
HAL Id: hal-00718955
https://hal.science/hal-00718955

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance of RDF Query Processing on the Intel SCC
Vasil Slavov, Praveen Rao, Dinesh Barenkala, Srivenu Paturi

To cite this version:
Vasil Slavov, Praveen Rao, Dinesh Barenkala, Srivenu Paturi. Performance of RDF Query Processing
on the Intel SCC. The 6th Many-core Applications Research Community (MARC) Symposium, Jul
2012, Toulouse, France. pp.7-12. �hal-00718955�

https://hal.science/hal-00718955
https://hal.archives-ouvertes.fr

http://sites.onera.fr/scc/marconera2012

Proceedings of the 6th Many-core
Applications Research Community

(MARC) Symposium

July 19th–20th 2012

ISBN

978-2-7257-0016-8

http://sites.onera.fr/scc/marconera2012
http://hal.archives-ouvertes.fr/MARCONERA2012
http://www.onera.fr

Performance of RDF Query Processing on the Intel

SCC
Vasil Slavov, Praveen Rao, Dinesh Barenkala, and Srivenu Paturi

Abstract—Chip makers are envisioning hundreds of cores in
future processors for throughput oriented computing. These
processors, called manycore processors, require new architectural
innovations for scaling to a large number of cores as compared
with today’s multicore processors. We report an early study
on the performance of RDF query processing on a manycore
processor. In our study, we use the Intel SCC, an experimental
manycore processor from Intel Labs. This processor has new
architectural features, namely, 48 Pentium cores, a high speed,
on-chip mesh network to communicate between cores and access
memory controllers, on-chip message passing buffers for high
speed message passing, and software controlled fine-grained
power management. We classify queries based on their I/O
footprint and study the impact of two standard models, namely,
task and data parallel programming models. Based on our
experiments with synthetic and real RDF datasets on the SCC, we
conclude that the task parallelism model provides an immediate
way to boost the performance of RDF query processing.

I. INTRODUCTION

Chip makers are envisioning hundreds of cores in future

processors for throughput oriented computing. In throughput

oriented computing, we expect abundant parallelism oppor-

tunities in the workload, and aim to achieve high throughput

using a large number of simple cores, while compromising the

latency on individual cores [1]. A processor with such large

number of cores is called a manycore processor. The cores

may be homogeneous or heterogeneous. New architectural

innovations for faster on-chip communication and efficient

power management are necessary to scale to a large number

of cores as compared with today’s multicore processors.

In recent years, a few manycore prototypes have emerged

(e.g., 80 core processor called Polaris [2], Larrabee [3], Intel

Single-chip Cloud Computer (SCC) [4]). Of particular interest

to us is the Intel SCC, an experimental manycore processor

from Intel Labs. This processor has new architectural features,

namely, 48 Pentium cores, a high speed, on-chip mesh network

to communicate between cores and access memory controllers,

on-chip message passing buffers for high speed message pass-

ing, and software controlled fine-grained power management.

In this work, we attempt to understand the benefits and

limitations of the SCC for parallel RDF query processing. RDF

V. Slavov is with the Department of Computer Science and
Electrical Engineering, University of Missouri-Kansas City. E-mail:
vgslavov@mail.umkc.edu
P. Rao is with the Department of Computer Science and Electrical

Engineering, University of Missouri-Kansas City. E-mail: raopr@umkc.edu
D. Barenkala is with the Department of Computer Science and

Electrical Engineering, University of Missouri-Kansas City. E-mail:
db985@mail.umkc.edu
S. Paturi is with the Department of Computer Science and

Electrical Engineering, University of Missouri-Kansas City. E-mail:
sp895@mail.umkc.edu

(Resource Description Framework) is a popular language for

representing data on the Web [5]. It enables the interchange

and machine processing of data by considering its seman-

tics. The essence of RDF lies in the notion of representing

any fact as subject, predicate, and object. Formally, RDF

represents resources as a directed, labeled graph where a

pair of adjacent nodes denotes two things and the directed,

labeled edge represents their relationship. The source node

denotes the subject; the sink node denotes the object; and

the edge label is the predicate (or property). This “subject-

predicate-object” relationship is commonly referred to as an

RDF triple. SPARQL is a popular query language for RDF

graphs [6]. Using SPARQL, complex graph pattern queries

can be expressed on individual RDF graphs as well as across

multiple RDF graphs.

In recent years, the RDF data model has become in-

creasingly important in domain-specific applications and the

WWW. Through RDF technologies, one can reason over

semantic data, which is highly appealing in domains such as

healthcare, defense and intelligence, biopharmaceuticals, and

so forth. With the rapidly growing size of RDF datasets (e.g.,

DBPedia [7], Billion Triples Challenge [8]), there is a pressing

need for high performance RDF processing tools. With the

emergence of manycore processors, it is natural and timely to

ask whether a manycore processor can boost the performance

of RDF query processing – through parallel processing. To

the best of our knowledge, there is no published work in this

area. Recent studies on the Intel SCC have focused on low

level aspects such as on-chip message passing performance,

memory access latency, and power and energy consumption

on benchmarks from high performance computing [4], [9].

In our study, we adopt standard task parallel and data par-

allel programming models for parallel RDF query processing.

We categorize RDF queries on real and synthetic RDF datasets

into two different query workloads based on their I/O footprint

– one with small I/O footprint queries and the other with

large I/O footprint queries. We study the effect of inter-query

parallelism via the task parallel programming model on these

workloads. We also study the effect of intra-query parallelism

via the data parallel programming model on these workloads.

The rest of the paper is organized as follows. We present

background and related work in Section II; we present the

methodology of our study in Section III; we present the

empirical findings in Section IV; and we conclude in Section V

with a note on future work.

II. PRIOR WORK ON RDF QUERY PROCESSING

Today, there are a number of open-source and commercial

tools for storing and querying RDF graphs. These tools either

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Performance of RDF Query Processing on the Intel SCC 7

store and process RDF in main-memory, use an RDBMS,

or a native RDF database. The popular approach has been

to use relational database systems for storing, indexing, and

querying RDF [10], [11], [12], [13], [14], [15]. Abadi et

al. proposed a vertical partitioning approach and leveraged a

column-oriented DBMS for achieving an order of magnitude

performance improvement over previous techniques [16].

RDF-3X [17] and Hexastore [18] demonstrated that storing

RDF data in a single triples table and building exhaustive

indexes on the six permutations of (s, p, o) triples can sig-

nificantly outperform the vertical partitioning approach [16]

and also support a larger class of RDF queries efficiently.

Recently, BitMat [19] was proposed to overcome the overhead

of large intermediate join results in RDF-3X and Hexastore

when queries contain low selectivity triple patterns. (Low

selectivity implies large result set size.)

There are some RDF stores that operate in shared-nothing

clusters (e.g., YARS2 [20], 4store [21], Clustered TBD [22])

by hashing triples/quadruples and distributing them on differ-

ent nodes in the cluster. Parallel query processing is performed.

The scalability of these approaches has been demonstrated on

small sized clusters. Weaver et al. [23] have studied RDF

query processing on supercomputers. More recently, tools for

data intensive computing such as Apache Hadoop and Pig

have been used for query processing and analytics over RDF

data [24], [25], [26]. These approaches are more suitable for

batch processing of queries. A few researchers have focused

on parallel RDF reasoning [27], [28]. More recently, Huang et

al. , developed parallel RDF query processing techniques for

large RDF graphs [29].

On the Intel SCC, Vidal et al. , studied the parallelization

of an AI automated planner using a hash-based distribution

of tasks [30]. Petrides et al. , studied the performance of

relational decision support queries on the SCC [31]. However,

none of the previous work has studied the performance impact

of parallel RDF query processing on the Intel SCC.

III. OUR METHODOLOGY

In this section, we introduce our methodology for parallel

RDF query processing on the SCC. Our first approach is to

express inter-query parallelism via the task parallel program-

ming model. Our second approach is to express intra-query

parallelism via the data parallel programming model. While

we adopt standard techniques for task and data parallelism,

these techniques provide good insights into the benefits and

limitations of the Intel SCC for RDF query processing. The

query workloads we study are I/O bound in nature, unlike prior

work on SCC [4], [9], which focused on high performance

computing benchmarks. We consider two different types of

query workloads: one that has relatively smaller I/O footprint

and the other that has relatively larger I/O footprint.

A. Message Passing Interface

We use the popular Message Passing Interface (MPI) for

writing parallel programs. MPI contains a standard library of

routines for writing portable message-passing based programs.

The MPI routines that we used for the task parallel and data

parallel programming models are listed in Table I. MPI pro-

grams essentially create a collection of processes. MPI Send

and MPI Recv allow a process to exchange messages with

another process (point-to-point communication); MPI Barrier

enables processes to synchronize at certain points during

execution; and MPI Bcast, MPI Scatter, and MPI Gatherv are

collective communication operations, which allow a process to

communicate with a group of other processes.

B. Impact of Granularity

In parallel computing, granularity denotes the ratio between

the amount of computation to the amount of communication.

In fine-grained parallelism, we break a problem into relatively

smaller sized computation tasks and therefore, may require

more frequent communication between processors. In coarse-

grained parallelism, we break a problem into relatively larger

sized computation tasks and therefore reduce the frequency

of communication between processors. However, fine-grained

parallelism enables better load balancing than coarse-grained

parallelism. But it may increase communication cost and

synchronization overhead. By design, Intel SCC provides a

high speed, on-chip network to enable fast communication

between cores. Therefore, we attempt to partition the tasks as

fine-grained as possible in our experiments. Because the query

workloads we study are I/O bound, we use the I/O footprint

to characterize the granularity of a task.

MPI routines Usage

MPI Send Is called when a process wants to send a
message in its local buffer to another process

MPI Recv Is called when a process wants to receive a
message from another process

MPI Barrier Is called by a process to enter a barrier

MPI Bcast Is called by a process to broadcast the
message to all processes in the group

MPI Scatter Is called by a process to scatter an array of
data items to other processes

MPI Gatherv Is called by all processes in the group
(one receiver, multiple senders) so that
the receiver can collect different sized
messages from the senders synchronously

TABLE I
MPI ROUTINES USED

C. Task Parallel Programming Model

We express inter-query parallelism via a straightforward

task parallel programming model. Each query is regarded as

a task. Our model is as follows. On one core, we run the

master and on the other cores, we run workers. Algorithm 1

describes the set of actions performed by the master and

workers. Lines 1-1 denote the actions taken by the master.

Lines 1-1 denote the actions taken by a worker. The master

maintains a single task pool. Once the master and workers

have started (as MPI processes), each worker sends a message

to the master. The master responds to a worker with a query

from the task pool. The worker then executes the query locally

on the index. (The index is constructed over the entire dataset

and is shared by the workers.) Once completed, the worker

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Performance of RDF Query Processing on the Intel SCC 8

Algorithm 1: Task parallel programming model

proc @Master()
Create a query pool from a list of SPARQL queries to1:

process
while query pool is not empty do2:

MPI Recv(workerid)3:

Remove a SPARQL query q from the pool4:

MPI Send(workerid, q)5:

execute MPI Barrier6:

end
proc @Worker()
while true do7:

MPI Send(master) to request a query8:

q ← MPI Recv(master)9:

if q == EOF then10:

break11:

else
Execute q locally using the index12:

execute MPI Barrier13:

end

repeats the process of requesting and executing queries from

the master until the master informs that there are no more

queries to execute. Once the master and workers reach the

barrier, the task pool has been completely processed.

D. Data Parallel Programming Model

We express intra-query parallelism via a straightforward

data parallel programming model. The task of processing a

query on the entire dataset is broken down into subtasks, where

each subtask consists of executing the query on a different

partition of the dataset. Our model for data parallelism is as

follows. First, we partition the underlying RDF graph into

smaller graphs. We do this by extracting weakly connected

directed subgraphs and applying standard graph partitioning

techniques if necessary (e.g., METIS [32]). If graph partition-

ing is applied, then we aim to minimize the number of cut

edges. We replicate the cut edges in the partitions. (We ignore

the directionality of the edges in the graph while partitioning

and assume each edge has unit weight.) In our approach,

we may miss results. While overcoming this is a non-trivial

research challenge, our goal here is to test whether using

partitioned indexes on multiple cores during query processing

can provide good speedup for the best case scenario.

Similar to the task parallelism approach described earlier, on

one core we run the master, and on the others we run workers.

The master selects a query and broadcasts it to the workers and

also provides each worker with a bucket id to use during query

processing. Each worker executes the query locally on the data

in the specified bucket. The partial results are returned to the

master. Collecting the results can be done either by sending

multiple messages one at a time to the master or using the

collective operation MPI Gatherv. Algorithm 2 describes the

steps involved. The master and the workers reach a barrier

before the next query is processed.

IV. PERFORMANCE EVALUATION

We used RDF-3X [17], a state-of-the-art RDF query pro-

cessing engine in our evaluation. RDF-3X was implemented in

Algorithm 2: Data parallel programming model

proc @Master()
foreach SPARQL query q do1:

Let Bid[] denote an array of bucket ids2:

MPI Scatter(Bid[]) /* Send a different bucket id to3:

each worker */
MPI Bcast(q) /* Send the same query to each worker4:

*/
MergeResults()5:

end
proc @Worker()
while true do6:

p ← MPI Scatter() /* A worker receives one bucket7:

id */
q ← MPI Bcast() /* Every worker receives the same8:

query */
Execute q locally on the index for bucket p9:

MergeResults()10:

end
proc MergeResults()
if Master then11:

Collect results from workers using multiple12:

MPI Recv or single MPI Gatherv
else

Send results to master using multiple MPI Send or13:

single MPI Gatherv

execute MPI Barrier14:

end

C++ and was compiled to run on the SCC using a 32 bit GCC

compiler. The SCC cores ran Linux and had a NFS mounted

file system where the indexes were stored. We did not modify

the memory organization/configuration of the SCC and used

the default setting.

We implemented the task and data parallel programming

models described in Algorithms 1 and 2 using RCKMPI, a

modified MPICH2 for the Intel SCC [33]. RCKMPI uses the

message passing buffers (MPBs) in the SCC to allow low

latency high bandwidth message passing. The SCC platform

was initialized to run with tile frequency of 800 MHz, mesh

frequency of 800 MHz, and memory controller frequency of

800 MHz.

A. Dataset and Queries

We used two real datasets, namely, YAGO2 [34] and

Uniprot [35]. YAGO2 is a semantic knowledge base de-

rived from Wikipedia, WordNet, and Geonames. Uniprot is a

comprehensive resource for protein sequence and annotation

data. We also generated a synthetic dataset using the Lehigh

University Benchmark (LUBM) [36]. The ontology for this

dataset is based on a university domain.

Note that the SCC cores generate 32 bit addresses. RDF-

3X leverages memory mapping of index files and therefore,

recommends 64 bit processors for indexing and querying large

RDF datasets. To cope with the 32 bit addressing on the SCC,

we indexed a set of triples in each dataset such that the index

size was at most 2GB in size, a limit set by the underlying

OS. This ensured that RDF-3X successfully ran the queries

on the SCC. For YAGO, we indexed 27,331,797 triples; for

Uniprot, we indexed 46,972,851 triples; and for LUBM, we

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Performance of RDF Query Processing on the Intel SCC 9

Query Dataset I/O Type % Serial

footprint CPU time

QY1 YAGO 14,756 KB small 29 4.73 secs

QY2 YAGO 15,004 KB small 40 9.23 secs

QY3 YAGO 22,832 KB small 29 6.51 secs

QY4 YAGO 33,492 KB small 21 9.27 secs

QY5 YAGO 216,564 KB large 22 82.65 secs

QY6 YAGO 272,848 KB large 30 120.08 secs

QY7 YAGO 332,944 KB large 43 218.43 secs

QL1 LUBM 2,668 KB small 25 1.4 secs

QL2 LUBM 3,132 KB small 35 1.47 secs

QL3 LUBM 9,804 KB small 19 3.5 secs

QL4 LUBM 636,204 KB large 32 299.99 secs

QL5 LUBM 673,924 KB large 29 206.58 secs

QU1 Uniprot 4,468 KB small 39 2.08 secs

QU2 Uniprot 10,344 KB small 39 6.46 secs

QU3 Uniprot 48,020 KB large 31 19.39 secs

QU4 Uniprot 62,188 KB large 19 15.48 secs

QU5 Uniprot 166,808 KB large 17 43.51 secs

TABLE II
INITIAL EVALUATION OF QUERIES

indexed 35,612,176 triples. (The SPARQL queries used for the

experiments are listed in a technical report [37].)

B. Query Workload Classification

The queries used in our evaluation are I/O bound in na-

ture. Using the iostat command, we measured the I/O

footprint of each query. (We dropped the file system buffer

cache before running each query by issuing echo 3 >

/proc/sys/vm/drop_caches.) Based on the I/O foot-

print, we classified the queries into two categories, small

and large. Queries that were classified small had relatively

smaller I/O footprint. Queries that were classified large had

relatively larger I/O footprint. Table II shows the queries and

their classification after running each query serially. (The block

size used by the filesystem was 4096 bytes.) In addition, the se-

rial time (on a single core) and the % CPU utilization for each

query is shown. Queries that had higher CPU utilization (e.g.,

QY7), typically returned more results. Note that internally

RDF-3X stores long string literals in a mapping dictionary,

and uses ids in the indexes. At the end of query processing,

it maps back these ids to literals using the dictionary. For

queries returning large number of results, this cost of mapping

becomes non-negligible [17].

C. Evaluation Metrics

We measured the effectiveness of parallel RDF query pro-

cessing by computing the speedup and efficiency as the number

of available cores was increased. Suppose Ts is the time taken

to execute a workload of SPARQL queries on a single SCC

core. Suppose Tp is the time taken to execute the queries

in parallel (using either data or task parallel programming

models) on n SCC cores. (On n cores, we run one master

and n− 1 workers.) The speedup on n cores is computed by

the ratio Ts

Tp

; the efficiency on n cores is computed by the ratio
speedup

n
.

D. Data Partitioning Approach

For the data parallel programming model, we partitioned a

dataset depending on how many cores were available to run

the workers. (Note that partitioning was done once before

executing all the queries.) Each worker was assigned one

partition and used the index for that partition during query

processing. Different approaches were followed for each of

the three datasets. The main goal was to assign the triples

corresponding to weakly connected directed subgraphs in the

RDF graph into buckets. For LUBM, as the generator produced

separate RDF files, we grouped the triples from one file and

placed it in a bucket. All the files were distributed across the

buckets in a round-robin fashion. For Uniprot, we had one

single XML/RDF file, and we created fragments of this XML

file at points where a new protein was described. The triples

from each fragment were stored together in a bucket. All the

fragments were distributed across the buckets in a round-robin

fashion.

The YAGO2 dataset was available in N-Triples format. First,

we extracted graphs of a particular type from the dataset,

which we call star-shaped graphs. A star-shaped graph is

a weakly connected directed graph, where the degree of all

vertices except one is exactly 1. All the triples from a star-

shaped graph were put into a bucket. On the remaining non-

star graphs, we ran the METIS [32] algorithm to partition the

graphs. After obtaining n partitions, we assigned the triples for

each partition into one bucket. (We replicated the cut edges in

each partition.) As mentioned earlier, our approach may miss

results.

E. Results

We focus on four possible combinations of workload and

parallel programming models, namely, ST (small I/O footprint,

task parallelism), LT (large I/O footprint, task parallelism),

SD (small I/O footprint, data parallelism), and LD (large I/O

footprint, data parallelism). We will refer to these as the ST,

LT, SD, and LD models in subsequent discussions. Note that

all I/O requests go through the MCPC connected to the SCC

platform via the PCIe bus. We measured wall clock time by

ensuring a cold cache scenario. (We dropped the file system

buffer cache before a query was executed on a core.)

1) The ST Model: The query workload for each dataset

consisted of queries marked small in Table II. The task pool

consisted of these queries put in order and scaled by a factor

of 100. (For example, the task pool for YAGO consisted of

queries QY1, QY2, QY3, QY4, . . . , QY1, QY2, QY3, QY4,

. . . .) Figure 1(a) shows the speedup obtained for parallel RDF

query processing using Algorithm 1. On 48 cores (1 master +

47 workers), a promising speedup of 34.92, 32.74, and 32.27

was obtained for YAGO, LUBM, and Uniprot, respectively.

Figure 1(b) shows the efficiency. For all three datasets, the

efficiency reached close to 70% on 48 cores. The tasks were

relatively fine-grained due to their small I/O footprints and

were well distributed across the workers. There was effective

load balancing of tasks across the workers resulting in good

speedup and efficiency. (This is evident from the mean and

standard deviation of the number of tasks processed by each

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Performance of RDF Query Processing on the Intel SCC 10

 0
 5

 10
 15
 20
 25
 30
 35
 40

 2 10 18 26 34 42 50

S
p
e
e
d
u
p

of cores

YAGO
LUBM

Uniprot

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 10 18 26 34 42 50

E
ff
ic

ie
n
c
y

of cores

YAGO
LUBM

Uniprot
 0

 5

 10

 15

 20

 25

 30

 2 10 18 26 34 42 50

S
p
e
e
d
u
p

of cores

YAGO
LUBM

Uniprot

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 10 18 26 34 42 50

E
ff
ic

ie
n
c
y

of cores

YAGO
LUBM

Uniprot

(a) Speedup (ST model) (b) Efficiency (ST model) (c) Speedup (LT model) (d) Efficiency (LT model)

Fig. 1. Results for the task parallel programming model

worker as shown in Figures 2(a) and 2(b).) As shown in

Figure 4, the average CPU utilization varied marginally (from

2 to 48 cores), indicating negligible I/O contention in ST.
2) The LT Model: The query workload for each dataset

consisted of queries marked large in Table II. Similar to

ST, the task pool consisted of these queries put in order and

scaled by a factor of 33, 50, and 33 for YAGO, LUBM,

and Uniprot, respectively. Figures 1(c) and 1(d) show the

speedup and efficiency for parallel RDF query processing

using Algorithm 1. On 48 cores, the speedup ranged between

25 to 30 for the three datasets. This is promising given that

the queries had larger I/O footprint than those used in the ST

model. The load was fairly well distributed across the workers.

(See Figures 3(a) and 3(b).) As shown in Figure 4, the drop in

the average CPU utilization (from 2 to 48 cores) was higher for

LUBM and Uniprot as compared to YAGO, indicating higher

I/O contention for these datasets.
3) The SD Model: The query workload for each dataset

consisted of queries marked small in Table II. Each query

was run multiple times using Algorithm 2. Although the data

parallel approach created fine-grained tasks for a query with

increasing number of cores, there was load imbalance as many

of the workers returned no results on their partitions. This

resulted in poor speedup and efficiency as the number of cores

was increased. We show the plots in Figures 5(a) and 5(b).
4) The LD Model: The query workload for each dataset

consisted of queries marked large in Table II. Each query

was run multiple times using Algorithm 2. As more cores were

used to process a query, I/O contention became an issue. This

is evident from the fact that the average CPU utilization for

LD was lower than that for LT on all datasets. As a result, poor

speedup and efficiency were obtained. We show the plots in

Figures 5(c) and 5(d).

 0
 50

 100
 150
 200
 250
 300
 350
 400

 2 10 18 26 34 42 50

M
e

a
n

of cores

YAGO
LUBM

Uniprot

 5
 10
 15
 20
 25
 30
 35

 2 10 18 26 34 42 50

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

of cores

YAGO
LUBM

Uniprot

(a) Mean (# of tasks per worker) (b) Standard deviation

Fig. 2. Load distribution - ST model

 0

 20

 40

 60

 80

 100

 120

 2 10 18 26 34 42 50
M

e
a

n

of cores

YAGO
LUBM

Uniprot

 1
 2
 3
 4
 5
 6
 7
 8

 2 10 18 26 34 42 50

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

of cores

YAGO
LUBM

Uniprot

(a) Mean (# of tasks per worker) (b) Standard deviation

Fig. 3. Load distribution - LT model

 0

 5

 10

 15

 20
 25

 30

 35

 40

2 10 18 26 34 42 50

A
v
g
.
C

P
U

 u
s
a
g
e
 (

%
)

of cores

YAGO (ST)
Uniprot (ST)
LUBM (ST)

YAGO (LT)
Uniprot (LT)
LUBM (LT)

Fig. 4. Average CPU usage with increasing number of cores

F. Summary of Results on the SCC

• The task parallel programming model yielded good

speedup and efficiency for parallel RDF query processing. This

was true for both small I/O and large I/O footprint queries. The

ST model, however, gave better results than the LT model.

• Although the data parallel programming model created

fine-grained tasks, the speedup and efficiency for both the SD

and LD models were poor due to either load imbalance or

I/O contention. Further research is necessary to address these

issues.

V. CONCLUSIONS AND FUTURE WORK

We have presented an early study of the performance

of parallel RDF query processing on the Intel SCC, an

experimental manycore processor. Using real and synthetic

RDF datasets, we studied how inter-query parallelism (via

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Performance of RDF Query Processing on the Intel SCC 11

 0

 1

 2

 3

 4

 2 10 18 26 34 42 50

S
p

e
e

d
u

p

of cores

YAGO
LUBM

Uniprot

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 10 18 26 34 42 50
E

ff
ic

ie
n

c
y

of cores

YAGO
LUBM

Uniprot

(a) Speedup (SD model) (b) Efficiency (SD model)

 0

 3

 6

 9

 12

 15

 18

 2 10 18 26 34 42 50

S
p

e
e

d
u

p

of cores

YAGO
LUBM

Uniprot

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 10 18 26 34 42 50

E
ff

ic
ie

n
c
y

of cores

YAGO
LUBM

Uniprot

(c) Speedup (LD model) (d) Efficiency (LD model)

Fig. 5. SD and LD models

the task parallel programming model) and the intra-query

parallelism (via the data parallel programming model) affected

the performance of RDF query processing. We conclude that

the task parallel model provides an immediate way to boost

the query processing performance. In the future, we plan to

develop new RDF query processing strategies to overcome

the challenges posed by the data parallel programming model.

We would also like to study the effect of dynamic voltage

and frequency scaling of the SCC cores on the performance

of RDF query processing.

ACKNOWLEDGEMENTS

We are grateful to the MARC team at Intel Labs for granting

us access to the SCC hardware and related software tools.

Special thanks to Mark Aughenbaugh and Ted Kubaska for

their prompt help. This work was supported in part by a grant

from the National Science Foundation (IIS-1115871).

REFERENCES

[1] M. Garland and D. B. Kirk, “Understanding Throughput-Oriented Ar-
chitectures,” Commun. of ACM, vol. 53, pp. 58–66, November 2010.

[2] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar, “An 80-Tile 1.28TFLOPS Network-on-Chip
in 65nm CMOS,” in Solid-State Circuits Conference, 2007, pp. 98–589.

[3] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A Many-Core x86 Architecture
for Visual Computing,” ACM Transactions on Graphics, vol. 27, pp.
18:1–18:15, August 2008.

[4] T. Mattson, R. Van der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe, “The 48-core SCC Processor: the Programmer’s View,” in
Proc. of Intl. Conf. for High Performance Computing, Networking,
Storage and Analysis, Nov 2010, pp. 1–11.

[5] “Resource Description Framework (RDF),” http://www.w3.org/RDF.
[6] “SPARQL Query Language for RDF,” http://www.w3.org/TR/rdf-sparql-

query/.
[7] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,

and S. Hellmann, “DBpedia - A crystallization point for the Web of
Data,” Journal of Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 7, no. 3, pp. 154–165, September 2009.

[8] “Semantic Web Challenge,” http://challenge.semanticweb.org/.

[9] P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance Analysis
and Benchmarking of the Intel SCC,” in Proc. of Intl. Conf. on Cluster
Computing, Sept. 2011, pp. 139–149.

[10] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds, “Efficient RDF
Storage and Retrieval in Jena2,” in Proc. of SWDB’03, 2003, pp. 131–
150.

[11] S. Harris and N. Gibbins, “3store: Efficient Bulk RDF Storage,” in
Practical and Scalable Semantic Systems, 2003.

[12] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema,” in Proc.
of ISWC ’02, pp. 54–68.

[13] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan, “An Efficient SQL-
Based RDF Querying Scheme,” in Proc. of the 31st VLDB Conference,
Trondheim, Norway, 2005, pp. 1216–1227.

[14] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu, “RStar: an RDF storage and
query system for enterprise resource management,” in Proc. of CIKM
’04, Washington, D.C., USA, 2004, pp. 484–491.

[15] J. J. Levandoski and M. F. Mokbel, “RDF Data-Centric Storage,” in
Proc. ICWS ’09, Washington, DC, 2009, pp. 911–918.

[16] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scalable
Semantic Web Data Management Using Vertical Partitioning,” in Proc.
of the 33rd VLDB Conference, 2007, pp. 411–422.

[17] T. Neumann and G. Weikum, “The RDF-3X engine for scalable man-
agement of RDF data,” The VLDB Journal, vol. 19, no. 1, pp. 91–113,
2010.

[18] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: Sextuple Indexing for
Semantic Web Data Management,” Proc. VLDB Endow., vol. 1, no. 1,
pp. 1008–1019, 2008.

[19] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “Matrix ”Bit” Loaded:
A Scalable Lightweight Join Query Processor for RDF Data,” in Proc. of
the 19th Intl. Conference on World Wide Web, Raleigh, North Carolina,
USA, 2010, pp. 41–50.

[20] A. Harth, J. Umbrich, A. Hogan, and S. Decker, “YARS2: A Federated
Repository for Querying Graph Structured Data From the Web,” in Proc.
of ISWC’07/ASWC’07, Busan, Korea, 2007, pp. 211–224.

[21] S. Harris, N. Lamb, and N. Shadbolt, “4store: The Design and Imple-
mentation of a Clustered RDF Store,” in Proc. of 5th Intl. Workshop on
Scalable Semantic Web Knowledge Base Systems, 2009, pp. 94–109.

[22] A. Owens, A. Seaborne, N. Gibbins, and M. Schraefel, “Clustered TDB:
A Clustered Triple Store for Jena,” in Technical Report, Electronics and
Computer Science, University of Southampton, 2008.

[23] J. Weaver and G. T. Williams, “Scalable RDF Query Processing on Clus-
ters and Supercomputers,” in Proc. of the 5th International Workshop
on Scalable Semantic Web Knowledge Base Systems, 2009.

[24] P. Castagna, A. Seaborne, and C. Dollin, “A Parallel Processing Frame-
work for RDF Design and Issues,” HP Labs, Bristol, Tech. Rep., 2009,
www.hpl.hp.com/techreports/2009/HPL-2009-346.pdf.

[25] R. Sridhar, P. Ravindra, and K. Anyanwu, “RAPID: Enabling Scalable
Ad-Hoc Analytics on the Semantic Web,” in Proc. of ISWC ’09, 2009,
pp. 715–730.

[26] M. F. Husain, J. McGlothlin, M. M. Masud, L. R. Khan, and B. Thu-
raisingham, “Heuristics-Based Query Processing for Large RDF Graphs
Using Cloud Computing,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, pp. 1312–1327, 2011.

[27] J. Weaver and J. A. Hendler, “Parallel Materialization of the Finite RDFS
Closure for Hundreds of Millions of Triples,” in Proc. of ISWC ’09,
Chantilly, VA, 2009, pp. 682–697.

[28] J. Urbani, S. Kotoulas, E. Oren, and F. Harmelen, “Scalable Distributed
Reasoning Using MapReduce,” in Proc. of ISWC ’09, 2009, pp. 634–
649.

[29] J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL Querying of
Large RDF Graphs,” PVLDB, vol. 4, no. 11, pp. 1123–1134, 2011.

[30] V. Vidal, S. Vernhes, and G. Infantes, “Parallel AI Planning on the SCC,”
in 4rd Many-core Applications Research Community Symposium (MARC
2011), Potsdam, Germany, 2011, pp. 1–6.

[31] P. Petrides, A. Diavastos, and P. Trancoso, “Exploring Database Work-
loads on Future Clustered Many-Core Architectures,” in 3rd Many-core
Applications Research Community Symposium (MARC 2011), Ettlingen,
Germany, 2011, pp. 81–84.

[32] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific Comput-
ing, vol. 20, pp. 359–392, December 1998.

[33] I. A. C. Urena, “RCKMPI User Manual,” Intel Braunschweig, 2011.
[34] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo,

and G. Weikum, “YAGO2: Exploring and Querying World Knowledge
in Time, Space, Context, and Many Languages,” in Proc. of WWW ’11,
2011, pp. 229–232.

[35] “Uniprot RDF Distribution,” http://www.uniprot.org/downloads.
[36] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL

knowledge base systems,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 3, pp. 158–182, October 2005.

[37] V. Slavov, P. Rao, D. Barenkala, and S. Paturi, “Towards RDF Query
Processing on the Intel SCC,” University of Missouri-Kansas City, Tech.
Rep. TR-DB-2012-01, 2012, http://r.web.umkc.edu/raopr/TR-DB-2012-
01.pdf.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Performance of RDF Query Processing on the Intel SCC 12

	Introduction
	Prior Work on RDF Query Processing
	Our Methodology
	Message Passing Interface
	Impact of Granularity
	Task Parallel Programming Model
	Data Parallel Programming Model

	Performance Evaluation
	Dataset and Queries
	Query Workload Classification
	Evaluation Metrics
	Data Partitioning Approach
	Results
	The ST Model
	The LT Model
	The SD Model
	The LD Model

	Summary of Results on the SCC

	Conclusions and Future Work
	References

