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Homotopy commutative algebra
and 2-nilpotent Lie algebra

Michel Dubois-Violette and Todor Popov

Abstract The homotopy transfer theorem due to Tornike Kadeishvili induces the
structure of a homotopy commutative algebra, or C∞-algebra, on the cohomology of
the free 2-nilpotent Lie algebra. The latter C∞-algebra is shown to be generated in
degree one by the binary and the ternary operations.

1 Introduction

Every Universal Enveloping Algebra (UEA) Ug of a finite dimensional positively
graded Lie algebra g belongs to the class of Artin-Schelter regular algebras(see e.g.
[4]). As every finitely generated graded connected algebra, Ug has a free min-
imal resolution which is canonically built from the data of its Yoneda algebra
E :=ExtUg(K,K). By construction the Yoneda algebra E is isomorphic (as algebra)
to the cohomology of the Lie algebra (with coefficients in the trivial representation
provided by the ground field K)

E = Ext•Ug(K,K)∼= H•(g,K) (1)

equipped with wedge product between cohomological classes in H•(g,K).
The homotopy transfer theorem of Tornike Kadeishvili [7] implies that the

Yoneda algebra E = Ext•Ug(K,K) has the structure of homotopy associative alge-
bra, or A∞-algebra. Since E ∼= H•(g,K) is the cohomology of the exteriour algebra
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say Cedex, France e-mail: Michel.Dubois-Violette@th.u-psud.fr

Todor Popov
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigrad-
sko chaussée, 1784 Sofia, Bulgaria e-mail: tpopov@inrne.bas.bg

1



2 Michel Dubois-Violette and Todor Popov∧
g∗ which is graded-commutative, it has the structure of homotopy commutative

and associative algebra, or C∞-algebra.
Throughout the text g will be the free 2-nilpotent graded Lie algebra, with degree

one generators in the finite dimensional vector space V over a field K of character-
istic 0,

g=V ⊕
∧2

V .

The UEA U(V ⊕∧2V ) arises naturally in physics in the universal Fock-like space
of the parastatistics algebra introduced by H.S. Green [5](see also [3]). Here we
will concentrate on the case when V is an ordinary (even) vector space V , when the
algebra Ug is the parafermionic algebra.

The aim of this note is to describe the Yoneda algebra E of the UEA Ug, i.e., the
cohomology H•(g,K) with its C∞-structure induced by the isomorphism (1) through
the homotopy transfer.

The cohomology space H•(g,K) has a natural GL(V )-action. The decomposition
of the GL(V )-module H•(g,K) into irreducible Schur modules Vλ is known since
the work of Józefiak and Weyman [6]; it contains all GL(V )-modules with self-
conjugated Young diagrams λ = λ ′ once and exactly once. The decomposition of
E = H•(g,K) into Schur modules provides a powerful tool to handle its C∞-algebra
structure.

2 Artin-Schelter regularity

Let g be the 2-nilpotent graded Lie algebra g = V ⊕
∧2 V generated by the finite

dimensional vector space V having Lie bracket

[x,y] :=
{

x∧ y x,y ∈V
0 otherwise . (2)

We denote the Universal Enveloping Algebra Ug by PS and will refer to it as paras-
tatistics algebra (by some abuse1). The parastatistics algebra PS(V ) generated in V
is graded

PS(V ) :=Ug=U(V ⊕
∧2

V ) = T (V )/([[V,V ],V ]) .

We shall write simply PS when the space of generators V is clear from the context.
Artin and Schelter [1] introduced a class of regular algebras sharing some “good”

homological properties with the polynomial algebra K[V ]. These algebras were
dubbed Artin-Schelter regular algebras (AS-regular algebra for short).

Definition 1. (AS-regular algebras) A connected graded algebra A = K⊕A1 ⊕
A2⊕ . . . is called Artin-Schelter regular of dimension d if

(i) A has finite global dimension d,
(ii) A has finite Gelfand-Kirillov dimension,

1 Strictly speaking PS(V ) is the creation parastatistics algebra, closed by creation operators alone.
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(iii) A is Gorenstein, i.e., ExtiA (K,A ) = δ i,dK.

A general theorem claims that the UEA of a finite dimensional positively graded
Lie algebra is an AS-regular algebra of global dimension equal to the dimension
of the Lie algebra [4]. Hence the parastatistics algebra PS is AS-regular of global
dimension d = dimV (dimV+1)

2 . In particular the finite global dimension of PS implies
that the ground field K has a minimal resolution P• by projective left PS-modules
Pn

P• : 0→ Pd → ·· · → Pn→ ··· → P2→ P1→ P0
ε→K→ 0 . (3)

Here K is a trivial left PS-module, the action being defined by the projection ε onto
PS0 = K. Since PS is positively graded and, in the category of positively graded
modules over connected locally finite graded algebras, projective module is the same
as free module [2], we have Pn ∼= PS⊗En where En are finite dimensional vector
spaces.

The minimal projective resolution is unique (up to an isomorphism). Minimality
implies that the complex K⊗PS P• has “zero differentials” hence

H•(K⊗PS P•) =K⊗PS P• = En .

One can calculate the derived functor TorPS
n (K,K) using the resolution P•, it yields

TorPS
n (K,K) = En . (4)

The data of a minimal resolution of K by free PS-modules provides an easy way
to find TorPS

n (K,K). Conversely if the spaces TorPS
n (K,K) are known, then one can

constuct a minimal free resolution of K.
The Gorenstein property guarantees that when applying the functor HomPS(−,PS)

to the minimal free resolution P• we get another minimal free resolution P• :=
HomPS(P•,PS) of K by right PS-modules

P• : 0←K← P
′

d ← ··· ← P
′

n ← ··· ← P
′

2 ← P
′

1 ← P
′

0 ← 0 (5)

with P
′

n
∼=E∗n⊗PS. Note that by construction E∗n =ExtnPS(K,K), thus one has vector

space isomorphisms [2]

En ∼= E∗n ∼= TorPS
n (K,K)∼= ExtnPS(K,K) . (6)

The Gorenstein property is an analog of the Poincaré duality, it implies E∗d−n
∼= En .

The finite global dimension d of PS and the Gorenstein condition imply that its
Yoneda algebra

E • := Ext•PS(K,K)∼=
d⊕

n=0

E∗n

is Frobenius [10]. More on Gorenstein property you can find in the first autor’s
lecture “Poincaré duality for Koszul algebras” in the present volume.
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3 Homology and cohomology of g

A non-minimal projective(in fact free) resolution of K, C(g)
ε→ K is given by the

standard Chevalley-Eilenberg chain complex C•(g) = (Ug⊗K∧pg,dp) with differ-
ential maps

dp(u⊗ x1∧ . . .∧ xp) = ∑
i
(−1)i+1uxi⊗ x1∧ . . .∧ x̂i∧ . . .∧ xp

+∑
i< j

(−1)i+ ju⊗ [xi,x j]∧ x1∧ . . .∧ x̂i∧ . . .∧ x̂ j ∧ . . .∧ xp (7)

The resolution C•(g) calculates the homologies of the derived complex K⊗PS C•(g)

En = TorPS
n (K,K)∼= Hn(K⊗PS C•(g)) = Hn(g,K) ,

coinciding with the homologies Hn(g,K) of the Lie algebra g with trivial co-
efficients. The derived complex K⊗PS C•(g) is the chain complex with degrees∧•g=K⊗PS PS⊗

∧•g and differentials ∂p := id⊗PS dp :
∧pg→

∧p−1g. One has

∧p
g=

∧p
(V ⊕

∧2
V ) =

⊕
s+r=p

∧s
(
∧2

V )⊗
∧r

(V ) (8)

and differentials ∂p=r+s :
∧s(

∧2V )⊗
∧r(V )→

∧s+1(
∧2V )⊗

∧r−2(V ) are given by

∂p : ei1 j1 ∧ . . .∧ eis js ⊗ e1∧ . . .∧ er 7→

∑
i< j

(−1)i+ jei j ∧ ei1 j1 ∧ . . .∧ eis js ⊗ e1∧ . . .∧ êi∧ . . .∧ ê j ∧ . . .∧ er .

The differential ∂ is induced by the Lie bracket [ · , · ] :
∧2g→ g, it identifies a pair

of degree 1 generators ei,e j ∈ with one degree 2 generator ei j := (ei∧ e j) = [ei,e j].
The differential ∂p is the extension of ∂2 :=−[ · , · ] as coderivation on

∧pg.
The dual cochain complex HomPS(C(g),K)= (

∧•g∗,δ ) calculates cohomology2

E∗n = ExtnPS(K,K)∼= Hn(HomPS(C(g),K)) = Hn(g,K) . (9)

The coboundary map δ p :
∧pg∗→

∧p+1g∗ is transposed to the differential ∂p+1

δ
p : e∗i1 j1 ∧ . . .∧ e∗is js ⊗ e∗l1 ∧ . . .∧ e∗lr 7→ (10)

s

∑
k=1

∑
ik< jk

(−1)i+ je∗i1 j1 ∧ . . .∧ ê∗ik jk ∧ . . .∧ e∗is js ⊗ e∗ik ∧ e∗jk ∧ e∗l1 ∧ . . .∧ . . .∧ e∗lr ,

it is (up to a conventional sign) the extension as derivation of the dualization of the
Lie bracket δ 1 := [ · , · ]∗ : g∗ →

∧2g∗.Thus the algebra (
∧•g∗,δ ) equipped with δ

is a (graded-)commutative DGA.

2 In the presence of metric one has δ := ∂ ∗(see below)
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4 Homology of g as a GL(V )-module

An irreducible polynomial GL(V )-module Vλ is called Schur module, it has a basis
labelled by semistandard Young tableaux which are fillings of the Young diagram
λ with the numbers of the set {1, . . . ,dimV}. The action of the linear group GL(V )
on the space V of the generators of the Lie algebra g induces a GL(V )-action on the
UEA PS =Ug∼= S(V ⊕Λ 2V ) and on the space

∧•g∼=∧•(V ⊕∧2V ).

In the presence of metric g one has an identification V
g∼= V ∗, and

∧•g g∼=
∧•g∗.

The adjoint operator ∂ ∗p :
∧pg→

∧p+1g is defined by g(∂ ∗p v,w) = g(v,∂p+1w). It
turns out that the action of ∂ ∗p always takes the form (similar to the action of δ p)

∂
∗
p : ei1 j1 ∧ . . .∧ eis js ⊗ el1 ∧ . . .∧ elr 7→ (11)

s

∑
k=1

∑
ik< jk

(−1)i+ jei1 j1 ∧ . . .∧ êik jk ∧ . . .∧ eis js ⊗ eik ∧ e jk ∧ el1 ∧ . . .∧ . . .∧ elr ,

It is obvious that the maps ∂ and ∂ ∗ both commute with the GL(V )-action. The
Laplacian ∆ =⊕p≥0∆p of the pair (g,g) is defined to be the self-adjoint operator

∆p = ∂p+1∂
∗
p+1 +∂

∗
p ∂p ∈ End(

∧p
g) .

Its kernel is a complete set of representatives for the homology classes in Hp(g,K)

ker∆p ∼= Hp(g,K) .

The decomposition of the GL(V )-module Hn(g,K) into irreducible polynomial rep-
resentations Vλ is given by the following theorem;

Theorem 1 (Józefiak and Weyman [6], Sigg [11]). The homology H•(g,K) of the
2-nilpotent Lie algebra g=V ⊕

∧2V decomposes into irreducible GL(V )-modules

Hn(g,K) = Hn(
∧•

g,∂ )∼= TorPS
n (K,K)(V )∼=

⊕
λ :λ=λ ′

Vλ (12)

where the sum is over self-conjugate Young diagrams λ such that n= 1
2 (|λ |+r(λ )).

The data Hn(g,K) = TorPS
n (K,K) encodes the minimal free resolution P• (cf. (3)).

The Euler characteristics of P• implies an identity about the GL(V )-characters

chPS(V ) .ch

( ⊕
λ :λ=λ ′

(−1)
1
2 (|λ |+r(λ ))Vλ

)
= 1 .

The character of a Schur module Vλ is the Schur function, chVλ = sλ (x). Due to the
Poincaré-Birkhoff-Witt theorem chPS(V ) = chS(V ⊕

∧2V ) thus the identity reads

∏
i

1
(1− xi)

∏
i< j

1
(1− xix j)

∑
λ :λ=λ ′

(−1)
1
2 (|λ |+r(λ ))sλ (x) = 1 . (13)
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But the latter identity is nothing but rewriting of the Littlewood identity [6]. The
moral is that the Littlewood identity reflects a homological property of the algebra
PS, namely the above particular structure of the minimal projective (free) resolution
of K by PS-modules.

5 Homotopy algebras A∞ and C∞

Definition 2. (A∞-algebra) A homotopy associative algebra, or A∞-algebra, over K
is a Z-graded vector space A =

⊕
i∈Z Ai endowed with a family of graded mappings

(operations)
mn : A⊗n→ A, deg(mn) = 2−n n≥ 1

satisfying the Stasheff identities SI(n) for n≥ 1

∑
r+s+t=n

(−1)r+stmr+1+t(Id⊗r⊗ms⊗ Id⊗t) = 0 SI(n)

where the sum runs over all decompositions n = r+ s+ t.

Here we assume the Koszul sign convention ( f ⊗g)(x⊗ y) = (−1)|g||x| f (x)⊗g(y).
We define the shuffle product Shp,q : A⊗p⊗A⊗q→ A⊗p+q throughout the expression

(a1⊗ . . .⊗ap)� (ap+1⊗ . . .⊗ap+q) = ∑
σ∈Shp,q

sgn(σ)aσ−1(1)⊗ . . .⊗aσ−1(p+q)

where the sum runs over all (p,q)-shuffles Shp,q, i.e., over all permutations σ ∈ Sp+q
such that σ(1)< σ(2)< .. . < σ(p) and σ(p+1)< σ(p+2)< .. . < σ(p+q) .

Definition 3. (C∞-algebra [7]) A homotopy commutative algebra, or C∞-algebra, is
an A∞-algebra {A,mn} such that each operation mn vanishes on non-trivial shuffles

mn ((a1⊗ . . .⊗ap)� (ap+1⊗ . . .⊗an)) = 0 , 1≤ p≤ n−1 . (14)

In particular for m2 we have m2(a⊗b±b⊗a) = 0, so a C∞-algebra such that mn = 0
for n≥ 3 is a (super-)commutative DGA.

A morphism of two A∞-algebras A and B is a family of graded maps fn : A⊗n→ B
for n≥ 1 with deg fn = 1−n such that the following conditions hold

∑
r+s+t=n

(−1)r+st fr+1+t(Id⊗r⊗ms⊗ Id⊗r) = ∑
1≤r≤n

(−1)Smr( fi1 ⊗ fi2 ⊗ . . .⊗ fir)

where the sum is on all decompositions i1 + . . .+ ir = n and the sign on RHS is
determined by S = ∑

r−1
k=1(r− k)(ik − 1). The morphism f is a quasi-isomorphism

of A∞-algebras if f1 is a quasi-isomorphism. It is strict if fi = 0 for all i 6= 1. The
identity morphism of A is the strict morphism f such that f1 is the identity of A.

A morphism of C∞-algebras is a morphism of A∞-algebras vanishing on non-
trivial shuffles fn ((a1⊗ . . .⊗ap)� (ap+1⊗ . . .⊗an)) = 0 , 1≤ p≤ n−1 .
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6 Homotopy Transfer Theorem

Lemma 1. Every cochain complex (A,d) of vector spaces over a field K has its
cohomology H•(A) as a deformation retract.

One can always choose a vector space decomposition of the cochain complex (A,d)
such that An ∼= Bn⊕Hn⊕Bn+1 where Hn is the cohomology and Bn is the space of
coboundaries, Bn = dAn−1. We choose a homotopy h : An→ An−1 which identifies
Bn with its copy in An−1 and is 0 on Hn⊕Bn+1. The projection p to the cohomology

and the cocycle-choosing inclusion i given by An
p // Hn

i
oo are chain homomor-

phisms (satisfying the additional conditions hh = 0, hi = 0 and ph = 0). With these
choices done the complex (H•(A),0) is a deformation retract of (A,d)

h !! (A,d)
p // (H•(A),0)
i

oo , pi = IdH•(A) , ip− IdA = dh+hd .

Let now (A,d,µ) be a DGA, i.e., A is endowed with an associative product µ

compatible with d. The cochain complexes (A,d) and its contraction H•(A) are ho-
motopy equivalent, but the associative structure is not stable under homotopy equiv-
alence. However the associative structure on A can be transferred to an A∞-structure
on a homotopy equivalent complex, a particular interesting complex being the de-
formation retract H•(A). For a friendly introduction to homotopy transfer theorems
in much boarder context we send the reader to the textbook [9], see chapter 9.

Theorem 2 (Kadeishvili [7]). Let (A,d,µ) be a (commutative) DGA over a field
K. There exists a A∞-algebra (C∞-algebra) structure on the cohomology H•(A) and
a A∞(C∞)-quasi-isomorphism fi : (⊗iH•(A),{mi})→ (A,{d,µ,0,0, . . .}) such that
the inclusion f1 = i : H•(A)→ A is a cocycle-choosing homomorphism of cochain
complexes. The differential m1 on H•(A) is zero (m1 = 0) and m2 is strictly associa-
tive operation induced by the multiplication on A. The resulting structure is unique
up to quasi-isomorphism.

Kontsevich and Soibelman [12] gave an explicit expressions for the higher oper-
ations of the induced A∞-structure as sums over decorated planar binary trees with
one root where all leaves are decorated by the inclusion i, the root by the projection
p the vertices by the product µ of the (commutative) DGA (A,d,µ) and the internal
edges by the homotopy h. The C∞-structure implies additional symmetries on trees.
We will make use of the graphic representation for the binary operation on H•(A)

i ��>>>>>>>>

i����������

m2(x,y) := pµ(i(x), i(y)) or m2 = µ

p

��
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and the ternary one m3(x,y,z) = pµ(i(x),hµ(i(y), i(z)))− pµ(hµ(i(x), i(y)), i(z))
being the sum of two planar binary trees with three leaves

i

!!BBBBBBBBBBBBBBBBBBB

i   BBBBBBBB

i����������

µ

h����������

m3 = µ

p

��

−

i ��????????

i~~||||||||

i

�������������������

µ

h

��????????

µ

p

��

Theorem 3. The cohomology H•(g,K)∼= Ext•PS(K,K) of the 2-nilpotent graded Lie
algebra g = V ⊗

∧2V is a homotopy commutative algebra which is generated in
degree 1 (i.e., in H1(g,K)) by the operations m2 and m3.

Sketch of the proof. Let us choose a metric g( · , ·) = 〈 · , · 〉 on the vector space V

and an orthonormal basis 〈ei,e j〉= δi j. The choice induces a metric on
∧•g g∼=

∧•g∗.
Due to the isomorphisms TorPS

n (K,K)∼= ExtnPS(K,K) (see eq. 6) and V ∼=V ∗ the
theorem 1 implies the decomposition of H•(g,K) into irreducible GL(V )-modules

Hn(g,K)∼= Hn(
∧
g∗,δ )∼= ExtnPS(K,K)(V ∗)∼=

⊕
λ :λ=λ ′

Vλ

where the sum is over self-conjugate diagrams λ such that n = 1
2 (|λ |+ r(λ )).

In the presence of metric g the differential δ is identified with the adjoint of ∂ ,
δ

g
:= ∂ ∗while ∂ plays the role of a homotopy. In view of lemma 1 we have the

cohomology H•(
∧•g∗,δ •) as deformation retract of the complex (

∧•g∗,δ •),
pi = IdH•(

∧•g∗) , ip− Id∧•g∗ = δδ
∗+δ

∗
δ , δ

∗ g
= ∂ .

Here the projection p identifies the subspace kerδ ∩ kerδ ∗ with H•(
∧•g∗), which

is the orthogonal complement of the space of the coboundaries imδ . The cocycle-
choosing homomorphism i is Id on H•(

∧•g∗) and zero on coboundaries.
We apply the Kadeishvili homotopy transfer Theorem 2 for the commutative

DGA (
∧•g∗,µ,δ •) and its deformation retract H•(

∧•g∗)∼= H•(g,K) and conclude
that the cohomology H•(g,K) is a C∞-algebra.

The Kontsevich and Soibelman tree representations of the operations mn provide
explicit expressions. Let us take µ to be the super-commutative product ∧ on the
DGA (

∧•g∗,δ •). The projection p maps onto the Schur modules Vλ with λ = λ ′.
The binary operation on the degree 1 generators ei ∈H1(g,K) is trivial, one gets

m2(ei,e j) = p(ei∧ e j) = 0 p(V(12)) = 0.

Hence H•(g,K) could not be generated in H1(g,K) as algebra with product m2.
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The ternary operation m3 restricted to H1(g,K) is nontrivial, indeed one has

m3(ei,e j,ek) = p
{

ei∧∂ (e j ∧ ek)−∂ (ei∧ e j)∧ ek
}
= p

{
ei j ∧ ek− ei∧ e jk

}
= p

{
(ei j ∧ ek + e jk ∧ ei + eki∧ e j)− eki∧ e j

}
= eik ∧ e j ∈ H2(g,K)

The completely antisymmetric combination in the brackets (. . .) spans the Schur
module V(13), p(ei j ∧ ek + e jk ∧ ei + eki ∧ e j) = 0 yields a Jacobi-type identity. The
monomials ei j∧ek modulo V(13) span a Schur module V(2,1) ∈H2(g,K) with basis in

bijection with the semistandard Young tableaux eik∧e j↔
i j
k and ei j∧ek↔

i k
j .

We check the symmetry condition on ternary operation m3 in C∞-algebra; indeed
m3 vanishes on the (signed) shuffles Sh1,2 and Sh2,1

m3(ei�e j⊗ek)=m3(ei,e j,ek)−m3(e j,ei,ek)+m3(e j,ek,ei)= 0=m3(ei⊗e j�ek).

It is important that in the complexes (
∧pg,∂p) and (

∧pg∗,δ p) two different
degees are involved; one is the homological degree p := r+ s counting the number
of g-generators, while the second is the tensor degree t := 2s+r(also called weight).
The differentials ∂ and δ preserve the tensor degree t but the spaces Hn(g,K) and
Hn(g,K) are not homogeneous in t. The operation mn is bigraded by homologi-
cal and tensor gradings of bidegree (p, t) = (2− n,0). The bi-grading impose the
vanishing of many higher products.

On the level of Schur modules the ternary operation glues three fundamental
GL(V )-representations V� into a Schur module V(2,1). By iteration of the process of
gluing boxes we generate all elementary hooks Vk :=V(k+1,1k),

m3(V�,V�,V�) =V , m3

(
V ,V�,V�

)
=V , . . . ,m3(Vk,V0,V0) =Vk+1 .

In our context the more convenient notation for Young diagrams is due to Frobenius:
λ := (a1, . . . ,ar|b1, . . .br) stands for a diagram λ with ai boxes in the i-th row on
the right of the diagonal, and with bi boxes in the i-th column below the diagonal
and the rank r = r(λ ) is the number of boxes on the diagonal.

For self-dual diagrams λ = λ ′, i.e., ai = bi we set Va1,...,ar := V(a1,...,ar |a1,...ar)

when a1 > a2 > .. . > ar ≥ 0 (and set the convention Va1,...,ar := 0 otherwise). Any
two elementary hooks Va1 and Va2 can be glued together by the binary operation m2,
the decomposition of m2(Va1 ,Va2)

∼= m2(Va2 ,Va1) is given by

m2(Va1 ,Va2) =Va1,a2 ⊕ (
a2⊕

i=1

Va1+i,a2−i) a1 ≥ a2

where the “leading” term Va1,a2 has the diagram with minimal height. Hence any
m2-bracketing of the hooks Va1 ,Va2 . . . ,Var yields3 a sum of GL(V )-modules

3 The operation m2 is associative thus the result does not depend on the choice of the bracketing.
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m2(. . .m2(m2(Va1 ,Va2),Va3), . . . ,Var) =Va1,...,ar ⊕ . . .

whose module with minimal height is precisely Va1,...,ar . We conclude that all el-
ements in the C∞-algebra H•(g,K) can be generated in H1(g,K) by m2 and m3.
�

Acknowledgements We are grateful to Jean-Louis Loday for many enlightening discussions and
his encouraging interest. The work was supported by the French-Bulgarian Project Rila under the
contract Egide-Rila N112.

References

1. M. Artin, W.F. Schelter, Graded algebras of global dimension 3. Adv. Math. 66(1987), 171-
216.

2. H. Cartan. Homologie et cohomologie d’ une algèbre graduée. Séminaire Henri Cartan,
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