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1 Introduction

System identification consists in building mathematical models of dynamical systems
from experimental data. Such a methodology was mainly developed for designing model-
based control systems. More generally, parameter estimation is at the heart of many sig-
nal processing applications aiming to extract informationfrom signals, like radar, sonar,
seismic, speech, communication, or biomedical (EEG, ECG, EMG) signals. Nowadays,
dynamical models and identification methods play an important role in most of disci-
plines such as automatic control, signal processing, physics, economics, medicine, biol-
ogy, ecology, seismology, etc. In this plenary talk, an overview of the principal models
and identification methods will be presented.

Since the pioneering works of Gauss and Legendre who introduced the least squares
(LS) method, at the end of the eighteenth century, in the fieldof astronomy to predict
the motion of planets and comets from telescopic measurements, quite a lot of papers
and books on the parameter estimation problem have been published, so that it is not
easy to get a general view of available model identification methods. Due to time limi-
tation, some restrictive choices have been made as summarized below, with the attempt
to have the best coverage as possible.

First, we will answer to the following basic questions:

– Why to use a model?
– How to classify the models?
– How to build a model?

Then, several model-based applications will be briefly discussed, with particular em-
phasis on simulation/synthesis, filtering, prediction/forecasting, interpolation/smoothing,
source separation, adaptive equalization and adaptive control. It is important to note that
depending on the considered application, a model is also called filter, predictor, inter-
polator, mixture, channel, equalizer or controller.

In a second part of the talk, we will present different classes of models.

Discrete-time deterministic linear models will be first considered, both in state-space
(SS) and input-output (I/O) forms. Then, several discrete-time stochastic linear models
will be presented in a unified way. These models can be viewed as
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– either linear dynamical filters allowing the generation/synthesis, analysis and clas-
sification of random signals, as it is the case of the autoregressive (AR), moving
average (MA) and ARMA models,

– or linear models with a random additive noise that represents measurement noise,
external disturbances, and modeling errors, like ARX, ARMAX, and ARARX mod-
els.

Real-life systems being often time-varying or/and nonlinear in nature, two other classes
of models are currently used: linear parameter-varying (LPV) and nonlinear (NL) mod-
els. These two classes will be described, with a focus on Volterra and block-structured
(Wiener, Hammerstein, Wiener-Hammerstein...) models.

LPV models are suited to modeling linear time-varying (LTV)systems, the dynamics
of which are functions of a measurable, time-varying parameter vectorp(t), called the
scheduling variable. They can also be used for representingnonlinear systems linearized
along the trajectoryp(t). LPV models can be viewed as intermediate descriptions be-
tween linear time invariant (LTI) models and nonlinear time-varying models.

Nonlinear models are very useful for various application areas including chemical and
biochemical processes (distillation columns, polymerization reactors, biochemical re-
actors, see [10]), hydraulic plants, pneumatic valves, radio-over-fiber (RoF) wireless
communication systems (due to the optical/electrical (O/E) conversion), high power
amplifiers (HPA) in satellite communications, loudspeakers, active noise cancellation
systems, physiological systems [44], vibrating structures and more generally mecha-
tronic systems like robots [34].

Block oriented NL models are composed of a concatenation of LTI dynamic subsys-
tems and static NL subsystems. The linear subsystems are generally parametric (trans-
fer functions, SS representations, I/O models), whereas the NL subsystems may be with
memory or memoryless. The different subsystems are interconnected in series or paral-
lel.

In our talk, finite-dimensional discrete-time Volterra models, also called truncated Volterra
series expansions, that allow to approximate any fading memory nonlinear system with
an arbitrary precision, as shown in [5], will be considered in more detail; see [15], and
[25]. The importance of such models for applications is due to the fact that they rep-
resent a direct nonlinear extension of the very popular finite impulse response (FIR)
linear model, with guaranteed stability in the bounded-input bounded-output (BIBO)
sense, and they have the advantage to be linear in their parameters, the kernel coeffi-
cients [53]. Moreover, they are interpretable in terms of multidimensional convolutions
which makes easy the derivation of their z-transform and Fourier transform represen-
tations [45]. The main drawback of these models concerns their parametric complexity
implying the need to estimate a huge number of parameters. So, several complexity re-
duction approaches for Volterra models have been developedusing symmetrization or
triangularization of Volterra kernels, or also their expansion on orthogonal bases (like
Laguerre, Kautz and GOB bases), or their Parafac decomposition. These two last ap-
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proaches lead to the so-called Volterra-Laguerre and Volterra-Parafac models; [6], [7],
[18], [39], [40]

The third part of the talk will be concerned with the model identification problem which
is strongly related to statistics, stochastic processes (also called random signals), time
series analysis, signal processing, information/detection/estimation theories, optimiza-
tion, linear algebra, machine learning, and more recently with compressive sensing, also
known as compressive sampling and sparse sampling, that consists in finding sparse so-
lutions to an underdetermined system of linear equations, i.e. characterized by more
unknowns than equations [9]. The increasing interest in this last topic is due to the fact
that most signals are sparse, i.e. with many coefficients close to or equal to zero, as it is
the case of images for instance.

A complete identification procedure is composed of six main steps [42]:

– Experiment design,
– Input-output measurements,
– Model structure choice,
– Structure parameter determination,
– Model parameter estimation,
– Model validation.

This procedure is generally iterative in the sense that, starting from a priori information
about the system to be identified, the different above-listed sub-problems are succes-
sively addressed with the need to revise some choices until the model is validated.

The experiment design consists in making several choices (optimal design of input se-
quence, i.e. excitation signal, sampling period, etc.).

The determination of the structure parameters is an important problem, for which sev-
eral tests are proposed in the literature, the most popular ones being the Akaike infor-
mation criterion [1], abbreviated to AIC, and the minimum description length (MDL)
criterion of Rissanen [50].

The model validation consists in testing whether the model is valid, e.g. ”good enough”.
Such tests are based on a priori information about the system, the intended utilization
of the model, its fitness to real I/O data, etc.

The parameter estimation algorithms are depending on two choices:

– The cost function (criterion) to be optimized.
– The optimization method or the algorithm utilized to compute the optimal solution.

Among the most popular parameter estimation methods, we cancite:

– The LS variants like the weighted least squares (WLS) method, with the Gauss-
Markov estimator as particular case that is a best linear unbiased estimator (BLUE)
under certain assumptions, the generalized least squares (GLS) method, introduced
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by Aitken (1935), the extended least squares (ELS) and the total least squares (TLS)
methods [57].

– The maximum-likelihood (ML) method, introduced by Gauss and Laplace, and
then popularized by Fisher at the beginning of the 19th century, which consists
in maximizing the probability density of the observations conditioned upon the
parameters.

– The maximum a posteriori (MAP) method which consists in maximizing the prob-
ability density function of the unknown random parameters conditioned upon the
knowledge of measured signals.

– The minimum mean squared error (MMSE) estimation method.
– The M-estimation methods, introduced by Huber (1964) in the context of robust

statistics [30], and more generally robust identification methods in presence of out-
liers in the data or small errors in the hypotheses [4], [24].

– The instrumental variable (IV) methods [55], [59].
– The bounding approach that consists in determining a feasible set (also called mem-

bership set) for the parameters or states when the additive output error is assumed
to be bounded; see [47] for a review of bounding techniques both for linear and
nonlinear models; in [17], a review and a comparison of ellipsoidal outer bounding
algorithms are made.

– The subspace methods whose the concept was introduced withthe MUSIC (MUlti-
ple SIgnal Classification) algorithm, which is a super resolution technique for array
processing [54]. They are also strongly connected with deterministic and stochastic
realization theories [13], [14], [29], [32].

Many books discuss estimation theory and system identification. In the field of engi-
neering sciences, we can cite the fundamental contributions of [2], [3], [11], [12], [51].
See also [21], [23], [28], [33], [41], [42], [43], [46], [49], [56], [60] for linear systems,
and [10], [15], [22], [26], [31], [45], [48] for nonlinear systems.

Identification methods can be classified in different ways depending on:

– The class of systems to be identified (linear/nonlinear, SISO/MIMO, ...).
– The assumptions made about model uncertainties (probabilistic description/unknown

but bounded (UBB) error description).
– The domain of the used information (time-domain/frequency domain).
– The experiment configuration (open-loop/closed-loop).
– The I/O data processing (non iterative/iterative, non recursive/recursive or non adap-

tive/adaptive).
– The knowledge or not of the input signals (supervised/unsupervised or blind ap-

proaches).

Concerning this last point, we have to note that, unlike control applications for which
the input signals are optimized, and therefore measured, insuch a way that the system to
be controlled has a desired behaviour, most of signal processing applications are char-
acterized by the fact that input signals can not be measured,as it is the case of seismic,
astronomical, audio, digital communication, or biomedical applications. That leads to
unsupervised or blind identification methods. Such blind approaches are used for blind
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seismic deconvolution, blind channel equalization in communications, or blind source
separation in a more general context of MIMO (multi input - multi output) systems like
antenna arrays in underwater acoustics, electrode arrays in electroencephalography or
electrocardiography, audio mixtures etc. See [8].

Adaptive estimation is closely linked with adaptive filtering [27], [52], [58]. Adaptive
modeling and processing are very useful for a wide variety ofapplications like adaptive
control, adaptive noise cancelling, adaptive channel equalization, adaptive receiving
arrays for various types of signals (seismic, acoustic, electromagnetic), among many
others.

In our talk, we will begin by presenting the cost functions generally considered for pa-
rameter estimation.

Then, two standard optimization methods will be introduced: The Newton-Raphson
method, with its variant the Levenberg-Marquardt algorithm, and the Gradient descent
method.

Five parameter estimation methods will be presented for discrete-time Volterra models:

– The MMSE method, that leads to the Wiener solution,
– The non recursive deterministic LS method,
– The recursive least squares (RLS) method,
– The least mean squares (LMS) algorithm,
– The normalized least mean squares (NLMS) algorithm.

Other identification methods for Volterra systems can be found in [10], [37].

In the case of a Pth-order Volterra system and an i.i.d. (independently and identically
distributed) input signal, we will give the necessary and sufficient condition for sys-
tem identifiability using the MMSE solution. Moreover, in the case of a second-order
Volterra system, we will give the decoupling conditions forthe parameter estimation of
the linear and quadratic kernels. The necessary condition to be satisfied by the step size
for ensuring the LMS algorithm convergence will be also given.

As already mentioned, we have to note that a tensor-based approach has been recently
proposed for reducing the parametric complexity of Volterra models, leading to the so-
called Volterra-Parafac models [18]. Tensor-based methods have also been developed
for blind identification of SISO and MIMO linear convolutivesystems, and for block
structured nonlinear system identification [16], [19], [20], [35], [36], [37], [38].

Some simulation results will be presented to illustrate thebehaviour and to compare the
performance of the (RLS, LMS, NLMS) algorithms and the (EKF,LMS, NLMS) algo-
rithms for the parameter estimation of linear FIR models andVolterra-Parafac models,
respectively.
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Finally, our plenary talk will be concluded by giving several topics to be addressed
in future research works.
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