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1 Introduction

System identification consists in building mathematicatiele of dynamical systems
from experimental data. Such a methodology was mainly dgeel for designing model-
based control systems. More generally, parameter estimigtat the heart of many sig-
nal processing applications aiming to extract informatrom signals, like radar, sonar,
seismic, speech, communication, or biomedical (EEG, EQ@GEsignals. Nowadays,
dynamical models and identification methods play an immadntale in most of disci-
plines such as automatic control, signal processing, physconomics, medicine, biol-
ogy, ecology, seismology, etc. In this plenary talk, an viev of the principal models
and identification methods will be presented.

Since the pioneering works of Gauss and Legendre who intextithe least squares
(LS) method, at the end of the eighteenth century, in the Gélastronomy to predict
the motion of planets and comets from telescopic measuresguite a lot of papers
and books on the parameter estimation problem have beeisipedh] so that it is not
easy to get a general view of available model identificati@thrads. Due to time limi-
tation, some restrictive choices have been made as sunaddmiow, with the attempt
to have the best coverage as possible.

First, we will answer to the following basic questions:

— Why to use a model?
— How to classify the models?
— How to build a model?

Then, several model-based applications will be briefly uised, with particular em-
phasis on simulation/synthesis, filtering, predictioréfasting, interpolation/smoothing,
source separation, adaptive equalization and adaptieatdihis important to note that
depending on the considered application, a model is aldedchlter, predictor, inter-
polator, mixture, channel, equalizer or controller.

In a second part of the talk, we will present different classemodels.
Discrete-time deterministic linear models will be first satered, both in state-space

(SS) and input-output (I/0O) forms. Then, several disctates stochastic linear models
will be presented in a unified way. These models can be viewed a



— either linear dynamical filters allowing the generatignthesis, analysis and clas-
sification of random signals, as it is the case of the autessire (AR), moving
average (MA) and ARMA models,

— or linear models with a random additive noise that reprss@easurement noise,
external disturbances, and modeling errors, like ARX, ARXAnd ARARX mod-
els.

Real-life systems being often time-varying or/and nordiria nature, two other classes
of models are currently used: linear parameter-varyind/Léhd nonlinear (NL) mod-
els. These two classes will be described, with a focus orexaltand block-structured
(Wiener, Hammerstein, Wiener-Hammerstein...) models.

LPV models are suited to modeling linear time-varying (LT8ystems, the dynamics

of which are functions of a measurable, time-varying patemeectorp(t), called the
scheduling variable. They can also be used for represembiniinear systems linearized
along the trajectonyp(t). LPV models can be viewed as intermediate descriptions be-
tween linear time invariant (LTI) models and nonlinear tiwegying models.

Nonlinear models are very useful for various applicaticgaarincluding chemical and
biochemical processes (distillation columns, polymdiizareactors, biochemical re-
actors, see [10]), hydraulic plants, pneumatic valvesioragler-fiber (RoF) wireless

communication systems (due to the optical/electrical j@@nversion), high power

amplifiers (HPA) in satellite communications, loudspeakerctive noise cancellation
systems, physiological systems [44], vibrating structuaead more generally mecha-
tronic systems like robots [34].

Block oriented NL models are composed of a concatenationrofdinamic subsys-

tems and static NL subsystems. The linear subsystems aeeadigrparametric (trans-
fer functions, SS representations, I/O models), whereablthsubsystems may be with
memory or memoryless. The different subsystems are imewtied in series or paral-
lel.

In our talk, finite-dimensional discrete-time Volterra nedg] also called truncated Volterra
series expansions, that allow to approximate any fading engnmonlinear system with
an arbitrary precision, as shown in [5], will be considenmediore detail; see [15], and
[25]. The importance of such models for applications is duthe fact that they rep-
resent a direct nonlinear extension of the very popularefiimtpulse response (FIR)
linear model, with guaranteed stability in the boundediinpounded-output (BIBO)
sense, and they have the advantage to be linear in their pteesnthe kernel coeffi-
cients [53]. Moreover, they are interpretable in terms oftidimensional convolutions
which makes easy the derivation of their z-transform andrieotransform represen-
tations [45]. The main drawback of these models concernsgheametric complexity
implying the need to estimate a huge number of parameterseSeral complexity re-
duction approaches for Volterra models have been develogied symmetrization or
triangularization of \Volterra kernels, or also their exp@am on orthogonal bases (like
Laguerre, Kautz and GOB bases), or their Parafac decongasithese two last ap-



proaches lead to the so-called Volterra-Laguerre and Wakiearafac models; [6], [7],
[18], [39], [40]

The third part of the talk will be concerned with the modetitication problem which
is strongly related to statistics, stochastic procesdee alled random signals), time
series analysis, signal processing, information/daiafgistimation theories, optimiza-
tion, linear algebra, machine learning, and more receritly@ompressive sensing, also
known as compressive sampling and sparse sampling, thsist®m finding sparse so-
lutions to an underdetermined system of linear equatioascharacterized by more
unknowns than equations [9]. The increasing interest mi#st topic is due to the fact
that most signals are sparse, i.e. with many coefficientedo or equal to zero, as it is
the case of images for instance.

A complete identification procedure is composed of six meeps[42]:

Experiment design,

Input-output measurements,

Model structure choice,

Structure parameter determination,
Model parameter estimation,
Model validation.

This procedure is generally iterative in the sense thatjistgfrom a priori information
about the system to be identified, the different abovedistgh-problems are succes-
sively addressed with the need to revise some choices hatihbdel is validated.

The experiment design consists in making several choiges{al design of input se-
quence, i.e. excitation signal, sampling period, etc.).

The determination of the structure parameters is an impoptablem, for which sev-
eral tests are proposed in the literature, the most popuks being the Akaike infor-
mation criterion [1], abbreviated to AIC, and the minimunsdeéption length (MDL)
criterion of Rissanen [50].

The model validation consists in testing whether the maziedlid, e.g. "good enough”.
Such tests are based on a priori information about the systenintended utilization
of the model, its fitness to real 1/0O data, etc.

The parameter estimation algorithms are depending on tees:

— The cost function (criterion) to be optimized.
— The optimization method or the algorithm utilized to corgptine optimal solution.

Among the most popular parameter estimation methods, weit&n

— The LS variants like the weighted least squares (WLS) ntkthith the Gauss-
Markov estimator as particular case that is a best lineaiaged estimator (BLUE)
under certain assumptions, the generalized least squak&) Mmethod, introduced



by Aitken (1935), the extended least squares (ELS) and thHéast squares (TLS)
methods [57].

— The maximum-likelihood (ML) method, introduced by Gaussl & aplace, and
then popularized by Fisher at the beginning of the 19th agntuhich consists
in maximizing the probability density of the observatiormditioned upon the
parameters.

— The maximum a posteriori (MAP) method which consists in imézing the prob-
ability density function of the unknown random parametensditioned upon the
knowledge of measured signals.

— The minimum mean squared error (MMSE) estimation method.

— The M-estimation methods, introduced by Huber (1964) endbntext of robust
statistics [30], and more generally robust identificaticetinods in presence of out-
liers in the data or small errors in the hypotheses [4], [24].

— The instrumental variable (IV) methods [55], [59].

— The bounding approach that consists in determining alfkseset (also called mem-
bership set) for the parameters or states when the additipeiberror is assumed
to be bounded; see [47] for a review of bounding techniquél fay linear and
nonlinear models; in [17], a review and a comparison of sdlidal outer bounding
algorithms are made.

— The subspace methods whose the concept was introducethe/ttiuSIC (MUIti-
ple Signal Classification) algorithm, which is a super ragoh technique for array
processing [54]. They are also strongly connected withrdetestic and stochastic
realization theories [13], [14], [29], [32].

Many books discuss estimation theory and system identdicaln the field of engi-
neering sciences, we can cite the fundamental contribeitdf?], [3], [11], [12], [51].
See also [21], [23], [28], [33], [41], [42], [43], [46], [49]56], [60] for linear systems,
and [10], [15], [22], [26], [31], [45], [48] for nonlinear sgems.

Identification methods can be classified in different wayseteling on:

— The class of systems to be identified (linear/nonline&8EMIMO, ...).

— The assumptions made about model uncertainties (pradtaddescription/unknown
but bounded (UBB) error description).

— The domain of the used information (time-domain/freqyatamain).

— The experiment configuration (open-loop/closed-loop).

— Thel/O data processing (non iterative/iterative, nonrsige/recursive or non adap-
tive/adaptive).

— The knowledge or not of the input signals (supervised/pestsed or blind ap-
proaches).

Concerning this last point, we have to note that, unlike m@rapplications for which

the input signals are optimized, and therefore measuredgh a way that the system to
be controlled has a desired behaviour, most of signal psigapplications are char-
acterized by the fact that input signals can not be measasdtlis the case of seismic,
astronomical, audio, digital communication, or biometagaplications. That leads to
unsupervised or blind identification methods. Such blingrapches are used for blind



seismic deconvolution, blind channel equalization in camioations, or blind source
separation in a more general context of MIMO (multi input -ltnautput) systems like
antenna arrays in underwater acoustics, electrode amagleétroencephalography or
electrocardiography, audio mixtures etc. See [8].

Adaptive estimation is closely linked with adaptive filtegi[27], [52], [58]. Adaptive
modeling and processing are very useful for a wide variegpplications like adaptive
control, adaptive noise cancelling, adaptive channel letaimn, adaptive receiving
arrays for various types of signals (seismic, acoustiGteenagnetic), among many
others.

In our talk, we will begin by presenting the cost functionsgelly considered for pa-
rameter estimation.

Then, two standard optimization methods will be introducBde Newton-Raphson
method, with its variant the Levenberg-Marquardt algenittand the Gradient descent
method.

Five parameter estimation methods will be presented ferelis-time Volterra models:

— The MMSE method, that leads to the Wiener solution,
— The non recursive deterministic LS method,

— The recursive least squares (RLS) method,

— The least mean squares (LMS) algorithm,

— The normalized least mean squares (NLMS) algorithm.

Other identification methods for Volterra systems can bafon [10], [37].

In the case of a Pth-order Volterra system and an i.i.d. fieddently and identically
distributed) input signal, we will give the necessary anflicent condition for sys-
tem identifiability using the MMSE solution. Moreover, ineticase of a second-order
\olterra system, we will give the decoupling conditionstioe parameter estimation of
the linear and quadratic kernels. The necessary condiibe satisfied by the step size
for ensuring the LMS algorithm convergence will be also give

As already mentioned, we have to note that a tensor-basedagphas been recently
proposed for reducing the parametric complexity of Volenodels, leading to the so-
called Volterra-Parafac models [18]. Tensor-based metimade also been developed
for blind identification of SISO and MIMO linear convolutigystems, and for block
structured nonlinear system identification [16], [19],],485], [36], [37], [38].

Some simulation results will be presented to illustratelthleaviour and to compare the
performance of the (RLS, LMS, NLMS) algorithms and the (EKKMS, NLMS) algo-
rithms for the parameter estimation of linear FIR models ¥oiterra-Parafac models,
respectively.



Finally, our plenary talk will be concluded by giving seviei@pics to be addressed

in future research works.
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