
HAL Id: hal-00718959
https://hal.science/hal-00718959v1

Submitted on 19 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic model of the human cortical bone with
mechanical alterations in ultrasonic range

Christophe Desceliers, Christian Soize, Salah Naili, Guillaume Haïat

To cite this version:
Christophe Desceliers, Christian Soize, Salah Naili, Guillaume Haïat. Probabilistic model of the
human cortical bone with mechanical alterations in ultrasonic range. Mechanical Systems and Signal
Processing, 2012, 32 (-), pp.170-177. �10.1016/j.ymssp.2012.03.008�. �hal-00718959�

https://hal.science/hal-00718959v1
https://hal.archives-ouvertes.fr


Probabilistic model of the human cortical bone with

mechanical alterations in ultrasonic range

C. Desceliersa,∗, C. Soizea, S. Nailib, G. Haiatb
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Abstract

The biomechanical materials are among the most complex mechanical

systems. Most often, their microstructure are heterogeneous and random.

This is the case for the human cortical bones which are considered in this

paper. For such systems, a gradient of porosity can be observed in the thick-

ness direction but, in this case, none of the usual theories of porous materials

can be applied. For this reason, a simplified model with gradient for the elas-

ticity tensor is presented. The predictability of this model is improved by

taking into account uncertainties. We propose a prior stochastic model of the

tensor-valued elasticity field corresponding to an extension of a previous work

in which the random elasticity field was constant in space. This extension

consists in introducing two ingredients: the introduction of a spatial gradi-

ent for the mean elasticity tensor and spatial statistical fluctuations in the

thickness direction. The stochastic model which is constructed shows that
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the observed responses are effectively sensitive with respect to the values of

the gradient and to the level of statistical fluctuations. In this sense, this

stochastic model will be well adapted to perform its identification solving a

stochastic inverse problem that is not the purpose of present paper.
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multilayer, mesocale, gradient of properties, elasticity tenor, uncertainties

1. Introduction

The aim of this paper is to introduce a stochastic elastoacoustic model

useful for the ultrasonic characterization of a multilayer materials for which

an elastic solid layer is uncertain. This stochastic model is developed in the

context of the ultrasonic propagation in human cortical bones but could be

applied to another mechanical systems. The biomechanical materials are

among the most complex mechanical systems. Modeling such media is a

challenge and the main difficulty is given rise to the complexity level of their

microstructures. This is the case for the human cortical bones which are con-

sidered in this paper. The complexity level of such a biomechanical system

is such that a multiscale approach should be developed to represent all the

mechanical behavior and would allow (among others) the ultrasonic charac-

terization of a human compact bone to be simulated. Nevertheless, such a

multiscale model would be very difficult to construct taking into account the

complexity of the heterogeneities of the microstructure. In this paper, we are

only interested in the ultrasonic characterization of the human cortical bone.

In this context, a first simplified model has been introduced in [16, 9] and

which is representative of in vivo measurements of bone cortical properties
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with the so-called axial transmission technique [13]. This simplified elas-

toacoustic model is a three-layers system: an elastic solid layer sandwiched

between two acoustic fluid layers. The elastic solid layer (cortical bone) is

an anisotropic elastic material while the fluid acoustic layers (soft tissues)

are usual compressible and homogenous inviscid fluids satisfying the linear

acoustic equations. The axial transmission technique provides the velocity

of ultrasonic waves axially transmitted along cortical bone through a linear

arrangement of transmitters and receivers placed on the same side of the

skeletal site. This technique has been extensively used to probe bone qual-

ity at the radius [4, 8]. With the bidirectional axial transmission technique,

the measurements of the velocity of the first arriving signal (FAS) is sensi-

tive to the elasticity properties of the cortical bone in the neighborhood of

the coupling interface between the elastic solid layer (cortical bone) and the

acoustic fluid layer (soft tissues). Nevertheless, previous works [5, 6, 10, 17]

shows that the FAS is not sensitive to the bone mass density and to the

bone thickness when this one is greater than the wavelength in the cortical

bone. This is a reason why, in this paper, an extension of the stochastic

model and an additional observation are introduced in order to also obtain

a sensitivity with respect to the bone thickness. It should be noted that

the in vivo measurements [9] exhibit random fluctuations of the ultrasonic

characterization which are not related to measurement errors induced by the

probe. In Desceliers et al. [9], it was seen that a simplified mechanical model

with an additional stochastic modeling of bone elasticity properties are able

to represent the in vivo measurements in the statistical sense. It should be

noted that a first application of the parametric probabilistic approach to the
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axial transmission technique can be found in Macocco et al. [14].

Besides its multiscale nature, cortical bone is heterogeneous at the organ

scale. Its mechanical properties depend on the cross-sectional and axial loca-

tion [19, 20]. This heterogeneity depends on properties such as porosity and

degree of mineralization of bone tissue [18]. In particular, porosity in the

radial direction (which is associated with the cross-section) is heterogeneous

at all ages and for both genders [7]. In this paper, for such a biomechanical

system, we consider that the microstructure of the cortical bone is altered

in the neighborhood of its interface with the marrow. As a result, strong

fluctuations of the pore sizes can exist in the thickness direction but, in this

case, none of the usual theories of porous materials [1, 2, 3] can be applied

because the variations of the pore sizes are too much important with respect

to the number of pores and consequently, homogenization cannot be applied.

Consequently, in the thickness direction, the spatial variation of the mean

elasticity properties for the mean model at the mesoscale modeling of the

microstructure, is taken into account in introducing a gradient of the elas-

ticity properties. The determination of the gradient of the mean elasticity

properties is of a first interest in order to diagnose bone diseases through the

quantification of bone stiffness. Thus, inside the elastic solid layer (cortical

bone), the constitutive equation goes to the one of the acoustic fluid (mar-

row) when one moves towards the marrow in the thickness direction. The

uncertainties related to such a model are taken into account by modeling the

elasticity tensor by a random field for which the mean value corresponds to

the previous mean model exhibiting a gradient.
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In a first step, the simplified mean model introduced in Desceliers et al. [9]

is briefly recalled. The three next sections are devoted to the construction of

the gradient model for the mean elasticity properties of the microstructure at

the mesoscale. In the following section, the stochastic model around the mean

model is constructed. Finally, we introduce a new observation allowing the

determination of the parameters of the probabilistic model to be performed

and we present a numerical illustration for the cortical bone.

2. Simplified model

The properties of the human cortical bone are studied by using in vivo

measurements obtained with the axial transmission technique. An acoustic

pulse is applied to the skin layer in the ultrasonic range and the velocity

of the first arriving signal is measured. A simplified model of the human

cortical bone made up of the skin, the coupling gel with a probe which

generated an acoustic pulse and the marrow has been developed in Naili

et al. [16], Desceliers et al. [9]. This simplified model is composed of an

elastic solid semi-infinite layer between two acoustic fluid semi-infinite layers

as shown in Fig. 1.

Let R(O, e1, e2, e3) be the reference Cartesian frame where O is the origin

of the space and (e1, e2, e3) is an orthonormal basis. The generic point in R3

is x = (x1, x2, x3). The thicknesses of the layers are denoted by h1, h and h2

(see Fig. 1). The first acoustic fluid layer occupies the unbounded domain

Ω1, the second one occupies the unbounded domain Ω2 and the elastic solid

layer occupies the unbounded domain Ω. Let ∂Ω1 = Γ1 ∪ Σ1, ∂Ω = Σ1 ∪ Σ2
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Figure 1: Geometry of the multilayer system

and ∂Ω2 = Σ2 ∪ Γ2 (see Fig. 1) be the boundaries of Ω1, Ω and Ω2 in which

Γ1,Σ1,Σ2 and Γ2 are the planes defined by

Γ1 = {x1 ∈ R , x2 ∈ R , x3 = h1} ,

Σ1 = {x1 ∈ R , x2 ∈ R , x3 = 0} ,

Σ2 = {x1 ∈ R , x2 ∈ R , x3 = −h} ,

Γ2 = {x1 ∈ R , x2 ∈ R , x3 = −(h+ h2)} .

Let n be the outward unit normal to domain Ω. Let u be the displacement

field of the elastic solid layer occupying the domain Ω, p1 be the acoustic

pressure field of the acoustic fluid layer occupying domain Ω1 and p2 be the

acoustic pressure field of the one occupying domain Ω2. It should be noted

that domains Ω1, Ω and Ω2 are unbounded along the transversal directions

e1 and e2 whereas they are bounded along the vertical direction e3.

At time t = 0, the system is assumed to be at rest.
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3. Mean boundary value problem for the first acoustic fluid layer

A line source modeling the acoustical impulse is applied in domain Ω1

and is defined by a source density S such that

∂S

∂t
(x, t) = ρ0,1 F (t) δ0(x1 − xS

1 ) δ0(x3 − xS
3 ) , (1)

in which F (t) = F1 sin(2πfct) e
−4(t fc−1)2 where fc = 1MHz is the central

frequency, F1 = 100N, ρ0,1 is the mass density of the acoustic fluid in domain

Ω1, δ0 is the Dirac function at the origin, xS
1 and xS

3 are the coordinates of

the line source. It can be shown that, for all x belonging to Ω1 and for all

time t > 0, acoustic pressure field p1 verifies

1

K1

∂2p1
∂t2

− 1

ρ1,0
∆p1 =

1

ρ1,0

∂S

∂t
, x ∈ Ω1 (2)

p1 = 0 , x ∈ Γ1 (3)

grad p1 · n = −ρ1,0
∂2u

∂t2
· n , x ∈ Γ0 (4)

in which K1 = ρ1,0 c
2
1,0, where c1,0 and ρ1,0 are respectively the wave velocity

in the fluid and the mass density of the fluid at equilibrium; The symbol ∆

is the Laplacian operator with respect to x.

4. Mean boundary value problem for the elastic solid layer

The elastic solid displacement field u for the mean model verifies

ρ
∂2u

∂t2
− div � = 0 , x ∈ Ω (5)� n = −p1 n , x ∈ Σ1 (6)� n = −p2 n , x ∈ Σ2 (7)
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in which ρ(x3) is the mass density which is assumed to be independent of

x1 and x2 at any point x (we only consider heterogeneities of the material in

the thickness direction). The quantity �(x, t) is the Cauchy stress tensor of

the elastic solid layer at point x and at time t > 0 and p2(x, t) denotes the

acoustic pressure field in the fluid occupying the domain Ω2; The symbol div

is the divergence operator with respect to x. The constitutive equation of

the elastic solid layer is written as�(x, t) = 3
∑

i,j,k,h=1

cijkh(x3)εkh(x, t) ei ⊗ ej (8)

where {cijkh(x3)} is the mean elasticity tensor of the fourth order at the

mesoscale of the microstructure, which is assumed to be independent of x1

and x2 at any point x (we only consider heterogeneities of the material in the

thickness direction). The symbol ⊗ designates the tensor product between

two vectors. The quantity εkh = 1
2
(∂uk

∂xh
+ ∂uh

∂xk
) is the linearized strain tensor.

It is usual to associate the elasticity 6× 6 matrix [C(x3)] to elasticity tensor

{cijkh(x3)}.

If the mean model at mesoscale was a homogeneous transverse isotropic

material with a constant mass density ρ(x3) = ρS , then [C(x3)] would be

equal to a constant matrix [CS] whose entries are equal to zero except the

following one:

[CS]11 =
e2L(1− νT )

(eL − eLνT − 2eTν2
L)

, [CS]22 =
eT (eL − eTν

2
L)

(1 + νT )(eL − eLνT − 2eTν2
L)

,

[CS]12 =
eT eLνL

(eL − eLνT − 2eTν2
L)

, [CS]23 =
eT (eLνT + eT ν

2
L)

(1 + νT )(eL − eLνT − 2eTν2
L)

,

[CS]44 = gT , [CS]55 = gL ,
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with [CS]22 = [CS]33, [C
S]12 = [CS]13 = [CS]21 = [CS]31, [C

S]23 = [CS]32 and

[CS]55 = [CS]66; the quantities eL and eT are the longitudinal and transversal

Young moduli, gL and gT are the longitudinal and transversal shear moduli

and νL and νT are the longitudinal and transversal Poisson coefficients such

that gT = eT/2(1 + νT ).

5. Mean boundary value problem for the second acoustic fluid layer

Let v2(x, t) be the velocity field of a particle located at point x of Ω2 and

at time t > 0. The corresponding displacement field is denoted by u2(x, t).

We then have v2 = ∂u2/∂t. For all x belonging to Ω2 and for all time t > 0,

the mass density of the acoustic fluid layer occupying domain Ω2 is denoted

by ρ2(x, t). In the context of the linear acoustic theory, the linearized mass

conservation equation is written as

∂ρ2
∂t

+ ρ2,0 div v2 = 0 , x ∈ Ω2 (9)

in which ρ2,0 is the mass density of the fluid at equilibrium. Furthermore,

the linearized Euler equation is written as

ρ2,0
∂v2
∂t

+ grad p2 = 0 , x ∈ Ω2 (10)

in which grad denotes the gradient operator with respect to x. Let c2,0 be

the wave velocity in the fluid at equilibrium. The constitutive equation for

the acoustical fluid occupying domain Ω2 is then written as

p2 = c22,0 ρ2 , x ∈ Ω2 . (11)
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Then, it can be shown that acoustic pressure field p2 satisfies the usual

following equation

1

K2

∂2p2
∂t2

− 1

ρ2,0
∆p2 = 0 , x ∈ Ω2 (12)

p2 = 0 , x ∈ Γ2 (13)

grad p2 · n = −ρ2,0
∂2u

∂t2
· n , x ∈ Γ (14)

in which p2(x, t) denotes the acoustic pressure field in the fluid and K2 =

ρ2,0 c
2
2,0. Moreover, consider an elastic solid layer whose constitutive equation

is written as {�F (x, t)}ij =
∑3

k,h=1 cF,ijkhεF,kh(x, t) where {�F (x, t)}ij and

εF,kh(x, t) are respectively the Cauchy stress and the linearized strain tensors

associated with displacement field u2. The elasticity tensor of fourth order

cF,ijkh is such that

cF,ijkh = ρ0,2 c
2
2,0 δij δkh . (15)

We then have {�F (x, t)}ij = (c22,0 ρ0,2 div u2) δij = −(pF (x, t)) δij in which

pF = −c22,0 ρ0,2 div u2 is the acoustic pressure field in the medium. We then

have ∂pF/∂t = −c22,0 ρ0,2 div v2 and using Eq. (9) , it can be deduced that

∂pF/∂t = c22,0 ∂ρ2/∂t and consequently, pF = c22,0 ρ2 (since the acoustic pres-

sure field is equal to zero when the system is at rest). As a consequence, the

constitutive equation of such an elastic solid is equivalent to the constitutive

equation given by Eq. (11) of an acoustic fluid. In addition, the balance

equation for such an elastic solid would be

ρ2
∂2u2

∂t2
− div �F = 0 , x ∈ Ω (16)

where {div �F}i = ∑3
j=1{�F}ij,j = −

∑3
j=1(∂pF /∂xj) δij = −∂pF /∂xi. Con-
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sequently, Eq. (9) is rewritten as

ρ2
∂2u2

∂t2
+ grad pF = 0 , x ∈ Ω (17)

which is the linearized Euler equation for an acoustic fluid (see Eq. (10) ).

As a consequence, Eqs. (12) to (14) (for an acoustic fluid) are equivalent

to the following equations (for an elastic solid)

ρ2
∂2u2

∂t2
− div �F = 0 , x ∈ Ω2 (18)�F · n = 0 , x ∈ Γ2 (19)

u2 · n = u · n , x ∈ Γ (20)

with {�F (x, t)}ij =
∑3

k,h=1 cF,ijkh εF,kh(x, t) and cF,ijkh = c22,0 ρ0,2 δij δkh. As

for the elastic solid layer, we can introduce an elasticity matrix [CF ] whose

entries are the components cF,ijkh of the elasticity tensor of the fluid medium.

All entries of [CF ] are zero except [CF ]11, [CF ]12, [CF ]13, [CF ]21, [CF ]22,

[CF ]23, [C
F ]31, [C

F ]32 and [CF ]33 that are all equal to ρ0,2 c
2
2.

6. Simplified mean model for the elastic solid layer with a gradient

model

A healthy cortical bone can be viewed as a porous material. In this case,

it has reported that Haversian/Volkmann’s canals are the major portions of

the total porosity with a mean diameter on an order of 50 µm [15]. However,

in case of bone diseases, due to a degradation of the cortical bone in the

neighborhood of the marrow, in this region of the bone, the pore sizes are

enough large and are not small with respect to the thickness of the cortical

layer. In addition, the number of pores in this region is too small. Con-

sequently, the usual porous medium theory [1, 2, 3] cannot be applied. It
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should be noted that the pore sizes increase along the transverse direction x3

and the gradient of the mean elasticity properties at mesoscale is such that,

in the neighborhood of interface Σ2, the cortical material is mostly made up

of the same acoustic fluid than the one in domain Ω2. Hereafter, we then

propose an approach that allows the modeling of the mean elasticity matrix,

[C(x3)], to be still constructed. Let a and b such that −h ≤ b < a ≤ 0

(see Fig. 1). For all x3 in [a, 0], the mean model of material at mesoscale in

the elastic solid layer is assumed to be a homogeneous transverse isotropic

medium, and for all x3 in [−h, b] is assumed to be the same acoustic fluid

than in the medium Ω2 (note that a and b are generally unknown and must

be identified solving an inverse problem). Consequently: (i) for all x3 in

[a, 0], we have [C(x3)] = [CS] and ρ(x3) = ρS; (ii) for all x3 in [−h, b] we

have [C(x3)] = [CF ] and ρ(x3) = ρ0,2, that is to say, we have the properties

of acoustic fluid layer Ω2. In the interval [b, a], we introduce a gradient such

that, for all x3 in [b, a]

[C(x3)] = (1− f(x3)) [C
S] + f(x3) [C

F ] ,

ρ(x3) = (1− f(x3)) ρ
S + f(x3) ρ0,2 ,

where f(x3) = c0 + c1 x3 + c2 x
2
3 + c3 x

3
3 in which c0 = a2 (a − 3 b)/(a − b)3,

c1 = 6 a b/(a − b)3, c2 = −3(a + b)/(a − b)3 and c3 = 2/(a − b)3. This

model is such that [C(a)] = [CS], [C(b)] = [CF ] and for x3 = a or x3 = b,

∂[C(x3)]/∂x3 = 0 and ∂ρ(x3)/∂x3 = 0. It should be note that, firstly the

mean model proposed only depends on two parameters which are a and b

and secondly, the mean thickness of the elastic solid layer at the mesoscale

modeling is |b| ≤ h.
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7. Prior probabilistic model of the elasticity matrix at the mesoscale

modeling

At the mesoscale modeling, the cortical bone constituting the elastic solid

layer is a heterogeneous anisotropic material for which the elasticity prop-

erties field is modeled by a matrix-valued random field [C] = {[C(x3)] , x3 ∈
[b, 0]}. The prior probabilistic model of [C] is chosen in the ensemble of tensor-

valued random field adapted to elliptic operator, defined in Soize [22, 23].

This probability model of the uncertain parameters are constructed by using

the maximum entropy principle [21, 11, 12]. For all b ≤ x3 ≤ 0, [C(x3)] is a

positive-definite random matrix which is written as

[C(x3)] = [L(x3)]
T [G(x3)][L(x3)] + [C0(x3)] ,

in which the deterministic matrix [C0(x3)] is positive-definite and the matrix

[G(x3)] is a positive-definite random matrix; these two matrices are defined

below. In the definition of [C(x3)], an upperscript T designates the transpose

operator. By construction, we have

E{[C(x3)]} = [C(x3)] , ∀x3 ∈ [b, 0] ,

in which [C] = {[C(x3)] , x3 ∈ [b, 0]} is the mean value field defined in the

previous section and the operator E{·} denotes the mathematical expecta-

tion. Positive-definite matrix [C0(x3)] must be such that, for all x3 in [b, 0],

[C(x3)] − [C0(x3)] is positive-definite. The 6 × 6 upper triangular matrix

[L(x3)] corresponds to the Cholesky decomposition of the positive-definite

matrix [C(x3)]− [C0(x3)], that is to say [C(x3)]− [C0(x3)] = [L(x3)]
T [L(x3)].

The matrix-valued random field [G] = {[G(x3)], x3 ∈ R} is defined as a
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non-linear mapping of 21 independent second-order centered homogeneous

Gaussian random fields Uj j′ = {Uj j′(x3), x3 ∈ R} with 1 ≤ j ≤ j′ ≤ 6. The

explicit expression of this non-linear mapping can be found in Soize [22, 23]

and are written as

[LG(x3)]j j′ = σn Uj j′(x3) ,

[LG(x3)]j j = σn

√

2 h(αj, Uj j(x3)) ,

for all 1 ≤ j < j′ ≤ n, where the random upper triangular matrix [LG(x3)]

corresponds to the Cholesky decomposition of the random positive-definite

matrix [G(x3)] = [LG(x3)]
T [LG(x3)] and in which σn = δ (n + 1)−1/2, αj =

(n + 1)/(2 δ2) + (1 − j)/2 and h(α, U) is a Gamma random variable with

parameter α written as h(α, u) = F−1
Γα

(FU(u)) where FU and FΓα
are the

cumulative distribution functions of a normalized Gaussian random variable

U and a Gamma random variable Γα with parameter α. The 21 indepen-

dent stochastic germs Uj j′ are then defined by 21 autocorrelation functions

RUj j′
(ξ) = E{Uj j′(x3 + ξ)Uj j′(x3)} which are all chosen equal to a same

unique function (2 ℓ/π ξ)2 sin2(π ξ/2 ℓ) depending only on a spatial correla-

tion length denoted by ℓ. The random field [G] also depends on an additional

parameter δ independent of x3 such that E{‖[G(x3)]‖2F} = 6(δ2 + 1). It

is shown that the statistical fluctuations of random matrix [C(x3)] are con-

trolled by the dispersion parameter δC(x3) defined by δC(x3)
2 = E{‖[C(x3)]−

[C(x3)]‖2F}/‖[C(x3)]− [C0(x3)]‖2F (in which ‖·‖F is the Frobenius norm), and

which is related parameter δ by the following equation

δC(x3) =
δ√
7

(

1 +
(tr [C(x3)]− tr [C0(x3)])

2

(tr [C(x3]− [C0(x3)])2

)1/2

, (21)

where tr designates the trace operator.
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Finally, the spatial correlation length ℓC of random field [C] is defined by

ℓC =

∫ +∞

0

|rc(ξ)| dξ ,

in which

rc(ξ) =
trE{([C(x3 + ξ)]− [C(x3])([C(x3)]− [C(x3)]])}

E{‖[C(x3)]− [C(x3)]‖2F}
.

It is deduced from the previously quoted papers that the probability density

functions p[C] of random matrix ([C(x3)] with respect to the measure dÃ =

2n(n−1)/4
∏

1≤i≤j≤n[A]ij (with n = 6) on the set M+ of the symmetric positive

n× n real matrices is then written as

p[C(x3)]([A]; x3) = IM+([A]− [C0(x3)])C det([A]− [C0(x3)])
λ−1

×exp{−n− 1 + 2 λ

2
tr(([C(x3)]− [C0(x3)])

−1([A]− [C0(x3)])} ,

where IM+([A]) is equal to 1 if [A] belongs to M
+ and is equal to zero if

[A] does not belong to M
+; tr(·) is the trace operator; C is a normalization

constant; λ is a positive real parameters that depends on the statistical fluc-

tuation of random matrices [C(x3)]. It should be noticed that random field

[C] is non Gaussian.

For the application to the cortical bone, we do not have any information

concerning matrix [C0(x3)] which is only introduced to preserve the ellipticity

property of the stiffness operator. This matrix can be chosen, for x3 in [b, 0],

as [C0(x3)] = η0 [C(x3)] in which 0 < η0 < 1. In this case, η0 can be chosen

very small if no information concerning [C0(x3)] is available.

With such a stochastic modeling, the displacement field of the elastic

solid layer and the two acoustic pressure fields of the acoustic fluid layers are

random fields denoted by U, P1 and P2.
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8. Application

In a previous work [9], the components of matrix [CS] has been identified

with an experimental database using measurements of the first arriving signal

with the axial transmission technique whose experimental configuration is

described by Fig. 2 (see [5, 6, 8, 10, 17]). A coupling gel is applied at the

interface between the device and the skin of the patient. Each transmitter

generates an acoustical impulse in the ultrasonic range that propagates in

the coupling gel, the skin, the muscle, the cortical bone and the marrow. The

�����

����	AB���� ��C�BD��

E���BC�F�F����������F��������

	�����B		��
C���FB�����F

Figure 2: Experimental configuration. Modifier le second schéma

axial transmission technique consists in recording these signals at the nR = 11

receivers located in the device. The first arriving signal (FAS) is considered.

Following the signal processing method used with the experimental device

(see [5, 6, 8, 10, 17]), the velocity of FAS is determined from the time of flight

of the first extremum of the contribution. This experimental database allows

the components of matrix [CS] to be identified (see [9]) and we obtained

ρS = 1598.8 kg.m−3, eL = 17.717 GPa, νL = 0.3816, gL = 4.7950 GPa, eT =

9.8254 GPa, νT = 0.4495 and δC(0) = 0.1029 with h = 4 mm. The material

properties of both fluids are the ones defined in Desceliers et al. [9] which are

recalled here ρ0,1 = ρ0,2 = 1000 kg.m−3 and c0,1 = c0,2 = 1500 m.s−1. The
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acoustic line source is located at xS
1 = 0 and xS

3 = 2× 10−3 m.

Using Eq. (21) yields δ = 0.0575. We are interested by the propagation

of the uncertainties in the first fluid layer Ω1 for the cortical bone system

in the context of the axial transmission technique. We then introduce the

random variable Q defined by

Q =

∫ T

0

nR
∑

k=1

|P2(t, x
k
1)|2 dt ,

where T is the duration of an experimental signal and xk
1, with k = 1, . . . , nR

are the positions of the receivers along direction e1. Let q 7→ pQ(q; a, b, ℓ)

be the probability density function of random variable Q. In Fig. 3, the

graph of x3 7→ δC(x3) is shown with a = 0, b = −h (thin solid line) and

a = −h/2, b = −h (thick solid line) and a = 0, b = −h/2 (dashed thin line).

It can been seen that the value of the dispersion coefficient δC(x3) of the

random matrix [C(x3)] decreases when one moves to the neighborhood of the

interface between the elastic solid layer and the acoustic fluid layer. The

constitutive equations of the material go to the constitutive equations of the

fluid in Ω2 that is not uncertain. In Fig. 4, the graph of q 7→ pQ(q; a, b, ℓ)

is shown in logscale with a = 0, b = −h, ℓ = h/10 (thick solid line), with

a = −h/2, b = −h, ℓ = h/10 (thin solid line), with a = 0, b = −h, ℓ = h/20

(thick dashed line), with a = −h/2, b = −h, ℓ = h/20 (thin dashed line). It

can be seen that the probability density function is sensitive with respect to

the a, b and the spatial correlation length ℓ.
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Figure 3: Graph of x3 7→ δC(x3) with a = 0, b = −h (thin solid line) and a = −h/2, b = −h

(thick solid line) and a = 0, b = −h/2 (dashed thin line)
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Figure 4: Graph of q 7→ pQ(q; a, b, ℓ) in logscale with a = 0, b = −h, ℓ = h/10 (thick

solid line), with a = −h/2, b = −h, ℓ = h/10 (thin solid line), with a = −h/2, b = −h,

ℓ = h/20 (thin dashed line), with a = −h/2, b = −h, ℓ = h (thick dashed line).
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9. Conclusion

In this paper we have considered the transient dynamical response of

a multilayer system submitted to an impulse in the ultrasonic range. The

application concerns a biomechanical system: the human cortical bone. This

system is really tricky to be modelled due to the lack of knowledge on its

micro-structure. For such a system, the micro-structure can be altered near

its interface with the marrow due to bone diseases. A gradient of porosity is

then observed in the thickness direction but, in this case, none of the usual

theories of porous materials can be applied. This is the reason why we have

proposed a simple model of the elasticity tensor for media with a gradient of

the porosity in order to take into account the alterations of the cortical bone

micro-structure. Thus, inside the elastic solid layer, the constitutive equation

of the elastic solid goes to the constitutive equation of the fluid (the marrow).

Then, in order to improve the predictability of this simplified model, we

have taken into account the uncertainties by substituting the elasticity tensor

with a random field for which the probabilistic model has been constructed

using the maximum entropy principle. An application has been proposed to

study the propagation of these uncertainties on the acoustic pressure field

inside the first fluid domain (the skin). Results show that the total energy

of the random pressure pressure field is very sensitive to the gradient and

the spatial correlation length of the random elasticity tensor in the cortical

layer. Consequently, experimental measurements in the context of the axial

transmission technique can be used in order to identify the parameters of

this probabilistic model.
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