
HAL Id: hal-00718924
https://hal.science/hal-00718924

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Go’s Concurrency Constructs on the SCC
Andreas Prell, Thomas Rauber

To cite this version:
Andreas Prell, Thomas Rauber. Go’s Concurrency Constructs on the SCC. The 6th Many-core Appli-
cations Research Community (MARC) Symposium, Jul 2012, Toulouse, France. pp.2-6. �hal-00718924�

https://hal.science/hal-00718924
https://hal.archives-ouvertes.fr

http://sites.onera.fr/scc/marconera2012

Proceedings of the 6th Many-core
Applications Research Community

(MARC) Symposium

July 19th–20th 2012

ISBN

978-2-7257-0016-8

http://sites.onera.fr/scc/marconera2012
http://hal.archives-ouvertes.fr/MARCONERA2012
http://www.onera.fr

Go’s Concurrency Constructs on the SCC
Andreas Prell and Thomas Rauber

Department of Computer Science

University of Bayreuth, Germany

{andreas.prell,thomas.rauber}@uni-bayreuth.de

Abstract—We present an implementation of goroutines and
channels on the SCC. Goroutines and channels are the building
blocks for writing concurrent programs in the Go programming
language. Both Go and the SCC share the same basic idea—the
use of messages for communication and synchronization. Our
implementation of goroutines on top of tasks reuses existing
runtime support for scheduling and load balancing. Channels,
which permit goroutines to communicate by sending and receiv-
ing messages, can be implemented efficiently using the on-die
message passing buffers. We demonstrate the use of goroutines
and channels with a parallel genetic algorithm that can utilize
all cores of the SCC.

I. INTRODUCTION

Go is a general-purpose programming language intended for

systems programming [1]. We leave out a general description

of Go, and rather focus on its support for concurrent pro-

gramming, which is not the usual “threads and locks”, even if

threads and locks are still used under the covers. Programmers

are encouraged to “share memory by communicating”, instead

of to “communicate by sharing memory”. This style of pro-

gramming is reminiscent of message passing, where messages

are used to exchange data between and coordinate execution

of concurrently executing processes. Instead of using locks to

guard access to shared data, programmers are encouraged to

pass around references and thereby transfer ownership so that

only one thread is allowed to access the data at any one time.

Go’s way of thinking is also useful when programming

Intel’s Single-Chip Cloud Computer (SCC) research processor.

The SCC is intended to foster manycore software research,

using a platform that’s more like a “cluster-on-a-chip” than a

traditional shared-memory multiprocessor. As such, the SCC

is tuned for message passing rather than for “threads and

locks”. Or as Intel Fellow Jim Held commented on the lack of

atomic operations: “In SCC we imagined messaging instead

of shared memory or shared memory access coordinated by

messages. [. . .] Use a message to synchronize, not a memory

location.” [2], [3] So, we think it’s reasonable to ask, “Isn’t

Go’s concurrency model a perfect fit for a processor like the

SCC?” To find out, we start by implementing the necessary

runtime support on the SCC.

II. CONCURRENCY IN THE GO PROGRAMMING LANGUAGE

Go’s approach to concurrency was inspired by previous

languages that came before it, namely Newsqueak, Alef, and

Limbo. All these languages have in common that they built on

Hoare’s Communicating Sequential Processes (CSP), a formal

language for writing concurrent programs [4]. CSP introduced

the concept of channels for interprocess communication (not

in the original paper but in a later book on CSP, also by Hoare

[5]). Channels in CSP are synchronous, meaning that sender

and receiver synchronize at the point of message exchange.

Channels thus serve the dual purpose of communication and

synchronization. Synchronous or unbuffered channels are still

the default in Go (when no buffer size is specified), although

the implementation has evolved quite a bit from the original

formulation and also allows asynchronous (non-synchronizing)

operations on channels.

Go’s support for concurrent programming is based on two

fundamental constructs, goroutines and channels, which we

describe in the following sections.

A. Goroutines

Think of goroutines as lightweight threads that run con-

currently with other goroutines as well as the calling code.

Whether goroutines run in separate OS threads or whether

they are multiplexed onto OS threads is an implementation

detail and something the user should not have to worry about.

A goroutine is started by prefixing a function call or an

anonymous function call with the keyword go. The language

specification says: “A go statement starts the execution of a

function or method call as an independent concurrent thread

of control, or goroutine, within the same address space.” [6] In

other words, a go statement marks an asynchronous function

call that creates a goroutine and returns without waiting for

the goroutine to complete. So, from the point of view of the

programmer, goroutines are a way to specify concurrently

executing activities; whether they are allocated to run in

parallel is determined by the system.

B. Channels

In a broader sense, channels are used for interprocess

communication. Processes can send or receive messages over

channels or synchronize execution using blocking operations.

In Go, “a channel provides a mechanism for two concurrently

executing functions to synchronize execution and communi-

cate by passing a value of a specified element type.” [6] Go

provides both unbuffered and buffered channels. Channels are

first-class objects (a distinguishing feature of the Go branch

of languages, starting with Newsqueak): they can be stored

in variables, passed as arguments to functions, returned from

functions, and sent themselves over channels. Channels are

also typed, allowing the type system to catch programming

errors, like trying to send a pointer over a channel for integers.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Go’s Concurrency Constructs on the SCC 2

Fig. 1. The 48-core SCC processor: 6x4 tile array (left), 2-core tile (right)

III. A GLIMPSE OF THE FUTURE? THE SCC PROCESSOR

The Single-Chip Cloud Computer (SCC) is the second

processor developed as part of Intel’s Tera-scale Computing

Research Program, which seeks to explore scalable manycore

architectures along with effective programming techniques.

At a high level, the SCC is a 48-core processor with a

noticeable lack of cache coherence between cores. It does

support shared memory, both on-chip and off-chip, but it’s

entirely the (low-level) programmer’s responsibility to avoid

working on stale data from the caches—if caching is enabled

at all. In the default configuration, most system memory is

mapped as private, turning the SCC into a “cluster-on-a-chip”,

programmed in much the same way as an ordinary cluster.

Message passing between cores is enabled by the inclusion

of 16 KB shared SRAM per tile, called Message Passing

Buffer (MPB). Programmers can either use MPI or RCCE,

a lightweight message passing library tuned to the features of

the SCC [7], [8]. RCCE has two layers: a high-level interface,

which provides send and receive routines without exposing the

underlying communication, and a low-level interface, which

allows complete control over the MPBs in the form of one-

sided put and get operations—the basic primitives to move

data around the chip. RCCE also includes an API to vary

voltage and frequency within domains of the SCC, but we

won’t go into power management issues here.

IV. GO’S CONCURRENCY CONSTRUCTS ON THE SCC

RCCE’s low-level interface allows us to manage MPB

memory, but with an important restriction. RCCE uses what

it calls a “symmetric name space” model of allocation, which

was adopted to facilitate message passing. MPB memory is

managed through collective calls, meaning that every worker1

must perform the same allocations/deallocations and in the

same order with respect to other allocations/deallocations.

Thus, the same buffers exist in every MPB, hence symmetric

name space. If we want to make efficient use of channels, we

must break with the symmetric name space model to allow

every worker to allocate/deallocate MPB memory at any time.

Suppose worker i has allocated a block b from its MPB

and wants other workers to access it (see also Figure 2).

How can we do this? RCCE tells us the starting address

of each worker’s portion of MPB memory via the global

variable RCCE comm buffer. Thus, worker j can access any

location in i’s MPB by reading from or writing to addresses

1Worker means process or thread in this context. RCCE uses yet another
term—unit of execution (UE). On the SCC, we assume one worker per core.

Fig. 2. Accessing buffers in remote MPBs without requiring collective
allocations. Because buffer b is not replicated in other cores’ MPBs, offset
o can’t be determined implicitly (as in RCCE put/RCCE get), but must be
passed between cores.

RCCE comm buffer[i] through RCCE comm buffer[i] +

8191. Note that in the default usage model, the 16 KB shared

SRAM on a tile is equally divided between the two cores.

Worker j then needs to know the offset of b within i’s

MPB. This offset is easily determined on i’s side, and after

communicating it to worker j, j can get a pointer to b and

use this pointer to access whatever is stored at this address. To

summarize, any buffer can be described by a pair of integers

(ID, offset), which allows us to abandon collective allocations

and to use the MPBs more like local stores.

A. Goroutines as Tasks

We have previously implemented a tasking environment to

support dynamic task parallelism on the SCC [9]. Specifically,

we have implemented runtime systems based on work-sharing

and work-stealing to schedule tasks across the cores of the

chip. If we map a goroutine to a task, we can leave the

scheduling to the runtime system, load balancing included.

Scheduling details aside, what go func(a ,b,c); then does is

create a task to run function func using arguments a, b, and

c, and enqueue the task for asynchronous execution. Tasks

are picked up and executed by worker threads. Every worker

thread runs a scheduling loop where it searches for tasks (the

details depend on which runtime is used). One thread, which

we call the master thread, say, thread 0, is designated to run

the main program between the initializing and finalizing calls

to the tasking environment. This thread can call goroutines, but

it cannot itself schedule goroutines for execution. In addition

to the master thread, we need one or more worker threads to

be able to run goroutines. This is currently a restriction of our

implementation.

Figure 3 shows a pictorial representation of workers running

goroutines. Assume we start a program on three cores—say,

core 0, core 1, and core 2—there will be a master thread and

two worker threads, each running in a separate process. Worker

threads run goroutines as coroutines to be able to yield control

from one goroutine to another [10]. While a goroutine shares

the address space with other goroutines on the same worker,

goroutines on different workers also run in different address

spaces (sharing memory is possible). This is a deviation from

the Go language specification, which states that goroutines run

concurrently with other goroutines, within the same address

space. What we need is a mechanism to allow goroutines

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Go’s Concurrency Constructs on the SCC 3

Fig. 3. An example execution of a program with goroutines on three
cores of the SCC processor. In this example, worker 1 is running three
goroutines, while worker 2 is running two goroutines. The master thread can
call goroutines but not run them. Worker threads switch goroutines as needed,
whenever a goroutine blocks on a channel.

to communicate, regardless on which core they are running.

Channels in shared memory provide such a mechanism.

B. Channels

Our channel implementation takes advantage of the SCC’s

on-chip memory for inter-core communication. A channel is

basically a blocking FIFO queue. Data items are stored in

a circular array, which acts as the channel’s internal buffer.

Channel access must be lock-protected because the SCC lacks

atomic operations and only provides one test-and-set register

per core for the purpose of mutual exclusion.

A buffered channel of size n has an internal buffer to store n

data items (the internal buffer has actually n+1 slots to make

it easier to distinguish between an empty and a full buffer).

If the buffer is full and another item is sent to the channel,

the sender blocks until an item has been received from the

channel. An unbuffered channel, which is the default in Go

when no size is given, is implemented as a buffered channel

with an internal buffer to store exactly one data item. Unlike a

send to a buffered channel, however, a send to an unbuffered

channel blocks the sender until a receive has happened.

A channel (unbuffered) takes up at least 160 bytes—four

cache lines to hold the data structure, plus a cache line of

internal channel buffer. When we try to write a concurrent

program such as the prime sieve presented in the Go language

specification [6] and in the Go tutorial [11], we must be aware

of channel related memory leaks that can quickly exhaust the

MPBs. Go on the other hand, is backed by a garbage col-

lector, which reclaims memory behind the scenes, and which,

according to Rob Pike, is in fact “essential to easy concurrent

programming” [12]. What the current implementation doesn’t

include are functions to close a channel and to peek at a set

of channels simultaneously (Go’s select statement, which is

like a switch statement for channel operations).

C. Channel API

The basic channel API consists of four functions:

Channel ∗channel alloc (size t sz , size t n);

Allocates a channel for elements of sz bytes in MPB memory.

If the number of elements n is greater than zero, the channel

is buffered. Otherwise, if n is zero, the channel is unbuffered.

Note that, unlike in Go, channels are untyped. It would be

perfectly okay to pass values of different types over a single

channel, as long as they fit into sz bytes. Also note that the

current implementation does not allow all combinations of

sz and n. This is because the underlying allocator (part of

RCCE) works with cache line granularity, so we have to

make sure that channel buffers occupy multiples of 32 bytes

((n+1)*sz must be a multiple of 32).

void channel free (Channel ∗ch);

Frees the MPB memory associated with channel ch.

bool channel send(Channel ∗ch, void ∗data , size t sz);

Sends an element of sz bytes at address data to channel

ch. The call blocks until the element has been stored in the

channel buffer (buffered channel) or until the element has

been received from the channel (unbuffered channel).

bool channel receive (Channel ∗ch, void ∗data , size t sz);

Receives an element of sz bytes from channel ch. The element

is stored at address data. The call blocks if the channel is

empty.

Additionally, we find the following functions useful:

int channel owner(Channel ∗ch);

Returns the ID of the worker that allocated and thus “owns”

channel ch.

bool channel buffered (Channel ∗ch);

Returns true if ch points to a buffered channel, otherwise

returns false.

bool channel unbuffered (Channel ∗ch);

Returns true if ch points to an unbuffered channel, otherwise

returns false.

unsigned int channel peek(Channel ∗ch);

Returns the number of buffered items in channel ch. When

called with an unbuffered channel, a return value of 1

indicates that a sender is blocked on the channel waiting for

a receiver.

unsigned int channel capacity (Channel ∗ch);

Returns the capacity (buffer size) of channel ch (0 for

unbuffered channels).

D. Go Statements

Go statements must be translated into standard C code

that interfaces with our runtime library. Listing 1 gives an

idea of the translation process. Suppose we start a goroutine

running function f(in, out), which operates on two channels

in and out. For every function that is started as a goroutine,

we generate two wrapper functions, one for creating and

enqueuing the goroutine (task), the other for running it after

scheduling. Listing 1 shows the corresponding code in slightly

abbreviated form. Function go f creates a task saving all the

goroutine’s arguments and enqueues the task for asynchronous

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Go’s Concurrency Constructs on the SCC 4

void f (Channel ∗ in , Channel ∗o u t) ;

/ / The go s t a t e m e n t

go f (in , o u t) ;

/ / i s r e w r i t t e n i n t o

go f (in , o u t) ;

/ / w i t h t h e f o l l o w i n g d e f i n i t i o n

/ / (some d e t a i l s are l e f t o u t f o r b r e v i t y)

void go f (Channel ∗ in , Channel ∗o u t)

{
Task t a s k ;

f t a s k d a t a ∗ t d ;

t a s k . fn = (void (∗) (void ∗) f t a s k f u n c ;

t d = (f t a s k d a t a ∗) t a s k . d a t a ;

td−>in owner = channe l owner (i n) ;

td−>i n o f f s e t = MPB da ta o f f se t (td−>in owner , i n) ;

td−>out owner = channe l owner (o u t) ;

td−>o u t o f f s e t = MPB da ta o f f se t (td−>out owner , o u t) ;

/ / Enqueue t a s k

}

/ / The da ta s t r u c t u r e t o ho ld t h e g o r o u t i n e ’ s argument s

t y p e d e f s t r u c t f t a s k d a t a {
i n t in owner , i n o f f s e t ;

i n t out owner , o u t o f f s e t ;

} f t a s k d a t a ;

/ / i s pa s s ed t o t h e t a s k f u n c t i o n t h a t wraps t h e c a l l t o f

void f t a s k f u n c (f t a s k d a t a ∗ a r g s)

{
Channel ∗ in , ∗o u t ;

i n = MPB data ptr (a rgs−>in owner , a rgs−>i n o f f s e t) ;

o u t = MPB data ptr (a rgs−>out owner , a rgs−>o u t o f f s e t) ;

f (in , o u t) ;

}

Listing 1: A go statement and the translation into tasking code.

execution. Channel references are constructed from channel

owner and MPB offset pairs (required to break with the col-

lective allocations model of RCCE, described above), so each

channel is internally represented by two integers. The helper

functions MPB data offset and MPB data ptr calculate off-

sets and pointers based on the MPB starting addresses in

RCCE comm buffer. The task function f task func is called

by the runtime when the task is scheduled for execution, after

which the goroutine is up and running.

V. EXAMPLE: PARALLEL GENETIC ALGORITHM

To demonstrate the use of goroutines and channels, we have

written a parallel genetic algorithm (PGA) that can utilize all

the cores of the SCC. We follow the island model and evolve

a number of populations in parallel, with occasional migration

of individuals between neighboring islands [13].

We choose a simple toy problem: evolving a string from

random garbage in the ASCII character range between 32 and

126. More precisely, we want to match the following string

that represents a simple “Hello World!” program:

“#include <stdio.h> int main(void) { printf(”Hello

SCC!\n”); return 0; }”

The fitness of a string is calculated based on a character by

character comparison with the target string, according to f =∑n

i=0
(target[i] − indiv[i])2, where n is the length of both

strings. Thus, higher fitness values correspond to less optimal

void e v o l v e (Channel ∗chan , Channel ∗p r e v i n ,

Channel ∗p rev ou t , i n t n , i n t n u m i s l a n d s)

{
GA pop ∗ i s l a n d ;

Channel ∗ in , ∗o u t ;

i f (n < n u m i s l a n d s − 1) {
i n = c h a n n e l a l l o c (s i z e o f (GA indv) , 0) ;

o u t = c h a n n e l a l l o c (s i z e o f (GA indv) , 0) ;

go e v o l v e (chan , in , out , n + 1 , n u m i s l a n d s) ;

}

i s l a n d = GA create (i s l a n d s i z e , t a r g e t) ;

whi le (GA evolve (i s l a n d , m i g r a t i o n r a t e))

m i g r a t e (i s l a n d , n , p r e v i n , p r ev ou t , in , o u t) ;

c h a n n e l s e n d (chan , &i s l a n d−>i n d v s [0] , s i z e o f (GA indv)) ;

GA destroy (i s l a n d) ;

}

Listing 2: Populations evolve concurrently in goroutines.

Fig. 4. An example of migration between four islands of a parallel genetic
algorithm. Individuals are exchanged over channels in two steps: (1) odd
numbered islands send to even numbered neighbors, and (2) even numbered
islands send to odd numbered neighbors.

solutions, and our goal is to find the string with the fitness

value 0.

Listing 2 shows the code to evolve an island. The GA *

procedures to create, evolve, and destroy a population are not

specific to the SCC but part of our generic GA implemen-

tation.2 Islands are created one after another, each in a new

goroutine. The main thread of the program starts the evolution

by allocating a channel chan, on which the solution will be

delivered, and creating the first goroutine with

go e v o l v e (chan , NULL, NULL, 0 , n u m i s l a n d s) ;

Because the main thread cannot run goroutines, it will block

until the evolution has finished when it attempts to receive

from chan.

After every migration rate generations, we migrate two

individuals that we pick at random from the current population

to neighboring islands. To exchange individuals between two

islands a and b, we need two channels: one for sending

individuals from a to b, the other vice versa for sending

individuals from b to a. Every island other than the first and

last has two neighbors and, thus, four channel references to

communicate with its neighbors.

2The core of the GA uses tournament selection, one-point crossover of
selected individuals, and random one-point mutation of offspring individuals.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Go’s Concurrency Constructs on the SCC 5

0 16 32 48 64 80 96 112 128
Number of islands

0

16

32

48

64

80

96

112

128

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l e

xe
cu

tio
n

With migration
Without migration

Fig. 5. Speedup with multiple islands over the sequential execution with one
island. The total population across all islands has a size of 1280 (island size
= 1280 / number of islands). The migration rate is two individuals every ten
generations.

Figure 4 illustrates what happens during migration. The

example shows four islands numbered from 0 to 3 and the

channels between them. Migration is a two-step process.

We use unbuffered, synchronizing channels, which require a

rendezvous between sender and receiver. First, odd numbered

islands send their individuals, while even numbered islands

receive in the matching order. Then the process of sending

and receiving is reversed.

Figure 5 shows the speedups we have measured for a fixed

population size of 1280.3 Sequential execution refers to the

case where we evolve only one island, so everything runs

inside a single goroutine. When the number of goroutines

exceeds the number of available worker threads, goroutines

are multiplexed onto worker threads. Up to the total number

of cores (48), we make sure that every new goroutine runs

on a separate core, so that goroutines actually run in parallel

(though the runtime doesn’t allow us to control on which

core a goroutine starts execution). Creating more goroutines

than we have cores is no problem; the runtime scheduler

switches between goroutines whenever active goroutines block

on channels during migration.

The toy problem is simple enough that we don’t actually

need a sophisticated GA that migrates individuals between

islands in order to maintain genetic diversity. The same algo-

rithm leaving out migration and instead just switching between

goroutines after every migration rate generations achieves

even higher speedups.

VI. CONCLUSION

We have presented an implementation of goroutines and

channels, the building blocks for concurrent programs in the

Go programming language. Both Go and the SCC share

the basic idea of communicating and synchronizing over

messages rather than shared memory. The Go slogan “Do

3SCC in default configuration: cores running at 533 MHz, mesh and DDR
memory at 800 MHz (Tile533 Mesh800 DDR800).

not communicate by sharing memory; instead, share memory

by communicating” is a good one to keep in mind when

programming the SCC. Communication over channels is akin

to message passing, but channels are much more flexible

in the way they serve to synchronize concurrently executing

activities.

Channels can be implemented efficiently using the available

hardware support for low-latency messaging. However, prob-

lems are likely the small size of the on-chip memory and the

small number of test-and-set registers. The size of the MPB

(basically 8 KB per core) limits the number of channels that

can be used simultaneously, as well as the size and number

of data items that can be buffered on-chip. With only 48

test-and-set registers at disposal, allocating many channels

can increase false contention because the same test-and-set

locks are used for several unrelated channels. As a result,

communication latency can suffer. We could support a much

larger number of channels in shared off-chip memory, trading

off communication latency, but frequent access to shared off-

chip DRAM could turn into a bottleneck by itself.

ACKNOWLEDGMENT

We thank Intel for granting us access to the SCC as part of

the MARC program. Our work is supported by the Deutsche

Forschungsgemeinschaft (DFG).

REFERENCES

[1] “The Go Programming Language,” http://golang.org. [Online].
Available: http://golang.org

[2] “Many-core Applications Research Community,” http://communities.
intel.com/message/113676#113676. [Online]. Available: http://
communities.intel.com/message/113676#113676

[3] “Many-core Applications Research Community,” http://communities.
intel.com/message/115657#115657. [Online]. Available: http://
communities.intel.com/message/115657#115657

[4] C. A. R. Hoare, “Communicating Sequential Processes,” Commun.

ACM, vol. 21, pp. 666–677, August 1978. [Online]. Available:
http://doi.acm.org/10.1145/359576.359585

[5] ——, Communicating Sequential Processes. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1985.

[6] “The Go Programming Language Specification,” http://golang.org/doc/
go spec.html. [Online]. Available: http://golang.org/doc/go spec.html

[7] T. G. Mattson, R. F. van der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe, “The 48-core SCC Processor: the Programmer’s View,” in
Proceedings of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, ser. SC
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.
[Online]. Available: http://dx.doi.org/10.1109/SC.2010.53

[8] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
Communications on Intel’s Single-Chip Cloud Computer Processor,”
SIGOPS Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[9] A. Prell and T. Rauber, “Task Parallelism on the SCC,” in Proceed-

ings of the 3rd Many-core Applications Research Community (MARC)

Symposium, ser. MARC 3. KIT Scientific Publishing, 2011, pp. 65–67.
[10] R. S. Engelschall, “Portable Multithreading: The Signal Stack Trick for

User-Space Thread Creation,” in Proceedings of the annual conference

on USENIX Annual Technical Conference, ser. ATEC ’00. Berkeley,
CA, USA: USENIX Association, 2000, pp. 20–20. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267724.1267744

[11] “A Tutorial for the Go Programming Language,” http://golang.org/doc/
go tutorial.html. [Online]. Available: http://golang.org/doc/go tutorial.
html

[12] “Go Emerging Languages Conference Talk,” http://www.oscon.com/
oscon2010/public/schedule/detail/15299, July 2010. [Online]. Available:
http://www.oscon.com/oscon2010/public/schedule/detail/15299

[13] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms,” Calculateurs

Paralleles, Reseaux et Systems Repartis, vol. 10, 1998.

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

Go’s Concurrency Constructs on the SCC 6

http://golang.org
http://golang.org
http://communities.intel.com/message/113676#113676
http://communities.intel.com/message/113676#113676
http://communities.intel.com/message/113676#113676
http://communities.intel.com/message/113676#113676
http://communities.intel.com/message/115657#115657
http://communities.intel.com/message/115657#115657
http://communities.intel.com/message/115657#115657
http://communities.intel.com/message/115657#115657
http://doi.acm.org/10.1145/359576.359585
http://golang.org/doc/go_spec.html
http://golang.org/doc/go_spec.html
http://golang.org/doc/go_spec.html
http://dx.doi.org/10.1109/SC.2010.53
http://dl.acm.org/citation.cfm?id=1267724.1267744
http://golang.org/doc/go_tutorial.html
http://golang.org/doc/go_tutorial.html
http://golang.org/doc/go_tutorial.html
http://golang.org/doc/go_tutorial.html
http://www.oscon.com/oscon2010/public/schedule/detail/15299
http://www.oscon.com/oscon2010/public/schedule/detail/15299
http://www.oscon.com/oscon2010/public/schedule/detail/15299

	Introduction
	Concurrency in the Go Programming Language
	Goroutines
	Channels

	A Glimpse of the Future? The SCC Processor
	Go's Concurrency Constructs on the SCC
	Goroutines as Tasks
	Channels
	Channel API
	Go Statements

	Example: Parallel Genetic Algorithm
	Conclusion
	References

