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We study existence and stability for solutions of -Lu + g(x, u) = ω where L is a second order elliptic operator, g a Caratheodory function and ω a measure in Ω. We present a unified theory of the Dirichlet problem and the Poisson equation. We prove the stability of the problem with respect to weak convergence of the data.

Introduction

Let Ω be a smooth bounded domain of R N , L a uniformly elliptic second order differential operator in divergence form with Lipschitz continuous coefficients and g is a real valued Caratheodory function defined in Ω × R. If ω is a Radon measure on Ω, we study existence and stability of solutions of the generalized equation

-Lu + g(x, u) = ω (1.1)
in Ω. Precise assumptions are made on the coefficients of L so that uniqueness holds. A fundamental contribution is made by Benilan and Brezis [START_REF] Brezis | Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems[END_REF], [START_REF] Ph | Nonlinear problems related to the Thomas-Fermi equation[END_REF] who study the case where L = ∆ and g : R → R is nondecreasing and positive on R + : if µ is a bounded measure in Ω and g satisfies the subcriticality assumption

∞ 1 (g(s) -g(-s)) s -2 N-1 N-2 ds < ∞, (1.2) 
then there exists a unique function u ∈ L 1 (Ω) such that g•u ∈ L 1 (Ω) (where g•u(x) = g(x, u(x))) satisfying

Ω (-u∆ζ + g • u ζ) dx = Ω ζdµ, (1.3) 
for any ζ ∈ C 2 0 (Ω). The boundary value problem with measures is first investigated by Gmira and Véron [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF]. By adapting the method introduced by Benilan and Brezis they obtain the existence and uniqueness of a weak solution of

-∆u + g(u) = 0 in Ω u = λ in ∂Ω (1.4)
when λ is a Radon measure. They assume that g, always nondecreasing, satisfies the boundary subcriticality assumption

∞ 1 (g(s) -g(-s)) s -2N N-2 ds < ∞, (1.5) 
and prove the existence and uniqueness of a weak solution to (1.4). For this problem, in the integral identity (1.3) the right hand-side is replaced by -

∂Ω

ζ n dλ (where ζ n = ∇u.n is the outward normal derivative on ∂Ω).

In [START_REF] Véron | Elliptic equations involving measures in Stationary partial differential equations[END_REF] Véron extends Benilan-Brezis results in replacing ∆ by a general uniformly elliptic second order differential operator with smooth coefficients. If g is nondecreasing and satisfies, for some α ∈ [0, 1], the α-subcriticality assumption, ∞ 1 (g(s) -g(-s)) s -2 N+α-1

N+α-2 ds < ∞, (1.6) then if µ belongs to M ρ α (Ω), which means

µ M ρ α := Ω ρ α d |µ| < ∞, (1.7) 
where ρ(x) := dist (x, ∂Ω), there exists a unique u ∈ L 1 (Ω) such that g(u) ∈ L 1 ρ (Ω) satisfying

Ω (-uL * ζ + g(u)ζ) dx = Ω ζdµ ∀ζ ∈ C 1,L * c (Ω). (1.8)
where

C 1,L * c (Ω) = {ζ ∈ C 1 (Ω) : ζ = 0 on ∂Ω, L * ζ ∈ L ∞ (Ω)}, (1.9) 
where L * is the adjoint operator to L. Furthermore he proves the weak stability of the problem. it means that if u n is a set of solutions of

-Lu n + g(u n ) = µ n in Ω u n = 0 in ∂Ω (1.10)
for a sequence of measure {µ n } such that

lim n→∞ Ω ζdµ n = Ω ζdµ (1.11)
for all ζ ∈ C(Ω) verifying sup Ω ρ -α |ζ| < ∞, then u n → u where u satisfies (1.1). However, a careful observation of the existence and stability statements proved in [START_REF] Véron | Elliptic equations involving measures in Stationary partial differential equations[END_REF]Th 3.7,Cor 3.8] shows that the result is slightly stronger than the one stated since it implies the following: Let α ∈ [0, 1] and g : R → R be continuous function which satisfies the α-subcriticality assumption

(1.6). If {µ n } is a sequence of Radon measures in Ω such that Ω ρ α d |µ n | ≤ M (1.12)
for some M > 0 and (1.11) holds for ζ such that ρ -α ζ ∈ C(Ω), then the corresponding solution u n of (1.10) converges to the solution u of (1.1). In particular, if α = 1, it contains the case where there exists a Radon measure λ on ∂Ω such that

lim n→∞ Ω ζdµ n = - ∂Ω ζ n dλ ∀ζ ∈ C 1 c (Ω). (1.13)
The case where the nonlinearity g depends on the ρ(x) variable has investigated by Marcus [START_REF] Marcus | Stability relative to weak convergence for a family of semilinear elliptic equations with measure data[END_REF]. If g(x, r)sign r ≤ ρ(x) β g(|r|)sign r for some β > -2 and g satisfying a subcriticality assumption

∞ 1 (g(s) -g(-s)) s -2N+β-1 N-1 ds < ∞, (1.14) 
then there exists a weak solution to problem (1.4) for any Radon measure λ. Furthermore stability holds.

The subcriticality is a key hypothesis in all the previous results: essentially it means that the problem can be solved for any measure if it can be solved for a Dirac measure. The different integral assumptions are just the transcription that the fact that g of the fundamental solution of the associated linear equation is integrable for a suitable measure associated to the distance function ρ.

The aim of this article is twofold: 1-to unify the problems for measures in Ω and on ∂Ω; 2-to present under the form of an integrability condition a classical sufficient condition of solvability which has the advantage of being a natural extension to the supercritical case the previous subcriticality assumptions and to provide new results results of existence and stability for (1.1) in the spirit of [START_REF] Véron | Elliptic equations involving measures in Stationary partial differential equations[END_REF]. A function g : Ω × R → R belongs to the class G h,Ψ if it is a Caratheodory function and there exist a continuous and nondecreasing function g : R → R vanishing at 0, a locally integrable nonnegative function h defined in Ω and a nonnegative continuous nonincreasing function

Ψ : [0, ∞) → [0, ∞), such that |g(x, r)| ≤ h(x) |g(r)| ∀(x, r) ∈ Ω × R, (1.15) 
and the Ψ-integrability condition holds, i.e.

-∞ 0 (g(s) -g(-s)) dΨ(t)ds < ∞.

(1.16)

Let G and K be respectively the Green and Poisson kernels corresponding to the operator L in Ω and G[.] and K[.] the corresponding potential operators. The natural subcritical assumptions in the framework of Marcus's results (with h instead of ρ β ) for solving Actually we shall introduce a unique formulation for the data (µ, λ) as a unique measure ω on Ω which allows to replace (1.17) by (1.1), and a unique assumption on the extended Green operator G[|ω|]. We prove in particular the following:

-Lu + g(x, u) = µ in Ω u = λ in ∂Ω (1.17) would be ∞ 1 (G[|µ|] + K[|λ|]) h(x)ρ(x)dx < ∞. ( 1 
Theorem B Assume the assumptions on h, Ψ and g of Theorem A are satisfied and r → g(x, r)

is nondecreasing. If {(ω n } is a sequence of measures in M ρ (Ω) which converges to ω ∈ M ρ (Ω) in the sense that Ω ζdω n → Ω ζdω (1.20) for any ζ such that ρ -1 ζ ∈ C(Ω) and if the G[|ω n |] are bounded in M Ψ ρ h (Ω), then the correspond- ing solutions u ωn of problem (1.10) converges to the solution u ω of problem (1.1). If g satisfies the ∆ 2 conditions, the convergence remains valid if only the G[|ω s n |] are bounded in M Ψ ρ h (Ω),
where ω s n denotes the singular parts of ω n .

Linear equations and measures

Since ∂Ω is C 2 , there exists δ 0 > 0 such that, If x ∈ Ω is such that ρ(x) ≤ δ 0 , there exists a unique σ := σ(x) ∈ ∂Ω such that |x -ρ(x)| = ρ(x). For δ > 0 we denote

Ω δ := {x ∈ Ω : ρ(x) > δ} , Ω ′ δ := {x ∈ Ω : ρ(x) < δ} , Σ δ := {x ∈ Ω : ρ(x) = δ} , Σ := Σ 0 = ∂Ω. The mapping x → (ρ(x), σ(x)) is a C 1 diffeomorphism from Ω ′ δ 0 onto [0, δ 0 ] × Σ.

Weighted measures on Ω

We denote by

M(Ω) the set of Radon measures in Ω. If α ∈ [0, 1], we denote by M ρ α (Ω) the subset of M(Ω) of measures such that µ M ρ α := Ω ρ α d |µ| < ∞. (2.21)
We also set

C α (Ω) := {ζ ∈ C(Ω) : ρ -α ζ ∈ C(Ω)}}, (2.22) 
with norm

ζ Cα := sup x∈Ω ρ -α (x) |ζ(x)| . (2.23) Thus, if µ ∈ M ρ α (Ω) and ζ ∈ C α (Ω), there holds Ω ζdµ ≤ µ M ρ α ζ Cα . (2.24)
Furthermore, since

Ω δ 0 ρ α d |µ| + ∞ n=1 {2 -n δ 0 <ρ≤2 1-n δ 0 } ρ α d |µ| = Ω ρ α d |µ| < ∞,
there holds lim

δ→0 Ω ′ δ ρ α d |µ| = 0. (2.25)
We say that a sequence

{µ n } ⊂ M ρ α (Ω) converges weakly to µ ∈ M ρ α (Ω) if, for any ζ ∈ C α (Ω), there holds lim n→∞ Ω ζdµ n = Ω ζdµ. (2.26) 
However, the left-hand side expression of (2.26) may exist but not being a Radon measure in Ω.

Therefore we define a more general set of linear functionals on C α Definition 2.1 We denote by M ρ α (Ω) the set of continuous linear functionals ω on C α (Ω) such that there exists a sequence {µ n } ⊂ M ρ α (Ω) which converges weakly to ω.

The natural norm in

M ρ α (Ω) is ω M ρ α (Ω) = sup{|ω(ζ)| : ζ ∈ C α (Ω), ζ Cα ≤ 1}. (2.27) Proposition 2.2 If ω ∈ M ρ α (Ω)
, its restriction to C c (Ω) is a Radon measure, denoted by µ, which belongs to M ρ α (Ω). Furthermore, there exists a Radon measure λ on ∂Ω such that

ω(ζ) - Ω ζdµ = ∂Ω ψ⌊ ∂Ω dλ ∀ζ ∈ C α (Ω) and ψ = ρ -α ζ ∈ C(Ω).
(2.28)

Proof. Since ω is continuous, there exists C > 0 such that

|ω(ζ)| ≤ C ζ Cα ∀ζ ∈ C α (Ω). (2.29)
This holds in particular if ζ ∈ C c (Ω) and proves that the restriction of ω to C c (Ω) is a Radon measure that we denote by µ (as well as the associated Borel measure in Ω) and

ω(ζ) = Ω ζdµ ∀ζ ∈ C c (Ω). Let {µ n } ⊂ M ρ α (Ω) such that lim n→∞ Ω ζdµ n = ω(ζ) ∀ζ ∈ C α (Ω).
By the Banach-Steinhaus theorem there exists C > 0 such that

µ n M ρ α ≤ C for all n ∈ N. Since for ζ ∈ C c (Ω), ω(ζ) - Ω ζdµ = lim n→∞ Ω ζd(µ n -µ)
and

Ω ζd(µ n -µ) ≤ 2C ζ Cα , it follows that {λ n } := {ρ α (µ n -µ)} is a sequence of Radon measures on Ω, bounded in M ρ α (Ω)
and such that lim

n→∞ Ω ζdλ n = 0 ∀ζ ∈ C c (Ω).
Therefore there exists a Radon measure λ with support in ∂Ω and a subsequence λ n k such that

lim n→∞ Ω ψdλ n k = ∂Ω ψ⌊ ∂Ω dλ,
which implies (2.28).

Corollary 2.3

The mapping T :

M ρ α (Ω) × M(∂Ω) → M ρ α (Ω) defined by T [µ, λ](ζ) = Ω ζdµ + ∂Ω ψ⌊ ∂Ω dλ ∀ζ ∈ C α (Ω) and ψ = ρ -α ζ ∈ C(Ω). (2.30)
is one to one. Furthermore 

max{ µ M ρ α (Ω) , λ M(∂Ω) } ≤ T [µ, λ] M ρ α (Ω) ≤ µ M ρ α (Ω) + λ M(∂Ω) . ( 2 
Ω ρ α d |µ| = sup Ω ζdµ : ζ ∈ C c (Ω), ζ Cα ≤ 1 This implies µ M ρ α (Ω) ≤ T [µ, λ] M ρ α (Ω) If φ ∈ C(∂Ω) is such that |φ| ≤ 1 and Φ is its harmonic lifting in Ω, the function ζ = ρ α Φ belongs to C α (Ω) and satisfies ζ C α ≤ 1. Let {η n } ⊂ C ∞ (R N ) such that 0 ≤ η n ≤ 1, η n (x) = 0 if ρ(x) ≥ 2/n, η n (x) = 1 if ρ(x) ≤ 1/n. Then ζ n = η n ρ α Φ belongs also to C α (Ω) and ζ n C α ≤ 1. Since T [µ, λ](ζ n ) = Ω ζ n dµ + ∂Ω φdλ and Ω ζ n dµ → 0 as n → ∞, we derive T [µ, λ] M ρ α (Ω) ≥ ∂Ω φdλ.
This ends to proof.

Remark. If λ is a Radon measure on ∂Ω and we can define its

δ α -lifting Λ δ α [λ] ∈ M(Ω) by Ω ζdλ δ α = δ -α Ω ζ(δ, σ)dλ(σ).
Clearly (2.33)

λ δ α ∈ M ρ α (Ω) and if ζ ∈ C α (Ω) and ℓ α (ζ) = -lim ρ→0 ρ -α ζ, then ℓ α (ζ) ∈ C(∂Ω), there holds lim δ→0 Ω ζdλ δ α = Σ ℓ α (ζ)dλ. ( 2 

The linear operator

Let x = (x 1 , ..., x N ) the coordinates in R N and Ω a bounded domain in R N . We consider the operator L in divergence form defined by

Lu := - N i,j=1 ∂ ∂x i a ij ∂u ∂x j + N i=1 b i ∂u ∂x i - N i=1 ∂ ∂x i (c i u) + du (2.34)
where the a ij , b i and c i are Lipschitz continuous and d is bounded and measurable in Ω. We assume that the ellipticity condition

N i,j=1 a ij (x)ξ i ξ j ≥ a N i1 ξ 2 i ∀ξ ∈ R N (2.35)
holds for almost x in Ω, for some a > 0. We also assume the positivity condition

Ω dv + 1 2 N i=1 (b i + c i ) ∂v ∂x i dx ≥ 0 ∀v ∈ C 1 c (Ω), v ≥ 0 (2.36)
Under these assumptions, the bilinear form

(u, v) → A L (u, v) = Ω   N i,j=1 a ij ∂u ∂x j ∂v ∂x i + N i=1 b i ∂u ∂x i v + c i ∂v ∂x i u + duv   dx (2.37)
is continuous and coercive on W 1,2 (Ω). We define the adjoint operator L * by

L * u := - N i,j=1 ∂ ∂x j a ij ∂u ∂x i + N i=1 c i ∂u ∂x i - N i=1 ∂ ∂x i (b i u) + du (2.38)
We denote by G = G L and K = K L the Green and Poisson kernels corresponding to the operator L in Ω. We recall the following equivalence statement [START_REF] Pinchover | On positive solutions of second-order elliptic equations, stability results, and classification[END_REF], [START_REF] Ancona | Principe de Harnak à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien[END_REF] Proposition 2. [START_REF] Ph | A semilinear elliptic equation in L 1 (R N )[END_REF] Assume Ω has a C 2 boundary and (2.36) holds. Then there exists a positive constant C such that

CG -∆ ≤ G ≤ C -1 G -∆ in Ω × Ω \ D Ω (2.39)
where D Ω = x ∈ Ω × Ω : x : = y and dm(x) ≤ CΨ(t) , ∀t > 0.

CK -∆ ≤ K ≤ C -1 K -∆ in Ω × ∂Ω. ( 2 
If we modify Ψ in order to impose Ψ(0) = m(Ω), (2.41) is equivalent to

M Ψ m (Ω) := f ∈ B(Ω) : ∃C > 0 s.t. λf (t) dm(x) ≤ CΨ(t) , ∀t ≥ 0 (2.44) We denote by C Ψ m (f ) the smallest constant C such that (2.41) holds. If t → Ψ(t)/Ψ(2t) remains bounded on [0, ∞), M Ψ m (Ω) is a vector space f → C Ψ m (f ) is a quasi-norm on the quotient space M Ψ m (Ω)/R where R is the equivalence relation f 1 Rf 2 ⇐⇒ f 1 -f 2 = 0 m-a.e.
in Ω. In general M Ψ m (Ω) is not a vector space When Ψ(t) = t -p with p ≥ 1 and m(x) = ρ(x) α , with α ∈ [0, 1], we denote by M p ρ α (Ω) the corresponding Marcinkiewicz space. The following results proved in [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: The subcritical case[END_REF] with L = -∆ are valid for a general operator L

Proposition 2.5 Let α ∈ [0, 1], N ≥ 2. If µ ∈ M ρ α (Ω) and N + α -2 > 0, G[µ] M (N+α)/(N+α-2) ρ α ≤ C µ M ρ α , (2.45 
)

∇G[µ] M (N+α)/(N+α-1) ρ α ≤ C µ M ρ α . (2.46)
Furthermore, for any γ ∈ [0, 1] and λ ∈ M(∂Ω),

K[λ] M (N+γ)/(N-1) ρ γ ≤ C λ M .
(2.47)

We recall the following result proved in [13, Th 2.9]

Theorem 2.6 Let α ∈ [0, 1].
For every µ ∈ M ρ α (Ω) and λ ∈ M(∂Ω), there exists a unique

u := u µ,λ ∈ L 1 (Ω) satisfying -Lu = µ in Ω u = λ in ∂Ω, (2.48) 
in the following weak sense

- Ω uL * ζdx = Ω ζdµ - ∂Ω ζ n dλ ∀ζ ∈ C c 1,L (Ω). (2.49) Furthermore, if {(µ n,λn )} is bounded in M ρ α (Ω) × M(∂Ω)
and converges weakly with respect to

C α (Ω) × C(∂Ω) to (µ, λ) ∈ M ρ α (Ω) × M(∂Ω), then u µn,λn converges to u µ,λ .
Remark. If we define the measure ω ∈ M ρ α (Ω) by ω = T [µ, λ] (see (2.30)), then it can also be expressed by 

Ω ζdω := Ω ζdµ - ∂Ω ζ n dλ ∀ζ ∈ C 1 (Ω), ( 2 
G[ω] M (N+1)/(N-1) ρ ≤ C ω Mρ . (2.53) Furthermore, we say that u ∈ L 1 (Ω) is a subsolution of (2.52) in Ω, if - Ω uL * ζdx ≤ Ω ζdω := Ω ζdµ - ∂Ω ζ n dλ ∀ζ ∈ C 1,L * c (Ω) , ζ ≥ 0. (2.54) Comparison principle applies, thus u ≤ G[ω].
A supersolution is defined similarly.

Remark. If ω = T [µ, λ] ∈ M + α (Ω) its Lebesgue decomposition is ω r + ω s = T [µ r , λ r ] + T [µ s , λ s ]
where µ r and λ r are the absolutely continuous part with respect to the Hausdorff measures dH N and dH N -1 and µ s and λ s the respective singular parts.

Similarly if ω = T [µ, λ], then ω = ω + -ω -where ω + = T [µ + , λ + ] and ω -= T [µ -, λ -].

Regularity results

We define the class of measures B p h (Ω) by which corresponds to negative Besov spaces: if ω = T [µ, λ], then the regularity results for harmonic functions [START_REF] Marcus | A characterization of Besov spaces with negative exponents, Around the Research of Vladimir Maz'ya I. Function Spaces[END_REF] and solution of Laplace equation [START_REF] Adams | Function spaces and potential theory Grundlehren Math[END_REF] yields to

B Ψ h (Ω) := {ω ∈ M ρ (Ω) : G[|ω|] ∈ M Ψ ρh Ω)}. ( 2 
Bp (Ω) = B -2 p ,p (Ω). (2.57) Example 1 If h(x) = (ρ(x)) β , with β > -2. Then ω = T [0, λ] ∈ B p ρ β (Ω) if and only if G[|ω|] ∈ M ρ β+1 (Ω). This means that λ ∈ B -s,p
∞ (∂Ω) with s = (β + 2)/p (see [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF] for the definition of B α,p q .

3 The main results (3.58) Lemma 3.2 Let µ be a nonnegative measure in M(Ω) and g : Ω × R → R a Caratheodory function such that 0 ≤ g(x, r)sign r ≤ h(x)g(|r|) where h ∈ L 1 ρ (Ω) and g is a continuous and nondecreasing function g defined on R + and vanishing at r = 0. Then

(i) If g ∈ G h,Ψ and µ ∈ B Ψ h (Ω), then g • G[µ] ∈ L 1 ρh (Ω). (ii) if g • G[µ] ∈ L 1 ρh (Ω) and , then µ ∈ B Ψ h (Ω) and g ∈ G h,Ψ with Ψ(s) = θ λ G[µ] (s), where λ G[µ] (s) is defined by (2.42) with f replaced by G[µ] and θ λ G[µ] (s) = λ G[µ] (s) d(ρh).
Proof. This due to the fact that

Ω g(G[µ])ρhdx = - ∞ 0 g(s)dθ λ G[µ] (s). (3.59) Therefore, if θ λ G[µ] (s) ≤ Ψ(s), it proves (i). Conversely, if Ψ(s) = θ λ G[µ] (s), then µ ∈ B Ψ h (Ω) and g ∈ G h,Ψ .
The following existence result extends to one in [START_REF] Véron | Elliptic equations involving measures in Stationary partial differential equations[END_REF] Theorem 3.3 Assume g belongs to the class G h,Ψ . Then for any ω ∈ B Ψ h (Ω) there exists a function

u ∈ L 1 (Ω) such that g • u ∈ L 1 (Ω) satisfying Ω (-uL * ζ + g • u ζ) dx = Ω ζdω ∀ζ ∈ C 1,L * c (Ω). (3.60)
Furthermore u is unique if r → g(x, r) is nondecreasing for a.e. x ∈ Ω.

Proof. It is essentially [START_REF] Véron | Elliptic equations involving measures in Stationary partial differential equations[END_REF]Theorem 3.7]. Since 0 ≤ g(x, r)sign r ≤ h(x)g(|r|), we define the following truncation g k (., r) for any k > 0.

g k (x, r) = g(x, r)χ Θ k (3.61)
where Θ k = {x ∈ Ω : h(x) ≤ k}. Then 0 ≤ g(x, r)sign r ≤ kg(|r|) and there exists a solution

u k to -Lu k + g k • u k = ω in Ω . (3.62) 
Actually, in [START_REF] Véron | Elliptic equations involving measures in Stationary partial differential equations[END_REF]Theorem 3.7] the proof is done with µ ∈ M ρ α (Ω) for any α ∈ [0, 1], but due to our definition of measures in M ρ α (Ω), it is also valid in this case.

Step 2: Convergence when k → ∞. By Brezis'estimates (see e.g. [13, Th 2.4]), for any

ζ ∈ C 1,L c (Ω), ζ ≥ 0, one has Ω (-|u k | L * ζ + sign(u k )g k (x, u k )ζ) dx ≤ Ω ζd |ω| . (3.63) 
and 

u k L 1 + ρg k (., u k ) L 1 ρ ≤ C 1 ω Mρ . ( 3 
u k M (N+1)/N ρ + ∇u k M (N+1)/N ρ ≤ C ω Mρ . (3.65) 
Since the right-hand side of (3.65) is bounded independently of k fixed, there exist a subsequence {u k j } and a function u ∈ W 1,q loc (Ω), for any 1 ≤ q < (N + 1)/N , such that u k j → u a.e. in Ωand thus g k j • u k j → g • u a.e. -and weakly in W 1,q loc (Ω) when k j → ∞. Let R > 0 and E ⊂ Ω be a Borel subset, then

E g k j • u k j ρdx ≤ E∩{ u k j ≤R} g( u k j )ρhdx + E∩{ u k j >R} g( u k j )ρhdx ≤ g(R) E ρhdx - ∞ R g(s)dθ u k j (s), (3.66)
where, we recall it,

θ u k j (s) := λu k j (s) d(ρh). Since u k j ≤ G[|ω|], θ u k j (s) ≤ θ G[|ω|] (s). By assumption, θ G[|ωn|] (s) ≤ CΨ(s) ∀s > 0, with C = C Ψ ρh (G[|ω|]
). Furthermore, by a standard integration by parts in Stieltjes integrals and for a.e. R, Then we put δ = ǫ/(2(1 + g(R)) and derive Uniqueness follows classicaly if g(x, .) is nonndecreasing.

- ∞ R g(s)dθ u k j (s) = g(R)θ u k j (R) + ∞ R θ u k j (s)dg(s)) ≤ g(R)θ u k j (R) + C ∞ R Ψ(s)dg(s) ≤ g(R)θ u k j (R) -C g(R)Ψ(R) -C ∞ R g(s)dΨ(s) ≤ -C ∞ R g(s)dΨ(s).
E ρdx ≤ δ =⇒ E g k j (u k j ) ρhdx ≤ ǫ. Therefore {g k j •u k j } is uniformly integrable in L 1 ρ (Ω). It follows by Vitali's convergence theorem lim k→∞ g k j • u k j = g • u in L 1 ρ (Ω). (3.69) Let ζ ∈ C 1,L c (Ω). If we let k j → ∞ in the equality Ω -u k j L * ζ + g k j • u k j ζ dx = Ω ζdω, (3.70 
The following extension of the previous result is an adaptation of [START_REF] Véron | Elliptic equations involving measures in Stationary partial differential equations[END_REF]Th. 3.20] Theorem 3.4 Assume g belongs to the class G h,Ψ and satisfies the following ∆ 2 -condition

g(x, r + r ′ ) ≤ θ |g(x, r)| + g(x, r ′ ) + ℓ(x) ∀x ∈ Ω, ∀(r, r ′ ) ∈ R × R, (3.72) 
for some nonnegative ℓ ∈ L 1 ρ (Ω). Suppose also that r → g(x, r) is nondeacreasing. If ω ∈ M ρ (Ω) has Lebesgue decomposition ω = ω r + ω s with regular part with respect to the Lebesgues measures ω r and singular part ω s , and if ω s belongs to B Ψ h (Ω), then there exists a unique solution u to (3.60).

Proof. If g satisfies (3.72), g k defined by (3.61) shares the same property with the same ℓ. Therefore, by [START_REF] Véron | Elliptic equations involving measures in Stationary partial differential equations[END_REF]Th 3.12], there exists a solution u k to (3.62). Actually, in this result it is only assume that ℓ in (3.72) is a constant, but the proof is valid if it is a nonnegative function in

L 1 ρ (Ω). Let v k and v ′ k be weak solutions in Ω of -Lv k + g k • v k = ω + r and -Lv ′ k -g k • (-v ′ k ) = ω - r respectively. Set w k = v k + G(ω + s ) and w ′ k = v ′ k + G(ω - s ). Then -Lw k + g k • w k ≥ ω + and -Lw ′ k -g k • (-w ′ k ) ≥ ω -in Ω. By monotonicity -w ′ k ≤ u k ≤ w k , thus g k (-w ′ k ) ≤ g k (u k ) ≤ g k (w k ).
The estimates (3.64) and (3.65) are satisfied, therefore there exist a function u ∈ L 1 (Ω) and a subsequence u k j which converges to u a.e. in Ω. Furthermore

g k (x, u k ) ≤ θ g k (x, v k ) + g k (x, G(ω + s ) + ℓ ≤ θ g k (x, v k ) + g(x, G(ω + s ) + ℓ (3.73) Since the sequence {|g k |} increases, {v k } and {v ′ k } decrease. Therefore v k ↓ v and v ′ k ↓ v ′ which satisfy -Lv + g • v = ω + r and -Lv ′ -g k • (-v ′ ) = ω - r respectively in Ω. Therefore g k • v k → g • v and g k • v ′ k → -g • (-v ′ ) in L 1 ρ (Ω) respectively. Since g k • G(ω + s ) ≤ g • G(ω + s )
and ω s ∈ B Ψ h (Ω), g • G(ω + s by Lemma 3.2, the right-hand side term of inequality (3.73) is uniformly integrable in L 1 ρ (Ω). Similarly

g k (x, u k ) ≥ θ g k (x, -v ′ k ) + g(x, -G(ω - s ) -ℓ (3.74)
and the right-hand side of (3.74) is also uniformly integrable in L 1 ρ (Ω). We conclude as in Theorem 3.3 .

Stability

Lemma 4.1 Let {ω n } ⊂ B Ψ h (Ω) be a sequence of measures such that C Ψ ρ (G[|ω n |]) is bounded independently of n. Then {ω n } remains bounded in M ρ (Ω). If ω n → ω weakly in M ρ (Ω), then ω ∈ B Ψ h (Ω). Proof. Since C Ψ ρ (G[|ω n |]) is uniformly bounded, the sequence {g • G[|ω n |])} is bounded in L 1 ρ (Ω) by Lemma 3.2. Since ω n → ω weakly in M ρ (Ω), G[ω n ] → G[ω] in L 1
ρ (Ω) and, up to a subsequence, a.e. in Ω. Therefore, and up to sets of zero Lebesgue measure, 

λ G[ω] (t) ⊂ n≥0   p≥n λ G[ωp] (t)   ⊂ n≥0   p≥n λ G[ωp] (t)   ⊂ λ G[ω] (t). ( 4 

  .31) Proof. The mapping T is onto from Proposition 2.2. The mapping T is one to one since if T [µ, λ] = 0, then µ = 0 and ∂Ω ψ⌊ ∂Ω dλ = 0 for any ψ ∈ C(Ω). This implies λ = 0. The right-hand side inequality (2.31) is clear since sup |ψ⌊ ∂Ω | ≤ ζ Cα . Because of (2.25)

  .32) In the particular case where α = 1 ℓ α (ζ) = ζ n := lim ρ→0 ρ -1 ζ, and lim δ→0 Ω ζdλ δ = -Σ ζ n dλ.

  .50) since ζ ∈ C 1 (Ω) implies that ζ n exists on ∂Ω and is continuous. We define the global Green operator on Ω by G[ω] := G[µ]) + P L [λ]. (2.51) and (2.48) is replaced by the unique equation -Lu = ω in Ω. (2.52) Then (2.45)-(2.47) with α = 1 are equivalent to

  .55) By Proposition 2.4, this class remains unchanged if we replace -∆ by L and the Green operator for L by the one of -∆. If Ψ(t) = t -p and h = 1, the corresponding class of measures is larger that the usual Bp (Ω) := {ω ∈ M ρ (Ω) : G[|ω|] ∈ L p ρ (Ω)} (2.56)

Definition 3 . 1 1 g

 311 We say that a Caratheodory function g : Ω × R belongs to the class G h,Ψ if there exist a nonnegative function h ∈ L 1 ρ (Ω), a continuous nondecreasing function g defined on R + and vanishing at r = 0 such that 0 ≤ g(x, r)sign r ≤ h(x)g(|r|) in Ω × R and a continuous nonincreasing function Ψ : [0, ∞) → [0, ∞) with the property that -∞ (s)dΨ(s) < ∞.

  .64) Furthermore, by estimates of Proposition 2.5 and since |u k | ≤ G[|ω|], there holds,

  dΨ(s) ≤ ǫ/2.

  * ζ + g • uζ) dx =

Theorem 4 . 2 Theorem 4 . 3

 4243 Assume g belongs to the class G h,Ψ and r → g(x, r) is nondecreasing for a.e. x ∈ Ω. Let {ω n } ⊂ B Ψ h (Ω) be a sequence of measures such thatC Ψ ρ (G[|ω n |]) is bounded independently of n which converges to ω weakly with respect to C 1 (Ω). Then the solution u n of-Lu n + g • u n = ω n in Ω (4.78)converges to the solution u of -Lu + g • u = ω in Ω (4.79)Proof. Since u n satisfies the Brezis estimates (3.64) and (3.65), there exists a subsequence {u n j } and u ∈ L 1 (Ω) such that u n j → u a.e. in Ω and in L 1 (Ω). As in the proof of Theorem 3.3, the problem is to prove the convergence of the g • u n j in L 1 ρ (Ω). But this is a clearly obtained by the uniform integrability, as in the proof of Theorem 3.3-Step 2, using the fact that, in (3.67), the θ un j are bounded bysup n C Ψ ρh (G[ω n ])Ψ. Assume g belongs to the class G h,Ψ , satisfies the 2 -condition (3.72) and r → g(x, r) is nondeacreasing. Let {ω n } ⊂ M ρ (Ω) has Lebesgue decomposition ω n = ω n r + ω n s if {ω n s } ⊂ B Ψ h (Ω) are such that the C Ψ ρh (G[ω n s ]) are uniformly bounded, then the solutions u n of (4.78) converges in L 1 (Ω) to the solution u of (4.79).Proof. The argument follows the one of Theorem 3.4. Let v n and v ′ n be weak solutions in Ω of-Lv n + g • v n = ω + n r and -Lv ′ n -g • (-v ′ n ) = ω - n r respectively. Set w n = v n + G(ω + n s ) and w ′ k = v ′ k + G(ω - n s ). Then -Lw n + g • w n ≥ ω + n and -Lw ′ n -g • (-w ′ n ) ≥ ω - n . By monotonicity -w ′ n ≤ u n ≤ w n , thus g(-w ′ n ) ≤ g(u n ) ≤ g(w n). The estimates (3.64) and (3.65) are satisfied therefore there exist a function u ∈ L 1 (Ω) and a subsequence u n j which converges to u a.e. in Ω and in L 1 (Ω). Furthermore g(x, u n ) ≤ θ g(x, v n ) + g(x, G(ω + n s ) + ℓ ≤ θ g(x, v n ) + g(x, G(ω + n s ) + ℓ.

( 4 .

 4 80) 

  Conversely, for anyx ∈ λ G[ω] (t), i.e. such that G[ω](x) > t, there exists n x such that x ∈ λ G[ωn] (t) if n ≥ n x . This implies lim n→∞ χ λ G[ωn] (t) χ λ G[ω] (t) = χ λ G[ω] (t) , Since θ λ G[ωn] (t) ≤ C Ψ ρ (G[|ω n |])Ψ(t) and the C Ψ ρ (G[|ω n |]) are bounded, it follows that ω belongs to B Ψ h (Ω).

			.75)
	Therefore		
	lim sup n→∞	θ λ G[ωn] (t) ≤ θ λ G[ω] (t) .	(4.76)
	and		
	lim inf		(4.77)

n→∞ θ λ G[ωn] (t) ≥ θ λ G[ω] (t) .

and the (g • u n ) -are also uniformly integrable in L 1 ρ (Ω). The conclusion follows in the same way as in Theorem 3.4.