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Introduction

Every Universal Enveloping Algebra (UEA) Ug of a finite dimensional positively graded Lie algebra g belongs to the class of Artin-Schelter regular algebras(see e.g. [START_REF] Floystad | Artin-Schelter regular algebras of dimension five[END_REF]). As every finitely generated graded connected algebra, Ug has a free minimal resolution which is canonically built from the data of its Yoneda algebra E := Ext Ug (K, K). By construction the Yoneda algebra E is isomorphic (as algebra) to the cohomology of the Lie algebra (with coefficients in the trivial representation provided by the ground field K)

E = Ext • Ug (K, K) ∼ = H • (g, K) (1) 
equipped with wedge product between cohomological classes in H • (g, K).

The homotopy transfer theorem of Tornike Kadeishvili [START_REF] Kadeishvili | The A ∞ -algebra Structure and Cohomology of Hochschild and Harrison[END_REF] implies that the Yoneda algebra E = Ext • Ug (K, K) has the structure of homotopy associative algebra, or A ∞ -algebra. Since E ∼ = H • (g, K) is the cohomology of the exteriour algebra Michel Dubois-Violette Laboratoire de Physique Théorique, UMR 8627, Université Paris XI, Bâtiment 210, F-91 405 Orsay Cedex, France e-mail: Michel.Dubois-Violette@th.u-psud.fr Todor Popov Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussée, 1784 Sofia, Bulgaria e-mail: tpopov@inrne.bas.bg g * which is graded-commutative, it has the structure of homotopy commutative and associative algebra, or C ∞ -algebra.

Throughout the text g will be the free 2-nilpotent graded Lie algebra, with degree one generators in the finite dimensional vector space V over a field K of characteristic 0,

g = V ⊕ 2 V .
The UEA U(V ⊕ ∧ 2 V ) arises naturally in physics in the universal Fock-like space of the parastatistics algebra introduced by H.S. Green [START_REF] Green | A Generalized Method of Field Quantization[END_REF](see also [START_REF] Dubois-Violette | Homogeneous Algebras[END_REF]). Here we will concentrate on the case when V is an ordinary (even) vector space V , when the algebra Ug is the parafermionic algebra. The aim of this note is to describe the Yoneda algebra E of the UEA Ug, i.e., the cohomology H • (g, K) with its C ∞ -structure induced by the isomorphism (1) through the homotopy transfer.

The cohomology space H • (g, K) has a natural GL(V )-action. The decomposition of the GL(V )-module H • (g, K) into irreducible Schur modules V λ is known since the work of Józefiak and Weyman [START_REF] Józefiak | Representation-theoretic interpretation of a formula of D. E. Littlewood[END_REF]; it contains all GL(V )-modules with selfconjugated Young diagrams λ = λ once and exactly once. The decomposition of E = H • (g, K) into Schur modules provides a powerful tool to handle its C ∞ -algebra structure.

Artin-Schelter regularity

Let g be the 2-nilpotent graded Lie algebra g = V ⊕ 2 V generated by the finite dimensional vector space V having Lie bracket

[x, y] := x ∧ y x, y ∈ V 0 otherwise . (2) 
We denote the Universal Enveloping Algebra Ug by PS and will refer to it as parastatistics algebra (by some abuse1 ). The parastatistics algebra

PS(V ) generated in V is graded PS(V ) := Ug = U(V ⊕ 2 V ) = T (V )/([[V,V ],V ]) .
We shall write simply PS when the space of generators V is clear from the context. Artin and Schelter [START_REF] Artin | Graded algebras of global dimension 3[END_REF] introduced a class of regular algebras sharing some "good" homological properties with the polynomial algebra K[V ]. These algebras were dubbed Artin-Schelter regular algebras (AS-regular algebra for short).

Definition 1. (AS-regular algebras) A connected graded algebra

A = K ⊕ A 1 ⊕ A 2 ⊕ . . . is called Artin-Schelter regular of dimension d if (i) A has finite global dimension d, (ii) A has finite Gelfand-Kirillov dimension, (iii) A is Gorenstein, i.e., Ext i A (K, A ) = δ i,d K.
A general theorem claims that the UEA of a finite dimensional positively graded Lie algebra is an AS-regular algebra of global dimension equal to the dimension of the Lie algebra [START_REF] Floystad | Artin-Schelter regular algebras of dimension five[END_REF]. Hence the parastatistics algebra PS is AS-regular of global dimension d = dimV (dimV +1)

2

. In particular the finite global dimension of PS implies that the ground field K has a minimal resolution P • by projective left PS-modules P n P • :

0 → P d → • • • → P n → • • • → P 2 → P 1 → P 0 ε → K → 0 . ( 3 
)
Here K is a trivial left PS-module, the action being defined by the projection ε onto PS 0 = K. Since PS is positively graded and, in the category of positively graded modules over connected locally finite graded algebras, projective module is the same as free module [START_REF] Cartan | Homologie et cohomologie d' une algèbre graduée[END_REF], we have P n ∼ = PS ⊗ E n where E n are finite dimensional vector spaces.

The minimal projective resolution is unique (up to an isomorphism). Minimality implies that the complex K ⊗ PS P • has "zero differentials" hence

H • (K ⊗ PS P • ) = K ⊗ PS P • = E n .
One can calculate the derived functor Tor PS n (K, K) using the resolution P • , it yields

Tor PS n (K, K) = E n . (4) 
The data of a minimal resolution of K by free PS-modules provides an easy way to find Tor PS n (K, K). Conversely if the spaces Tor PS n (K, K) are known, then one can constuct a minimal free resolution of K.

The Gorenstein property guarantees that when applying the functor Hom PS (-, PS) to the minimal free resolution P • we get another minimal free resolution P • := Hom PS (P • , PS) of K by right PS-modules

P • : 0 ← K ← P d ← • • • ← P n ← • • • ← P 2 ← P 1 ← P 0 ← 0 ( 5 
)
with

P n ∼ = E * n ⊗PS. Note that by construction E * n = Ext n PS (K, K), thus one has vector space isomorphisms [2] E n ∼ = E * n ∼ = Tor PS n (K, K) ∼ = Ext n PS (K, K) . (6) 
The Gorenstein property is an analog of the Poincaré duality, it implies

E * d-n ∼ = E n .
The finite global dimension d of PS and the Gorenstein condition imply that its Yoneda algebra

E • := Ext • PS (K, K) ∼ = d n=0 E * n
is Frobenius [START_REF] Lu | Koszul Equivalences in A ∞ -Algebras[END_REF]. More on Gorenstein property you can find in the first autor's lecture "Poincaré duality for Koszul algebras" in the present volume.

Homology and cohomology of g

A non-minimal projective(in fact free) resolution of K, C(g)

ε → K is given by the standard Chevalley-Eilenberg chain complex C • (g) = (Ug ⊗ K ∧ p g, d p ) with differ- ential maps d p (u ⊗ x 1 ∧ . . . ∧ x p ) = ∑ i (-1) i+1 ux i ⊗ x 1 ∧ . . . ∧ xi ∧ . . . ∧ x p + ∑ i< j (-1) i+ j u ⊗ [x i , x j ] ∧ x 1 ∧ . . . ∧ xi ∧ . . . ∧ x j ∧ . . . ∧ x p (7) 
The resolution C • (g) calculates the homologies of the derived complex K ⊗ PS C • (g)

E n = Tor PS n (K, K) ∼ = H n (K ⊗ PS C • (g)) = H n (g, K) ,
coinciding with the homologies H n (g, K) of the Lie algebra g with trivial coefficients. The derived complex K ⊗ PS C • (g) is the chain complex with degrees

• g = K ⊗ PS PS ⊗ • g and differentials ∂ p := id ⊗ PS d p : p g → p-1 g. One has p g = p (V ⊕ 2 V ) = s+r=p s ( 2 V ) ⊗ r (V ) (8) 
and differentials

∂ p=r+s : s ( 2 V ) ⊗ r (V ) → s+1 ( 2 V ) ⊗ r-2 (V ) are given by ∂ p : e i 1 j 1 ∧ . . . ∧ e i s j s ⊗ e 1 ∧ . . . ∧ e r → ∑ i< j (-1) i+ j e i j ∧ e i 1 j 1 ∧ . . . ∧ e i s j s ⊗ e 1 ∧ . . . ∧ êi ∧ . . . ∧ ê j ∧ . . . ∧ e r .
The differential ∂ is induced by the Lie bracket [ • , • ] :2 g → g, it identifies a pair of degree 1 generators e i , e j ∈ with one degree 2 generator e i j := (e i ∧ e j ) = [e i , e j ].

The differential ∂ p is the extension of ∂ 2 := -[ • , • ] as coderivation on p g. The dual cochain complex Hom PS (C(g), K) = ( • g * , δ ) calculates cohomology 2

E * n = Ext n PS (K, K) ∼ = H n (Hom PS (C(g), K)) = H n (g, K) . (9) 
The coboundary map δ p : p g * → p+1 g * is transposed to the differential ∂ p+1

δ p : e * i 1 j 1 ∧ . . . ∧ e * i s j s ⊗ e * l 1 ∧ . . . ∧ e * l r → (10) s ∑ k=1 ∑ i k < j k (-1) i+ j e * i 1 j 1 ∧ . . . ∧ ê * i k j k ∧ . . . ∧ e * i s j s ⊗ e * i k ∧ e * j k ∧ e * l 1 ∧ . . . ∧ . . . ∧ e * l r ,
it is (up to a conventional sign) the extension as derivation of the dualization of the Lie bracket

δ 1 := [ • , • ] * : g * → 2 g * .Thus the algebra ( • g * , δ ) equipped with δ is a (graded-)commutative DGA.
4 Homology of g as a GL(V )-module

An irreducible polynomial GL(V )-module V λ is called Schur module, it has a basis labelled by semistandard Young tableaux which are fillings of the Young diagram λ with the numbers of the set {1, . . . , dimV }. The action of the linear group GL(V ) on the space V of the generators of the Lie algebra g induces a GL(V )-action on the UEA PS = Ug ∼ = S(V ⊕ Λ 2 V ) and on the space

• g ∼ = • (V ⊕ 2 V ).
In the presence of metric g one has an identification V g ∼ = V * , and

• g g ∼ = • g * . The adjoint operator ∂ * p : p g → p+1 g is defined by g(∂ * p v, w) = g(v, ∂ p+1 w).
It turns out that the action of ∂ * p always takes the form (similar to the action of δ p )

∂ * p : e i 1 j 1 ∧ . . . ∧ e i s j s ⊗ e l 1 ∧ . . . ∧ e l r → (11) 
s ∑ k=1 ∑ i k < j k (-1) i+ j e i 1 j 1 ∧ . . . ∧ êi k j k ∧ . . . ∧ e i s j s ⊗ e i k ∧ e j k ∧ e l 1 ∧ . . . ∧ . . . ∧ e l r ,
It is obvious that the maps ∂ and ∂ * both commute with the GL(V )-action. The Laplacian ∆ = ⊕ p≥0 ∆ p of the pair (g, g) is defined to be the self-adjoint operator

∆ p = ∂ p+1 ∂ * p+1 + ∂ * p ∂ p ∈ End( p g) .
Its kernel is a complete set of representatives for the homology classes in H p (g, K)

ker ∆ p ∼ = H p (g, K) .
The decomposition of the GL(V )-module H n (g, K) into irreducible polynomial representations V λ is given by the following theorem;

Theorem 1 (Józefiak and Weyman [START_REF] Józefiak | Representation-theoretic interpretation of a formula of D. E. Littlewood[END_REF], Sigg [START_REF] Sigg | Laplacian and homology of free 2-step nilpotent Lie algebras[END_REF]). The homology H • (g, K) of the 2-nilpotent Lie algebra g = V ⊕ 2 V decomposes into irreducible GL(V )-modules

H n (g, K) = H n ( • g, ∂ ) ∼ = Tor PS n (K, K)(V ) ∼ = λ :λ =λ V λ ( 12 
)
where the sum is over self-conjugate Young diagrams λ such that n = 1 2 (|λ | + r(λ )). The data H n (g, K) = Tor PS n (K, K) encodes the minimal free resolution P • (cf. ( 3)). The Euler characteristics of P • implies an identity about the GL(V )-characters

ch PS(V ) . ch λ :λ =λ (-1) 1 2 (|λ |+r(λ )) V λ = 1 .
The character of a Schur module V λ is the Schur function, chV λ = s λ (x). Due to the Poincaré-Birkhoff-Witt theorem ch PS(V ) = ch S(V ⊕ 2 V ) thus the identity reads

∏ i 1 (1 -x i ) ∏ i< j 1 (1 -x i x j ) ∑ λ :λ =λ (-1) 1 2 (|λ |+r(λ )) s λ (x) = 1 . ( 13 
)
But the latter identity is nothing but rewriting of the Littlewood identity [START_REF] Józefiak | Representation-theoretic interpretation of a formula of D. E. Littlewood[END_REF]. The moral is that the Littlewood identity reflects a homological property of the algebra PS, namely the above particular structure of the minimal projective (free) resolution of K by PS-modules.

5 Homotopy algebras A ∞ and C ∞ Definition 2. (A ∞ -algebra) A homotopy associative algebra, or A ∞ -algebra, over K is a Z-graded vector space A = i∈Z A i endowed with a family of graded mappings (operations)

m n : A ⊗n → A, deg(m n ) = 2 -n n ≥ 1 satisfying the Stasheff identities SI(n) for n ≥ 1 ∑ r+s+t=n (-1) r+st m r+1+t (Id ⊗r ⊗ m s ⊗ Id ⊗t ) = 0 SI(n)
where the sum runs over all decompositions n = r + s + t.

Here we assume the Koszul sign convention

( f ⊗ g)(x ⊗ y) = (-1) |g||x| f (x) ⊗ g(y).
We define the shuffle product Sh p,q : A ⊗p ⊗ A ⊗q → A ⊗p+q throughout the expression

(a 1 ⊗ . . . ⊗ a p ) ¡(a p+1 ⊗ . . . ⊗ a p+q ) = ∑ σ ∈Sh p,q sgn(σ ) a σ -1 (1) ⊗ . . . ⊗ a σ -1 (p+q)
where the sum runs over all (p, q)-shuffles Sh p,q , i.e., over all permutations σ ∈ S p+q such that σ (1) < σ (2) < . . . < σ (p) and σ (p + 1) < σ (p + 2) < . . . < σ (p + q) . Definition 3. (C ∞ -algebra [START_REF] Kadeishvili | The A ∞ -algebra Structure and Cohomology of Hochschild and Harrison[END_REF]) A homotopy commutative algebra, or C ∞ -algebra, is an A ∞ -algebra {A, m n } such that each operation m n vanishes on non-trivial shuffles

m n ((a 1 ⊗ . . . ⊗ a p ) ¡(a p+1 ⊗ . . . ⊗ a n )) = 0 , 1 ≤ p ≤ n -1 . ( 14 
)
In particular for m 2 we have m 2 (a ⊗ b ± b ⊗ a) = 0, so a C ∞ -algebra such that m n = 0 for n ≥ 3 is a (super-)commutative DGA. A morphism of two A ∞ -algebras A and B is a family of graded maps f n : A ⊗n → B for n ≥ 1 with deg f n = 1n such that the following conditions hold

∑ r+s+t=n (-1) r+st f r+1+t (Id ⊗r ⊗ m s ⊗ Id ⊗r ) = ∑ 1≤r≤n (-1) S m r ( f i 1 ⊗ f i 2 ⊗ . . . ⊗ f i r )
where the sum is on all decompositions i 1 + . . . + i r = n and the sign on RHS is determined by

S = ∑ r-1 k=1 (r -k)(i k -1). The morphism f is a quasi-isomorphism of A ∞ -algebras if f 1 is a quasi-isomorphism. It is strict if f i = 0 for all i = 1. The identity morphism of A is the strict morphism f such that f 1 is the identity of A. A morphism of C ∞ -algebras is a morphism of A ∞ -algebras vanishing on non- trivial shuffles f n ((a 1 ⊗ . . . ⊗ a p ) ¡(a p+1 ⊗ . . . ⊗ a n )) = 0 , 1 ≤ p ≤ n -1 .
6 Homotopy Transfer Theorem Lemma 1. Every cochain complex (A, d) of vector spaces over a field K has its cohomology H • (A) as a deformation retract.

One can always choose a vector space decomposition of the cochain complex (A, d)

such that A n ∼ = B n ⊕ H n ⊕ B n+1
where H n is the cohomology and B n is the space of coboundaries, B n = dA n-1 . We choose a homotopy h : A n → A n-1 which identifies B n with its copy in A n-1 and is 0 on H n ⊕ B n+1 . The projection p to the cohomology and the cocycle-choosing inclusion i given by A n p G G H n i o o are chain homomorphisms (satisfying the additional conditions hh = 0, hi = 0 and ph = 0). With these choices done the complex (H

• (A), 0) is a deformation retract of (A, d) h 3 3 (A, d) p G G (H • (A), 0) i o o , pi = Id H • (A) , ip -Id A = dh + hd .
Let now (A, d, µ) be a DGA, i.e., A is endowed with an associative product µ compatible with d. The cochain complexes (A, d) and its contraction H • (A) are homotopy equivalent, but the associative structure is not stable under homotopy equivalence. However the associative structure on A can be transferred to an A ∞ -structure on a homotopy equivalent complex, a particular interesting complex being the deformation retract H • (A). For a friendly introduction to homotopy transfer theorems in much boarder context we send the reader to the textbook [START_REF] Loday | Algebraic Operads[END_REF], see chapter 9.

Theorem 2 (Kadeishvili [START_REF] Kadeishvili | The A ∞ -algebra Structure and Cohomology of Hochschild and Harrison[END_REF]). Let (A, d, µ) be a (commutative) DGA over a field K. There exists a A ∞ -algebra (C ∞ -algebra) structure on the cohomology H • (A) and a A ∞ (C ∞ )-quasi-isomorphism f i : (⊗ i H • (A), {m i }) → (A, {d, µ, 0, 0, . . .}) such that the inclusion f 1 = i : H • (A) → A is a cocycle-choosing homomorphism of cochain complexes. The differential m 1 on H • (A) is zero (m 1 = 0) and m 2 is strictly associative operation induced by the multiplication on A. The resulting structure is unique up to quasi-isomorphism. [START_REF] Kontsevich | Deformations of algebras over operads and the Deligne conjecture[END_REF] gave an explicit expressions for the higher operations of the induced A ∞ -structure as sums over decorated planar binary trees with one root where all leaves are decorated by the inclusion i, the root by the projection p the vertices by the product µ of the (commutative) DGA (A, d, µ) and the internal edges by the homotopy h. The C ∞ -structure implies additional symmetries on trees. We will make use of the graphic representation for the binary operation on H

Kontsevich and Soibelman

• (A) i 0 0 b b b b b b b b i Ð Ð m 2 (x, y) := pµ(i(x), i(y)) or m 2 = µ p
and the ternary one m 3 (x, y, z) = pµ(i(x), hµ(i(y), i(z)))pµ(hµ(i(x), i(y)), i(z)) being the sum of two planar binary trees with three leaves

i 3 3 f f f f f f f f f f f f f f f f f f f i 2 2 f f f f f f f f i µ h m 3 = µ p - i 1 1 c c c c c c c c i || | | | | | | i Ñ Ñ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ µ h 1 1 c c c c c c c c µ p Theorem 3. The cohomology H • (g, K) ∼ = Ext • PS (K, K) of the 2-nilpotent graded Lie algebra g = V ⊗ 2 V
is a homotopy commutative algebra which is generated in degree 1 (i.e., in H 1 (g, K)) by the operations m 2 and m 3 .

Sketch of the proof. Let us choose a metric g( • , • ) = • , • on the vector space V and an orthonormal basis e i , e j = δ i j . The choice induces a metric on • g g ∼ = • g * . Due to the isomorphisms Tor PS n (K, K) ∼ = Ext n PS (K, K) (see eq. 6) and V ∼ = V * the theorem 1 implies the decomposition of H • (g, K) into irreducible GL(V )-modules

H n (g, K) ∼ = H n ( g * , δ ) ∼ = Ext n PS (K, K)(V * ) ∼ = λ :λ =λ V λ
where the sum is over self-conjugate diagrams λ such that n = 1 2 (|λ | + r(λ )). In the presence of metric g the differential δ is identified with the adjoint of ∂ , δ g := ∂ * while ∂ plays the role of a homotopy. In view of lemma 1 we have the cohomology H • ( • g * , δ • ) as deformation retract of the complex

( • g * , δ • ), pi = Id H • ( • g * ) , ip -Id • g * = δ δ * + δ * δ , δ * g = ∂ .
Here the projection p identifies the subspace ker δ ∩ ker δ * with H • ( • g * ), which is the orthogonal complement of the space of the coboundaries imδ . The cocyclechoosing homomorphism i is Id on H • ( • g * ) and zero on coboundaries. We apply the Kadeishvili homotopy transfer Theorem 2 for the commutative DGA ( • g * , µ, δ • ) and its deformation retract H

• ( • g * ) ∼ = H • (g, K) and conclude that the cohomology H • (g, K) is a C ∞ -algebra.
The Kontsevich and Soibelman tree representations of the operations m n provide explicit expressions. Let us take µ to be the super-commutative product ∧ on the DGA ( • g * , δ • ). The projection p maps onto the Schur modules V λ with λ = λ .

The binary operation on the degree 1 generators e i ∈ H 1 (g, K) is trivial, one gets m 2 (e i , e j ) = p(e i ∧ e j ) = 0 p(V (1 2 ) ) = 0.

Hence H • (g, K) could not be generated in H 1 (g, K) as algebra with product m 2 .

The ternary operation m 3 restricted to H 1 (g, K) is nontrivial, indeed one has m 3 (e i , e j , e k ) = p e i ∧ ∂ (e j ∧ e k ) -∂ (e i ∧ e j ) ∧ e k = p e i j ∧ e ke i ∧ e jk = p (e i j ∧ e k + e jk ∧ e i + e ki ∧ e j )e ki ∧ e j = e ik ∧ e j ∈ H 2 (g, K)

The completely antisymmetric combination in the brackets (. . .) spans the Schur module V (1 3 ) , p(e i j ∧ e k + e jk ∧ e i + e ki ∧ e j ) = 0 yields a Jacobi-type identity. The monomials e i j ∧e k modulo V (1 3 ) span a Schur module V (2,1) ∈ H 2 (g, K) with basis in bijection with the semistandard Young tableaux e ik ∧e j ↔ i j k and e i j ∧e k ↔ i k j

.

We check the symmetry condition on ternary operation m 3 in C ∞ -algebra; indeed m 3 vanishes on the (signed) shuffles Sh 1,2 and Sh 2,1 m 3 (e i ¡e j ⊗e k ) = m 3 (e i , e j , e k )-m 3 (e j , e i , e k )+m 3 (e j , e k , e i ) = 0 = m 3 (e i ⊗e j ¡e k ).

It is important that in the complexes ( p g, ∂ p ) and ( p g * , δ p ) two different degees are involved; one is the homological degree p := r + s counting the number of g-generators, while the second is the tensor degree t := 2s + r(also called weight). The differentials ∂ and δ preserve the tensor degree t but the spaces H n (g, K) and H n (g, K) are not homogeneous in t. The operation m n is bigraded by homological and tensor gradings of bidegree (p,t) = (2n, 0). The bi-grading impose the vanishing of many higher products.

On the level of Schur modules the ternary operation glues three fundamental GL(V )-representations V into a Schur module V [START_REF] Cartan | Homologie et cohomologie d' une algèbre graduée[END_REF][START_REF] Artin | Graded algebras of global dimension 3[END_REF] . By iteration of the process of gluing boxes we generate all elementary hooks V k := V (k+1,1 k ) , m 3 (V ,V ,V ) = V , m 3 V ,V ,V = V , . . . , m 3 (V k ,V 0 ,V 0 ) = V k+1 .

In our context the more convenient notation for Young diagrams is due to Frobenius: λ := (a 1 , . . . , a r |b 1 , . . . b r ) stands for a diagram λ with a i boxes in the i-th row on the right of the diagonal, and with b i boxes in the i-th column below the diagonal and the rank r = r(λ ) is the number of boxes on the diagonal. For self-dual diagrams λ = λ , i.e., a i = b i we set V a 1 ,...,a r := V (a 1 ,...,a r |a 1 ,...a r ) when a 1 > a 2 > . . . > a r ≥ 0 (and set the convention V a 1 ,...,a r := 0 otherwise). Any two elementary hooks V a 1 and V a 2 can be glued together by the binary operation m 2 , the decomposition of m 2 (V a 1 ,V a 2 ) ∼ = m 2 (V a 2 ,V a 1 ) is given by

m 2 (V a 1 ,V a 2 ) = V a 1 ,a 2 ⊕ ( a 2 i=1 V a 1 +i,a 2 -i ) a 1 ≥ a 2
where the "leading" term V a 1 ,a 2 has the diagram with minimal height. Hence any m 2 -bracketing of the hooks V a 1 ,V a 2 . . . ,V a r yields3 a sum of GL(V )-modules

Strictly speaking PS(V ) is the creation parastatistics algebra, closed by creation operators alone.

In the presence of metric one has δ := ∂ * (see below)

The operation m 2 is associative thus the result does not depend on the choice of the bracketing.
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