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Elementary properties

Clearly φ(p) = p -1, for any prime number p and, more generally, if α ∈ N * , then φ(p α ) = p αp α-1 . This follows from the fact that the only numbers which are not coprime with p α are multiples of p and there are p α-1 such multiples x with 1 ≤ x ≤ p α .

It is well-known that φ is multiplicative, i.e., if m and n are coprime, then φ(mn) = φ(m)φ(n). If n ≥ 3 and the prime decomposition of n is n = p α1 1 . . . p αs s ,

then from what we have seen

φ(n) = s i=1 (p αi i -p αi-1 ) = n s i=1 (1 - 1 p i ).
Notice that p αp α-1 = p α-1 (p -1).

This implies that, if p is odd or p = 2 and α > 1, then p αp α-1 is even. Hence, for n ≥ 3, φ(n) is even. Thus the image of φ is composed of the number 1 and even numbers.

The following property is simple but very useful. 2 Bounds on φ -1 (m)

Let m ∈ N * and consider the preimage φ -1 (m) of m, i.e.

φ -1 (m) = {n ∈ N * : φ(n) = m}.

There are several questions we might ask. First, is the set φ -1 (m) empty and, if not, is it finite. It is easy to see that φ -1 (1) = {1, 2} and as we have already seen, φ -1 (m) is empty if m is odd and m = 1. It remains to consider the case where m is even. The following result, due to Gupta [START_REF] Gupta | Euler's totient function and its inverse[END_REF], helps us to answer these questions.

Proposition 2.1. Suppose that m is an even number and let us set

A(m) = m p-1|m p p -1 ,
where p is prime.

If n ∈ φ -1 (m), then m < n ≤ A(m). Proof. Clearly, if φ(n) = m, then m < n. On the other hand, if φ(n) = m and n = p α1 1 . . . p αs s , then m = n s i=1 p i -1 p i =⇒ n = m s i=1 p i p i -1 .
However, if p|n, then from the first section we know that p -1|φ(n) and it follows that, for each p i , p i -1|m. Hence n ≤ A(m).

The proposition shows that the preimage of an element m ∈ N * is always finite. It also enables us to determine whether a given number m is in the image of φ: we may determine A(m) and then calculate φ(n) for all integers n in the interval (m, A(m)]. However, it should be noticed that the calculation of A(m) depends on a knowledge of the factorization of m, which for large numbers may prove from a practical point of view difficult or even possible.

Example 2.1. The divisors of 4 are 1, 2 and 4. Adding 1 to each of these numbers we obtain 2, 3 and 5, all of which are prime numbers. Thus A(4

) = 4 • 2 1 • 3 2 • 5 4 = 15.
To find the inverse image of 4, it is sufficient to consider numbers between 5 and 15. In fact, φ -1 (4) = {5, 8, 10, 12}.

Example 2.2. The divisors of 14 are 1, 2, 7 and 14. However, if we add 1 to each of these numbers we only find a prime number in the first two cases. Thus A(14

) = 14 • 2 1 • 3 2 = 42.
If we consider the numbers n between 15 and 42, we find φ(n) = 14 and so φ -1 (14) = ∅.

Remark 2.1. The example m = 14 shows that there are even numbers which are not in the image of φ.

When deciding whether a number m is in the image of φ, it is not necessary to consider all numbers between m and A(m). In fact we only need to consider those numbers n such that, for any prime number p, we have p|n =⇒ p -1|m.

A is a function defined on {1} ∪ 2N * . Let us look at the first values of A with the corresponding values of φ (when defined): From the table we see that A(m) may be odd, even or a fraction and that A is not increasing (A(12) > A( 14)). Also, we may have φ(A(m)) = m or φ(A(m)) > m.

m A(m) φ(A(m)) 1 2
It is interesting to consider the special case m = 2 k . The only divisors of 2 k are 1, 2, 2 2 . . . , 2 k . If we add 1 to each of these numbers, we obtain numbers of the form 2 i + 1, where 0 ≤ i ≤ k. For i ≥ 1, such numbers are prime only if i is a power of 2. A number of the form

F n = 2 2 n + 1 is said to be a Fermat number. Therefore A(2 k ) = 2 k • 2 • F n F n -1 = 2 k+1 • F n F n -1 ,
where the product is taken over Fermat numbers F n which are prime and such that F n -1|2 k . For example, if m = 2 5 = 32, then F 0 , F 1 and F 2 are the only Fermat numbers F n such that F n -1|m. In addition these Fermat numbers are all prime. Therefore A(m) = 64

• 3 2 5 4 • 17 16 = 255 2 .
The Fermat numbers F 0 , . . . , F 4 are all prime; however F 5 , . . . , F 12 are composite numbers and it has been shown that for many other numbers n, F n is composite. In fact, up till now no Fermat number F n with n ≥ 5 has been found to be prime. If there are no prime Fermat numbers with n ≥ 5, then for 2 k ≥ 2 16 we have

A(2 k ) = 2 k+1 • F 0 2 • F 1 2 2 • F 2 2 4 • F 3 2 8 • F 4 2 16 = 2 k-30 F 0 F 1 F 2 F 3 F 4 ,
which is an integer for k ≥ 30.

Before closing this section, let us consider the upper bound on odd elements of φ -1 (m). From Corollary 1.1, we know that if n is odd and n ∈ φ -1 (m), then 2n ∈ φ -1 (m), therefore an upper bound on odd

elements of φ -1 (m) is A(m)
2 . We should also notice that at least half of the elements in φ -1 (m) are even. In fact, φ -1 (m) may be non-empty and contain very few odd numbers, or even none. For example, the only odd number in φ -1 (8) is 15 and φ -1 (2 32 ) contains only even numbers (see Theorem 6.2 further on).

The case m = 2p

We now consider in some detail the case where p is prime and m = 2p. Theorem 3.1. If p is a prime number, then 2p lies in the image of φ if and only if 2p + 1 is prime.

Proof. If 2p + 1 is prime, then φ(2p + 1) = 2p and so 2p ∈ Im φ.

Suppose now that 2p ∈ Im φ. If p = 2, then 2p = 4 ∈ Im φ, car φ(5) = 4 and 2p + 1 = 5, which is prime. Now suppose that p is an odd prime. As 2p ∈ Im φ, there exists n such that φ

(n) = 2p. If n = 2 k , then 2 k-1 = φ(2 k ) = 2p
, which is clearly impossible, because p is an odd number greater than 1. Hence there is an odd prime q such that n = qs. There are two cases to consider: 1. q |s and 2. q|s. We will handle each of these cases in turn, using Proposition 1.1.

Case 1. We have 2p = (q -1)φ(s) which implies that q -1|2p. The only divisors of 2p are 1, 2, p and 2p. As q = 2, the possible values for q -1 are 2, p or 2p and hence for q are 3, p + 1 or 2p + 1. However, p + 1 is not possible, because p + 1 is even and hence not prime. If q = 3, then φ(s) = p. As p is an odd number greater than 1, this is not possible. It follows that q = 2p + 1 and so 2p + 1 is prime.

Case 2. Here we have 2p = qφ(s) and so q|2p. The possible values of q are 1, 2 , p or 2p. However, as q is an odd prime, we must have q = p. This implies that φ(s) = 2. Also, q|s and so q -1|φ(s). It follows that p = q = 3 and hence 2p + 1 = 7, a prime number.

As in both cases 2p + 1 is prime, we have proved the result.

Remark 3.1. A prime number of the form 2p + 1, with p prime, is said to be a safe prime. In this case, the prime number p is said to be a Sophie Germain prime. Notice that if q is a safe prime et q = 5, then q ≡ 3(mod 4). (If q ≡ 1(mod 4), then 2p ≡ 0(mod 4), which implies that 2|p, which is of course impossible.)

Remark 3.2. The theorem does not generalize to odd numbers. Certainly, if s is odd and 2s+ 1 is prime, then 2s ∈ Im φ. However, it may be so that 2s + 1 is not prime and 2s ∈ Im φ. For example, 54 = φ(81) and so 54 ∈ Im φ. However, 54 = 2 • 27 and 2 • 27 + 1 = 55, which is not prime.

Remark 3.3. Let us now consider φ -1 (2p). From Theorem 3.1, the set φ -1 (2p) is empty if 2p + 1 is not prime. If 2p + 1 is prime, then we have A(2p) = 2p • 2 1 • 3 2 • 2p + 1 2p = 6p + 3. Hence, if n ∈ φ -1 (2p), then 2p < n ≤ 6p + 3. It is worth noticing that φ(6p + 3) = φ(3)φ(2p + 1) = 2 • 2p = 4p.
We will study the set φ -1 (2p) in more detail further on.

Corollary 3.1. If 2p ∈ Im φ, then 2 k p ∈ Im φ, for k ≥ 1.
Proof. For k = 1 the result is already proved, so suppose that k ≥ 2. As 2p + 1 is an odd prime, 2 k and 2p + 1 are coprime. Therefore

φ(2 k (2p + 1)) = φ(2 k )φ(2p + 1) = 2 k-1 2p = 2 k p.
This ends the proof.

Remark 3.4. It may be so that 2p + 1 is not prime but that 2 l p + 1 is prime for some l ≥ 2. For example, 2.7 + 1 is not prime, but 2 2 .7 + 1 is prime, or 2.17 + 1 and 2 2 .17 + 1 are not prime, but 2 3 .17 + 1 is prime. In this case 2 k p ∈ Im φ, for all k ≥ l. It is natural to ask whether, for any prime p, there is a power 2 k of 2 such that 2 k p + 1 is also a prime. This not the case and in fact there is an infinite number of primes p, for which there is no such k (see [START_REF] Mendelsohn | The equation φ(x) = k[END_REF]).

It is interesting to notice that no number of the form 2p + 1, with p prime, is a Carmichael number. This is a simple application of Korselt's criterion (see, for example, [START_REF] Childs | A Concrete Introduction to Higher Algebra 3rd edition[END_REF]). If m = 2p + 1 is prime, then, by definition, m is not a Carmichael number. If m is composite and a Carmichael number, then for any prime q dividing m, the number q -1 divides m -1 = 2p. This means that q ∈ {2, 3, p + 1, 2p + 1}. As m is odd and p + 1, 2p + 1 are not prime, q = 3. However, a Carmichael number is square-free and a product of at least three distinct primes. Therefore m is not a Carmichael number.

Sets of elements of the form 2p

In this section we will need an important theorem due to Dirichlet. Chapman [START_REF] Chapman | Dirichlet's theorem: a real variable approach[END_REF] has recently given a relatively elementary proof of this result. Let us consider the prime numbers p in the interval [ It is natural to ask whether there is an infinite number of distinct primes p such that 2p ∈ Im φ (resp. 2p / ∈ Im φ). Our question amounts to asking whether there is an infinite number of safe primes, or equivalently an infinite number of Sophie Germain primes. Up till now this question has not been answered. The largest known safe prime, at least up to January, 2007, was found by David Undebakke and is 48047305725.2 172404 -1. We can say a lot more concerning numbers of the form 2p which are not in the image of φ. Theorem 4.2. For any odd prime number p, there is an infinite set S(p) of prime numbers q such that 2q / ∈ Im φ and p|2q + 1.

Proof. If p is an odd prime, then p-1 2 is a positive integer and gcd( p-1 2 , p) = 1. From Dirichlet's theorem, we know that there is an infinite number of prime numbers of the form q = p-1 2 + kp, with k ∈ Z. Then

2q + 1 = 2 p -1 2 + kp + 1 = p + 2kp = p(1 + 2k).
From Theorem 3.1, we know that 2q / ∈ Im φ and clearly p|2q + 1.

Remark 4.1. The sets S(p) may have common elements, but in general are distinct. For example, 14 is in S(3) and S(5), but not in S(7), 26 is in S(3), but not in S(5) and S(7) and 34 is in S(5) and S(7), but not in S(3).

The following result follows directly from the theorem.

Corollary 4.1. For every odd prime number p, there exists an infinite subset S(p) of N * such that a ≡ -1(mod p).

and a / ∈ Im φ, when a ∈ S(p).

At least for the moment, we cannot say that there is an infinity of odd prime numbers p such 2p ∈ Im φ. However, we can say that that there is an infinity of odd numbers s such that 2s ∈ Im φ. Here is a proof. From Dirichlet's theorem, there is an infinity of prime numbers p such that p ≡ 3(mod 4). Thus, for each of these primes, there exists k ∈ Z such that p = 3 + 4k = 1 + 2(1 + 2k).

As 1 + 2(1 + 2k) is prime 2(1 + 2k) ∈ Im φ and of course 1 + 2k is odd.

Factorials

Up to here we have concentrated on numbers of the form 2p, with p prime. We may consider other subsets of N. One such subset is that composed of numbers of the form m = n!. Lemma 5.1. If n ≥ 3 and p 1 , . . . , p s are the odd prime numbers less than or equal to n, then there there are integers α ∈ N and α 1 , . . . , α s ∈ N * such that n! = 2 α p α1 1 (p 1 -1) . . . p αs s (p s -1).

Proof. We can write

n! = s i=1 (p i -1)p i m j ,
where the m j are positive integers, with m j ≤ n and m j = p i and m j = p i -1 for any i. Each m j can be written m j = 2 β p β1 1 . . . p βs s , where β, β 1 , . . . , β s ∈ N. The result now follows.

Theorem 5.1. For all n ∈ N, n! is in the image of φ.

Proof. As 0! = 1! = 1 and 2! = 2, the result is true for n = 0, 1, 2. From the lemma, for n ≥ 2,

n! = 2 α p α1 1 (p 1 -1) . . . p αs s (p s -1)
and so

n! = φ(2 α+1 p α1+1 1 . . . p αn+1 s ).
This finishes the proof.

6 Structure of φ -1 (m)

If n is an odd solution of the equation φ(n) = m, then 2n is also a solution (Corollary 1.1). It follows that the equation can have at most half its solutions odd. It is natural to look for cases where there are exactly the same number of odd and even numbers of solutions.

First let us consider the case where m = 2p and p is an odd prime. If p = 3, then 6 < n ≤ 21. A simple check shows that φ -1 (6) = {7, 9, 14, 18}. There are two odd and two even solutions of the equation φ(n) = 6. Proposition 6.1. If p is a prime number such that p ≥ 5 and 2p + 1 is prime, then φ -1 (2p) contains exactly one odd and one even element, namely 2p + 1 and 4p + 2.

Proof. We have already seen that, if φ(n) = 2p, then 2p < n ≤ 6p + 3. The divisors of 2p are 1, 2, p and 2p and so the only possible prime divisors of n are 2, 3 and 2p + 1. If n = 2p + 1 or 4p + 4, then φ(n) = 2p and there can be no other multiple n of 2p + 1 such that φ(n) = 2p. If n is not a multiple of 2p + 1 and φ(n) = 2p, then n must be of the form n = 2 α • 3 β . If α ≥ 3, then 4|2p, which is impossible. Also, if β ≥ 2, then 3|2p. However, this is not possible, because p ≥ 5. Therefore α ≤ 2 and β ≤ 1.

As n > 2p ≥ 10, the only possibility is n = 12. As φ(12) = 4, this is also impossible. The result now follows.

We can generalize this result to odd numbers in general. We will write O(m) (resp. E(m)) for the number of odd (resp. even) solutions of the equation φ(n) = m. Theorem 6.1. If s is odd and s ≥ 3, then O(2s) = E(2s).

Proof. If the equation φ(n) = 2s has no solution, then there is nothing to prove, so suppose that this is not the case. If n is an odd solution of the equation, then 2n is also a solution. Hence O(2s) ≤ E(2s).

If n is an even solution, then we may write n = 2 α t, with α ≥ 1 and t odd. If t = 1, then φ(n) is a power of 2, which is not possible. It follows that t ≥ 3. If we now suppose that α > 1, then φ(n) = 2 α-1 φ(t) and, as φ(t) is even, 4 divides φ(n) = 2s, which is not possible. Therefore α = 1 and so n = 2t. As φ(t) = φ(2t) = φ(n), we must have O(2s) ≥ E(2s) and the result now follows. Corollary 6.1. There is an infinity of numbers m such that φ -1 (m) is non-empty and composed of an equal number of odd and even numbers.

Proof. We have seen that there is an infinite number of primes p such that p = 1 + 2s, with s odd. The result now follows. Remark 6.1. Simple calculations show that φ -1 (28) = {29, 58}. This shows that the converses of Proposition 6.1 and Theorem 6.1 are not true.

At the other extreme is the case where φ -1 (m) is non-empty and composed entirely of even numbers. In considering this question, the following result due to Gupta [START_REF] Gupta | Euler's totient function and its inverse[END_REF], is useful. We will give a modified proof of it.

Theorem 6.2. O(2 k ) = 0 or O(2 k ) = 1.
Proof. As φ -1 (1) = {1, 2} and φ -1 (2) = {3, 4, 6} the result is true for k = 1 and k = 2. Suppose now that k > 1 and that φ(n) = 2 k , with n odd. If p is an odd prime such that p -1 divides 2 k , then p must be of the form 2 i + 1. The only primes of this form are Fermat numbers, hence if n = p α1 0 . . . p αr r is the decomposition of n as a product of primes, then each p i must be a Fermat number. If we allow α i = 0, then we may suppose that p i = F i . Thus

2 k = φ(F α0 0 ) . . . φ(F αr r ) = αi≥1 F αi-1 i (F i -1).
If α i > 1 for some i, then the product is not a power of 2, hence we must have α i = 0 or α i = 1, for all i, and so 2 k = α 0 2 2 0 . . . α r 2 2 r .

Clearly α 0 . . . α r is k written in binary form. Therefore there can be at most one odd number n such that φ(n) = 2 k . If α i = 1 only when F i is prime, then there exists n odd such that φ(n) = 2 k and O(2 k ) = 1.

On the other hand, if there is an α i such that F i is not prime, then there does not exist an odd number n such that φ(n) = 2 k .

If k < 32, then k can be written in binary form as α 0 . . . α 4 . As F 0 , . . . F 4 are all primes, there exists an odd number n such that φ(n) = 2 k . However, for 2 32 , this is not the case, because F 5 is not prime. Up till now no Fermat number F n , with n ≥ 5, has found to be prime, so it would seem that, for k ≥ 5, there is no odd number in the set φ -1 (2 k ). This suggests that there is an infinity of numbers m for which φ -1 (m) is non-empty and only composed of even numbers.

In considering the structure of a set φ -1 (m), we may focus attention on the congruence classes modulo m of elements in φ -1 (m). It is natural to ask whether there is an element n ∈ φ -1 (m) which is congruent to 1(mod m). This is always the case if m + 1 is prime, because then m + 1 ∈ φ -1 (m). However, if m + 1 is composite, then this is probably not true. If m + 1 is composite, n ≡ 1(mod m) and n ∈ φ -1 (m), then there exists k such that n -1 = km = kφ(n).

The problem of solving this equation for n composite was first considered by Lehmer [START_REF] Lehmer | On Euler's totient function[END_REF]. He found no such n and showed that any solution must be odd, square-free and have at least 7 prime factors. Up till now no solution has been found and the lower bound has been pushed much higher. (A good discussion of this problem may be found in [START_REF] Grytczuk | On a Lehmer problem concerning Euler's totient function[END_REF].) For this reason it is most likely that φ -1 (m) contains no n ≡ 1(mod m), when m + 1 is composite. proof If the conditions are satisfied, then clearly 2p k ∈ Im φ. Now suppose that 2p k ∈ Im φ. There exists a prime number q and a number l ∈ N such that 2p k = q l (q -1). If l = 0, then p = q. As p k |p l (p -1) and p k and p -1 are coprime, p k |p l . This implies that 2 = p l-k (p -1) and it follows that l = k and p -1 = 2. However, this contradicts the fact that p = 3. We have shown that l = 0 and hence that 2p k + 1 is prime.

If 2p k + 1 ≡ 1(mod 4), then 2p k ≡ 0(mod 4). It follows that 2|p k , which is clearly impossible. Therefore 2p k + 1 ≡ 3(mod 4).

If p ≡ 1(mod 3), then 2p k + 1 ≡ 0(mod 3) and so 2p k + 1 is not prime. Hence p ≡ 2(mod 3). However, if k is even, then 2p k + 1 ≡ 0(mod 3) and 2p k + 1 is not prime. It follows that k is odd. ✷

Clearly this proposition generalizes Theorem 3.1.

Conclusion

We have seen that the preimage φ -1 (m) is an empty set for any odd positive integer m > 1 and also for an infinite number of even positive integers. We have also seen that, when φ -1 (m) is non-empty, φ -1 (m) can have at most half of its members odd; it is also possible that all its members are even. Up till now no number m has been found such that φ -1 (m) contains only one element. Carmichael conjectured that such a case does not exist, but this is yet to be proved (or disproved). However, for k ≥ 2, Ford [START_REF] Ford | The number of solutions of φ(x) = m[END_REF] has shown that there is a number m such φ -1 (m) contains precisely k elements.
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 11 If p, m ∈ N * , with p prime, and n = pm, then φ(n) = (p -1)φ(m), if gcd(p, m) = 1, and φ(n) = pφ(m), if gcd(p, m) = 1. Proof. If gcd(p, m) = 1, then we have φ(n) = φ(p)φ(m) = (p -1)φ(m). Now suppose that gcd(p, m) = 1. We may write m = p α m ′ , with α ≥ 1 and gcd(p, m ′ ) = 1. Thus φ(n) = φ(p α+1 )φ(m ′ ) = p α (p -1)φ(m ′ ). However φ(m) = p α-1 (p -1)φ(m ′ ) and so φ(n) = pφ(m). ✷ Corollary 1.1. φ(2m) = φ(m), if and only if m is odd. Proof. If m is odd, then gcd(2, m) = 1 and so φ(2m) = (2 -1)φ(m) = φ(m). If m is even, then gcd(2, m) = 1, hence φ(2m) = 2φ(m) = φ(m). This ends the proof.

Theorem 4 . 1 .

 41 (Dirichlet) If n ∈ N * and gcd(a, n) = 1, then there is an infinite number of prime numbers p such that p ≡ a(mod n).

  If k ∈ N, then 2.3 k ∈ Im φ, because φ(3 k+1 ) = 2.3 k . However, if p is an odd prime other than 3, then it is not necessarily so that 2p k ∈ Im φ. Proposition 7.1. If p is an odd prime other than 3 and k ∈ N, then 2p k ∈ Im φ if and only if 2p k + 1 is a prime number, 2p k + 1 ≡ 3(mod 4) and k is odd.
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