights f(v,D) must be recomputed in each step because

storing and updating them is less efficient. At each vertex v,

the algorithm scans over its adjacent vertices u and increments

f(v, C(u)) by f(v, u), where C(u) is the partition containing

vertex u. A sparse mapping from partitions to accumulated

edge weights is used to store f(v, C(u)) and is initialized with

zero weights. Internally, each worker uses an own mapping

instance for f(v,D), but all workers share the graph, weights,

and the current partitioning. Altogether, finding the globally

best move requires a constant time per edge and applying a

move costs constant time.

B. Data Structures for Graph Partitioning

The original graph partitioning software [15] had to deal

with many different algorithms that stored different data

about vertices, edges and partitions internally. To handle this

diversity, the concept of Index Spaces and Mappings was

introduced to separate navigation through structures from

the algorithm’s internal data. In general terms, Index spaces

represent a collection of indices and methods to navigate over

these indices, while mappings are key-value stores that use

the indices as keys. This separation allows algorithms to reuse

existing spaces and mappings and to create own mappings for

internal data on top of these spaces.

Figure 2 depicts one of many methods to model a static

graph data structure. The graph has two spaces, namely a

set of vertices and a set of edges, and three mappings to

connect vertices and edges. The actual index values of the

vertices and edges are irrelevant to the algorithms because they

are passed to the mappings transparently and only there the

index is used to retrieve the corresponding data value. In case

the mappings are implemented with arrays, these will work

most efficiently, when the vertices and edges are numbered

consecutively beginning from zero.

Our implementation is based on the class RangeSpace

as fundamental index space. It represents a continuous set of

indicies from zero to an upper bound and provides a forward

iterator as well as methods to increase the upper bound. The

mappings are implemented with arrays. Each time the size of

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Data Sharing Mechanisms for Parallel Graph Algorithms on the Intel SCC 14



Movable Partitioning

Partition Set
(class RecycleSpace)

Static Graph

Vertex Set 
(RangeSpace)

Edge Set 
(RangeSpace)

vertex to 
edges

target vertex 
of edge

partition 
of vertex

partition 
to size vertex 

weights
edge  

weights
partition 
weights

Range Space

partitions marked 
as deleted

Figure 3. Composition of the graph and partitioning structures. Boxes with
round corners are index spaces and all other boxes are mappings. The arrows
point to the key space of the mappings.

a space is increased by creating a new index, it is necessary

to also resize the arrays of all dependent mappings, which is

automated with an observer pattern. In order to minimize the

resizing overhead, the maps reserve larger arrays and the space

notifies the maps only when the smallest reserve is depleted.

More advanced spaces, for example subsets and graphs, are

implemented by using RangeSpace and helper mappings.

Figure 3 gives an overview of the structures necessary to

represent the graphs, vertex partitions, and weights that are

used by the graph partitioning algorithm. During the search

step, none of these data structures will be modified. To apply

the best move, the set of partitions, the mapping from vertices

to their current partition, and the partition weights of the

source and destination partition will be modified.

III. SOFTWARE-LEVEL CACHE COHERENCE

The MESH framework [14] provides basic facilities for

shared memory and shared objects. Its implementation uses

the TACO framework [12] to coordinate memory allocation

and consistency events. The first subsection describes how we

supply MESH with shared memory on the Intel SCC. The

second subsection introduces software-level consistency for

shared objects and discusses three SCC-specific implementa-

tions. Finally, the interactions between shared objects, index

spaces, and mappings are discussed in the last subsection.

A. Shared Memory on the Intel SCC

The memory management of MESH is based on separate

allocators for shared and core-private physical memory pages

and a global allocator for logical pages with aligned addresses

over all cores. While most of these allocators are platform

independent, a SCC-specific allocator for shared physical

memory is necessary. The SCC consists of 32-bit Pentium

cores and, thus, each core can address only 4GB of memory.

A translation table (LUT) between each core and the on-

chip network translates from physical to system addresses

that provide a larger address space and contain the network

destination (e.g. select one of the four memory controllers).

The LUT has 256 entries of 16MB blocks and around 40

entries provide 640MB of private memory for each core.

To acquire direct access to shared memory, it is necessary

to make some of each core’s private memory accessible to

all cores by remapping unused entries in all LUTs. Intel’s

POPSHM kernel extension provides information about private

memory that can be used for this purpose. We tested which

LUT entries can be used for the remapping. This approach

makes it possible to share 2.5GB of memory between all cores.

The SCC variant of the shared page allocator also provides

means to map pages in cached (DCM), non-cached (NCM) and

write-through (MPBT+WT) mode. Pages in DCM mode use

the core’s L1 and L2 caches and require manual coherence

management. In contrast, the WT mode uses just in the L1

caches and SCC’s write combine buffer to collect writes to a

line before sending the modifications to the main memory.

B. Shared Objects with Consistency Management

Special constructors are used to create shared objects. These

return a sharing pointer that contains the address of the actual

object and the address of its consistency controller objects. The

object is allocated in shared memory but the controllers are

allocated in core-private memory at each core. Sharing pointers

can be passed between cores using remote method calls or

shared memory, because the object resides at the same logical

address on all cores and the controller has an instance at the

same logical address on each core. Immediate access to shared

objects is prohibited. Instead, a temporary access proxy has to

be created, which triggers consistency events on construction

and destruction. The reader proxies provide access only to

non-modifying (const) methods of the shared object, while

writer proxies allow access to all methods. The consistency

events are methods of the consistency controller.

For cache coherence on the SCC it is necessary to invalidate

stale data in the caches manually when acquiring read or

write access. To ensure that modified data is written back to

the main memory before other cores read it, a cache write-

back is necessary when releasing write access. Obviously,

write-back and invalidation is necessary only when the shared

object was actually modified. The next paragraphs present

three approaches to implement this coherence management.

They support multiple concurrent readers, but only a single

non-concurrent writer. Thus, applications have to ensure this

concurrency restriction on their own. The structure of our

graph partitioning algorithm already guarantees this.

The Broadcast (BC) controller has a needs-flush flag on

each core. When acquiring access to its shared object and the

flag is set, the object’s memory range is invalidated in the

cache. When releasing write access, the cache is flushed to

write back all modifications to the main memory and a TACO

collective operation sets needs-flush on all other cores. To save

time the flushing and the collective operation overlap.

In case flushing is much faster than the broadcast, some

time can be saved by starting the broadcast earlier. The Over-

lapped Broadcast (OV) controller achieves this by initiating

the broadcast already when write access is acquired. As a

side-effect, the broadcasts of several modified shared objects

can overlap. However, with this approach additional state data

for the pending broadcast has to be stored in the consistency

controller and the controller could not skip the broadcast if

the object was not actually modified.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Data Sharing Mechanisms for Parallel Graph Algorithms on the Intel SCC 15



A completely different invalidation mechanism similar to

[19] is used by the Timestamp (TS) controller. Each shared

object has a timestamp (generation counter) that is stored in

the on-chip SRAM of the SCC and the consistency controller

on each core has a copy of the last seen value. When

releasing write access, the object is flushed to write back all

modifications and the object’s counter is incremented.

C. Sharing Index Spaces and Mappings

The graph data is implemented with index spaces and map-

pings (c.f. Section II-B). However, allocating RangeSpace

as a shared object is not sufficient because it contains a

resizable array of pointers to observers (the dependent map-

pings). This array is invisible to the consistency controller

and would be missed when flushing the caches partially.

To solve this, shared objects can inherit from the special

class SharingAware that instructs the consistency controller

to also call type-specific consistency management methods.

RangeSpace uses these to flush the internal observer array.

The mappings use internal data arrays similar to

RangeSpace. They are managed using SharingAware.

Furthermore, all mappings have to register themselves as

observer at their key space by providing a sharing pointer

to themselves. Because a normal shared object does not

know its own consistency controller, the SharingAware

base provides a method to get such a sharing pointer. SCC’s

small 32-bit address space makes it expensive or difficult to

increase the size of arrays. To overcome this, our mapping

implementations split the data array into 4kB chunks and use

a small lookup array to address these chunks. This allows to

increase the maps by adding chunks without moving data.

Three variants of mappings were implemented: The

ChunkedMapDCM uses cached shared memory for all chunks

and the lookup table. The overhead of flushing the relatively

large data chunks is avoided by the ChunkedMapNCM variant,

which still caches the lookup table but not the data chunks.

The third variant, ChunkedMapWT, caches the data chunks

only on the L1 cache using SCC’s MPBT+WT memory mode.

Any communication by message passing will automatically

invalidate cached chunk data and force the write combine

buffer to write the modified data back to the main memory. The

latter two implementations specialize the writer access proxy

to allow write access to the mapping data without triggering

unnecessary consistency events.

Composition, that is shared objects using other shared

objects, yields an interesting situation: Creating a usual access

proxy to the composed object and then calling its methods

will be inefficient because each call would have to acquire

and release access to the other shared objects, triggering a

multitude of consistency management events. To avoid this,

we specialize the access proxies of such objects and move the

methods from the object into the access proxy. For example,

the graph reader access proxy provides the usual methods to

navigate through the graph, but it acquires read access to all

necessary components just once when the proxy is constructed.

Table I
ACCESS LATENCIES TO SCC’S MEMORY (IN CYCLES).

on-chip SRAM off-chip DRAM
NCM MPBT NCM MPBT+WT DCM

w 5 29 11 35 98
g 51–84 78–108 106–137 130–161 107–123
r 58–91 67–97 117–145 123–153 150–174

100

120

140

160

180

200

1 2 3 4 5

number of concurrent reader cores

ti
m

e
 p

e
r 

re
a
d
 [
c
y
c
le

s
]

mode

MPBT+WT

NCM

Figure 4. Approximate read overhead as observed by a core with concurrent
read accesses to the same controller.

IV. PERFORMANCE EVALUATION ON THE INTEL SCC

The first experiments as presented in the next subsection

concerned the impact of the underlying hardware. The second

subsection presents and discusses scalability results obtained

with the globally greedy vertex moving algorithm on a small

and a large graph. All measurements are based on the clock

configuration with 800MHz cores, 1600MHz on-chip network,

and 1066MHz DDR memory.

A. Shared Memory Performance

Table I summarizes measurements of the memory access

latencies following the WGR cost model [13]. The write over-

head w is the time to issue a write, the write gap g is the time

until the next write can be issued and the read overhead r is

the time it takes to fetch data from the memory. For NCM the

latencies where measured with scalar values (byte, short, int),

while for MPBT, MPBT+WT, and DCM whole cache lines

were used. For DCM write performance measurement the lines

were read before writing to them because the SCC’s caches

have no allocate-on-write. Access to the off-chip memory takes

around two times longer than to the on-chip memory.

To congest a memory controller, an increasing number of

cores read concurrently from the controller. Figure 4 shows

the impact on the read latency and congestion is visible above

three concurrent readers. Up to three cores do not interfere

with each other and, above that, the read overhead increases

linearly. Thus, when spreading the data evenly over all four

memory controllers, at least 12 cores are necessary to utilize

the memory bandwidth. In comparison, the on-chip SRAM can

handle more than 15 cores before congestion is visible [13].

The SCC has no hardware mechanism to flush the L2 cache.

Thus, a system call has to be used to evict lines by reading

other data. The costs of flushing unmodified and modified data

are shown in Figure 5. Up to 128 lines the costs increase

linearly with 8 000 cycles for one line and 300N + 7500 for

N lines. Flushing a 4kB page (128 lines) takes around 47 100

cycles and the entire cache needs 582 000 cycles. Writing back

a modified line requires around 80 additional cycles.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Data Sharing Mechanisms for Parallel Graph Algorithms on the Intel SCC 16



0

20

40

60

80

100

4kb● ● ● ●
●

●

●

● ●

●

●

● ● ● ●
●

●

●

●

●

●

●

2
6

2
8

2
10

2
12

2
14

2
16

number of bytes to flush (log. scale)

ti
m

e
 [
1
0
0
0
 c

y
c
le

s
]

with modified lines

unmodified lines

Figure 5. Costs of manually flushing unmodified lines from the L2 cache.

2

4

6

8

●

●

●

●

●

●

●
●

●

●
● ● ● ●

● ● ●

● ●
● ●

● ● ●
●

0 5 10 15 20 25

number of cores

s
p
e
e
d
u
p

● Mix

WT

NCM

DCM

Figure 6. Speedup with the WorldImport1999 graph relative to the single-
core DCM-BC variant.

For comparison, a TACO collective operation over all cores

of the SCC usually completes within 8 000 cycles [13]. Thus,

this cache flushing always takes much longer than the inval-

idation broadcasts and, therefore, the differences between the

three consistency controllers of Section III-B are negligible.

B. Globally Greedy Vertex Moving

For a varying number of cores, the algorithm was applied on

a relatively small graph that represents world trade relations

in the year 1999. The graph has just 66 vertices and 4290

edges [20]. The local search took 64 steps and we measured

the overall time of these steps without the program initializa-

tion and reading the data file. The measurements considered

the three map implementations DCM, NCM, and WT from

Section III-C and a Mix variant, which uses DCM static data

(e.g. vertices, edges, weights) and WT for maps that are

modified by vertex moves (e.g. partitions, partition weights).

To compare the measurements, Figure 6 shows the speedup

factors relative to the DCM variant on a single core. Only the

results with the Broadcast consistency controller are shown,

because the other two controllers were similar. Using only

DCM maps, the local search scales really poorly. This is

probably caused by the huge cache flushing overhead at the

master and the worker cores. With NCM maps better speedups

are achieved because almost all of the cache flushing is

eliminated. However, this variant does not use any caching and

indeed seems to utilize the memory bandwidth when reaching

12 cores. The WT maps improve on this because they use

the L1 caches and achieves speedup 6 with 13–14 cores. The

Mix variant produced the best results with speedup 7 at 15

cores. More importantly, for small core counts the speedup

was consistently better than with the other variants.

Amdahl’s law provides an upper bound to the achievable

speedup. It is based on the parallel runtime T (P ) = Ts+Tp/P
and the speedup T (1)/T (P ), where Ts is the sequential work,

0

5

10

15

20

25

30

●
● ● ●

●
● ● ●

● ● ●
● ●

● ● ●
● ● ●

● ●
●

● ● ● ●
● ● ● ●

● ● ●
●

● ●
●

●
● ●

●
●

● ● ● ●
●

●

0 10 20 30 40 50

number of cores

s
p
e
e
d
u
p ● Mix

WT

DCM

Figure 7. Speedup with the Patents graph. All speedup factors are relative
to single-core DCM-BC.

e.g. applying the best vertex move, and Tp/P is the parallel

work with P cores, e.g. evaluating the modularity gains of all

vertices. However, overheads impact the speedup, leading to

T (P ) = Ts + Tp/P + Twb + Tinv + αP + β log2(P ) .

After each vertex move, the master worker has to write back

all modifications to the main memory, which costs Twb in

total. Then, all workers invalidate these memory ranges in

their caches with overhead Tinv . Because this flushing is done

in parallel, it can be attributed once to the sequential costs.

The workers might perform some work that is effectively

sequentialized by memory bottlenecks. This can be modeled

by αP because this sequential work increases with the number

of workers. Finally, the workers are invoked in each step

by using a multicast tree, which introduces a logarithmically

growing coordination overhead β log2(P ).
Fitting linear models on the measurements indicated that

the coordination overhead β log2(P ) is negligible, while αP
is necessary to explain the low slope at low core counts. The

NCM, WT and Mix variants eliminate Twb + Tinv , and WT

and Mix reduce αP through caching. To improve the speedup

bound, it is necessary to reduce αP by increasing the memory

bandwidth or reducing the cache misses. The latter requires

caching of more data by using DCM maps, which is only

efficient if the flushing overheads Twb +Tinv can be reduced.

With 66 vertices, the world trade graph is quite small, e.g.

each worker is responsible for just 5 vertices when using 12

workers. Thus, we repeated some of the measurements with

the much larger NBER U.S. patent citations graph, which

has 240 547 vertices [21]. Figure 7 compares the runtime of

the first 500 steps. Here, the task size was large enough to

dominate even the flushing overheads of the DCM variant.

V. RELATED WORK

Two other shared memory mechanisms are available on the

SCC. POPSHM provides a simple put/get copy-based interface

to access shared memory. It does not remap unused LUT

entries but uses a few as read/write buffer in NCM mode. The

SMC library supports allocation of shared pages, changing the

access modes, and provides release consistency with config-

urable consistency domains. Both libraries do not use remote

method invocation mechanisms, which limits their flexibility.

In contrast, we implemented the shared memory management

and consistency control together with the application on top

of a common messaging subsystem.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Data Sharing Mechanisms for Parallel Graph Algorithms on the Intel SCC 17



Implementing scaleable cache coherence protocols is still

challenging because directories grow with the cache size and

the number of cores [5]. Some try to balance parameters to

reduce the directory size while also keeping the coherence

traffic low [22]. In comparison, we omitted the directories and

used broadcasts at very coarse granularity by exploiting the

algorithm’s structure. Other projects exploit typical sharing

patterns to compress the directories [23], [24]. Software-

level coherence is an interesting alternative because it can

incorporate knowledge about the application at design time

and can have better performance than hardware coherence in

some cases [7]. A promising mixture of both approaches is

the Cohesion memory model of Kelm et al. [6].

VI. CONCLUSIONS

We presented a framework for software-level cache co-

herence on the SCC. A simple parallel graph partitioning

algorithm was used to evaluate the impact of the software-

level cache coherence and the speedups achievable through

parallelization. The experiments showed that considerable

speedups are possible depending on the problem size despite

non-negligible cache flushing overheads. The results could

be improved by better hardware support for manual cache

control. The presented framework would benefit from a write-

back and a write-back-invalidate instruction on logical address

ranges. On architectures with a shared cache level, the write-

backs and invalidations would be necessary only on the

private levels. Porting the data structures from an existing

application was mostly straightforward, but the composed

structures had to be changed considerably to interact efficiently

with the consistency framework. From a software engineering

perspective this might actually not be a drawback, because

moving operations on shared data into the access proxies also

decouples independent types of operations. For example, the

graph initialization methods were implemented in a separate

access proxy.

ACKNOWLEDGMENTS

We thank Intel for the access to the SCC and MARC pro-

gram. In particular, we thank Michiel W. van Tol (University

of Amsterdam), Werner Haas (Intel Research Braunschweig),

and Jan-Arne Sobania (HPI Potsdam) for implementing the

software-based L2 cache flushing. This research would not

have been possible otherwise.

REFERENCES

[1] S. Borkar and A. A. Chien, “The future of microprocessors,” Commun.

ACM, vol. 54, pp. 67–77, May 2011.

[2] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
Improvements of Programming Models for the Intel SCC Many-core
Processor,” in Proceedings of the International Conference on High

Performance Computing and Simulation (HPCS2011), Workshop on New

Algorithms and Programming Models for the Manycore Era (APMM),
Istanbul, Turkey, July 2011.

[3] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: a many-core x86 architecture for
visual computing,” ACM Trans. Graph., vol. 27, pp. 18:1–18:15, 2008.

[4] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
pp. 15–31, 2007.

[5] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based
cache coherence in large-scale multiprocessors,” Computer, vol. 23,
no. 6, pp. 49–58, Jun. 1990.

[6] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: a hybrid memory model for accelerators,” in Proceedings of

the 37th annual international symposium on Computer architecture, ser.
ISCA ’10, 2010, pp. 429–440.

[7] S. V. Adve, V. S. Adve, M. D. Hill, and M. K. Vernon, “Comparison
of hardware and software cache coherence schemes,” in Proceedings of

the 18th annual international symposium on Computer architecture, ser.
ISCA ’91, 1991, pp. 298–308.

[8] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new
OS architecture for scalable multicore systems,” in Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles, ser.
SOSP ’09. New York, NY, USA: ACM, 2009, pp. 29–44.

[9] X. Zhou, H. Chen, S. Luo, Y. Gao, S. Yan, W. Liu, B. Lewis,
and B. Saha, “A Case for Software Managed Coherence in Many-
core Processors,” Poster on 2nd USENIX Workshop on Hot Topics in
Parallelism HotPar10, 2010.

[10] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R.
Gao, “A study of the on-chip interconnection network for the ibm
cyclops64 multi-core architecture,” in Proceedings of the 20th interna-

tional conference on Parallel and distributed processing, ser. IPDPS’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 64–64.

[11] A. Olofsson, “A 1024-core 70 GFLOP/W Floating Point Manycore
Microprocessor,” Poster on 15th Workshop on High Performance Em-
bedded Computing HPEC2011, 2011.

[12] J. Nolte, Y. Ishikawa, and M. Sato, “TACO – Prototyping High-Level
Object-Oriented Programming Constructs by Means of Template Based
Programming Techniques,” ACM Sigplan, Special Section, Intriguing

Technology from OOPSLA, vol. 36, no. 12, December 2001.
[13] R. Rotta, T. Prescher, J. Traue, and J. Nolte, “In-memory communication

mechanisms for many-cores – experiences with the Intel SCC,” in TACC-

Intel Highly Parallel Computing Symposium (TI-HPCS), 2012.
[14] T. Prescher, R. Rotta, and J. Nolte, “Flexible sharing and replication

mechanisms for hybrid memory architectures,” in Proceedings of the

4th Many-core Applications Research Community (MARC) Sympo-

sium. Technische Berichte des Hasso-Plattner-Instituts für Softwaresys-

temtechnik an der Universität Potsdam, vol. 55, 2012, pp. 67–72.
[15] R. Rotta and A. Noack, “Multilevel local search algorithms for mod-

ularity clustering,” J. Exp. Algorithmics, vol. 16, pp. 2.3:2.1–2.3:2.27,
Jul. 2011.

[16] M. E. J. Newman, “Analysis of weighted networks,” Physical Review

E, vol. 70, p. 056131, 2004.
[17] ——, “Finding community structure in networks using the eigenvectors

of matrices,” Physical Review E, vol. 74, p. 036104, 2006.
[18] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,

and D. Wagner, “On modularity clustering,” IEEE Transactions on

Knowledge and Data Engineering, vol. 20, no. 2, pp. 172–188, 2008.
[19] S. L. Min and J.-L. Baer, “Design and analysis of a scalable cache

coherence scheme based on clocks and timestamps,” IEEE Trans.

Parallel Distrib. Syst., vol. 3, no. 1, pp. 25–44, Jan. 1992.
[20] A. Noack, “Example graphs from the LinLogLayout tool,” http://

www-sst.informatik.tu-cottbus.de/∼an/GD/, 2008.
[21] V. Batagelj and A. Mrvar, “Pajek datasets,” http://vlado.fmf.uni-lj.si/pub/

networks/data/patents/Patents.htm, 2006.
[22] A. Gupta, W.-D. Weber, and T. C. Mowry, “Reducing memory and traffic

requirements for scalable directory-based cache coherence schemes,” in
Proceedings of the 1990 International Conference on Parallel Process-

ing (ICCP), vol. 1: Architectur, 1990, pp. 312–321.
[23] H. Zhao, A. Shriraman, and S. Dwarkadas, “Space: sharing pattern-based

directory coherence for multicore scalability,” in Proceedings of the

19th international conference on Parallel architectures and compilation

techniques, ser. PACT ’10, 2010, pp. 135–146.
[24] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A tagless

coherence directory,” in Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO 42, 2009,
pp. 423–434.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Data Sharing Mechanisms for Parallel Graph Algorithms on the Intel SCC 18

http://www-sst.informatik.tu-cottbus.de/~an/GD/
http://www-sst.informatik.tu-cottbus.de/~an/GD/
http://vlado.fmf.uni-lj.si/pub/networks/data/patents/Patents.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/patents/Patents.htm

	Introduction
	Modularity Graph Partitioning
	Globally Greedy Vertex Moving
	Data Structures for Graph Partitioning

	Software-level Cache Coherence
	Shared Memory on the Intel Scc
	Shared Objects with Consistency Management
	Sharing Index Spaces and Mappings

	Performance Evaluation on the Intel Scc
	Shared Memory Performance
	Globally Greedy Vertex Moving

	Related Work
	Conclusions
	References

