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We have formulated the restricted self-consistent model for the adhesive contact of linear viscoelastic spheres. This model is a generalization of both the Ting (J. Appl. Mech. 33 (1966) 845) approach to the viscoelastic contact of adhesionless spheres and the restricted self-consistent model for adhesive axisymmetric bodies. We also show how the model can be used in practice by giving a few examples of numerical solutions.

Introduction

The contact problem as we consider it nowadays seems to have ÿrst taken shape in the last quarter of the 19th century when [START_REF] Hertz | Ueber die beruehrung fester elastische koerper[END_REF] and [START_REF] Boussinesq | Application des Potentiels  a l'Etude de l'Equilibre et du Mouvement des Solides Elastiques[END_REF] presented solutions to the adhesionless contact of linear elastic spheres.

In the 1930s, the ÿeld of surface forces was mature enough for the problem of the adhesion of rigid bodies and its relation to the surface interactions to be tackled by [START_REF] Bradley | The cohesive energy between solid surfaces and the surface energy of solids[END_REF] and [START_REF] Derjaguin | Untersuchungen ueber die reibung und adhaesion[END_REF].

In the 1960s, the problem of the adhesionless contact of viscoelastic spheres arose. The additional di culty over the elastic case is due to the dependence of the solution upon the history of the system. In particular, the outward run (decreasing contact radius) proved di cult to solve, although a number of approaches were proposed. The deÿnitive solution was proposed by [START_REF] Ting | The contact stresses between a rigid indenter and a viscoelastic half-space[END_REF], and interest in the problem waned soon afterwards.

The 1970s saw a renewed interest in the adhesive contact of elastic bodies. The famous controversy between the Russian (DMT) [START_REF] Derjaguin | On the role of molecular forces in contact deformation[END_REF] and English (JKR) [START_REF] Johnson | Surface energy and the contact of elastic solids[END_REF]) schools ended when it was ÿnally recognized that both the models were indeed limiting cases within a more general model-the restricted self-consistent model, a terminology coined by [START_REF] Hughes | Some applications of continuum mechanics in colloid and interface science[END_REF], to our knowledgein which the interactions between the surfaces are explicitly accounted for in a more physical manner [START_REF] Tabor | Surface forces and surface interactions[END_REF]. The transition between these limit cases as the range of the interactions goes from inÿnity to zero was well demonstrated by numerical calculations [START_REF] Muller | On the in uence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane[END_REF][START_REF] Muller | General theoretical considerations on the in uence of surface forces on contact deformations[END_REF][START_REF] Greenwood | Adhesion of elastic spheres[END_REF].

In the 1990s, the ÿrst analytical model of the transition was proposed by [START_REF] Maugis | Adhesion of spheres: the JKR-DMT transition using a dugdale model[END_REF], who included the interaction between surfaces through a Dugdale model; in this model, the DMT to JKR transition is spanned when the normalized interaction parameter goes from zero to inÿnity. Soon afterwards, the usefulness of the Maugis model was evidenced in a few experimental cases [START_REF] Maugis | JKR-DMT transition in the presence of a liquid meniscus[END_REF][START_REF] Barthel | Adhesion energy measurements in the presence of adsorbed liquid using a rigid surface force apparatus[END_REF][START_REF] Lantz | Atomic-force microscope study of contact area and friction on NbSe2[END_REF]. Simultaneously, the limitations of the Maugis model were pointed out, and the model was generalized in di erent ways (Barthel, 1998a[START_REF] Barthel | The adhesive contact of spheres: when the interaction is complex[END_REF][START_REF] Greenwood | An alternative to the Maugis model of adhesion between viscoelastic spheres[END_REF].

In the ÿnal years of the last century, the trend for the measurement of local mechanical properties of solids triggered interest in the adhesive contact of viscoelastic solids. Indeed, by reducing the size of the indenter, one unavoidably enters a regime in which the surface forces are signiÿcant. Thus, the coupling between mechanical response and surface interactions has to be taken into account.

It is interesting to note that the limit cases of the elastic adhesive contact problem turn out to be of limited interest in the case where the bulk response is viscoelastic. In the DMT limit (for small ), indeed, the adhesive interaction stress is negligible compared to the mechanical compliance of the solid. As a result, in this model, the coupling between mechanical compliance and surface interactions is limited to the addition of a global adhesive force, so that the richness of the basic phenomenon cannot be accounted for. In contrast, in the JKR limit (for large ), the gradient of the surface displacement is singular at the periphery of the contact zone, so that the strain rate is locally inÿnite, a shortcoming which deprives this limit of usefulness in the viscoelastic case.

Indeed, it is actually required that the viscoelastic response be taken into account to model the process zone. This was treated in depth by Schapery (1975a-c), with a view to dealing with crack extension in viscoelastic solids, and subsequently for crack healing [START_REF] Schapery | On the mechanics of crack closing and bonding in linear viscoelastic media[END_REF]. His results lie at the root of further work on viscoelastic cracks by [START_REF] Greenwood | The mechanics of adhesion of viscoelastic solids[END_REF], [START_REF] Johnson | Contact mechanics and the adhesion of viscoelastic spheres[END_REF] and [START_REF] Lin | Viscoelastic contract (sic), work of adhesion and the JKR technique[END_REF].

For the adhesive viscoelastic contact, however, the crux of the problem is to treat both the crack zone and the contact zone within a viscoelastic model. As in the adhesionless case, the formulation of the inward run (increasing contact radius) is reasonably straightforward. [START_REF] Hui | Contact mechanics and adhesion of viscoelastic spheres[END_REF] have given explicit results for the growing contact area case. In contrast, the decreasing contact radius (outward run), although of great signiÿcance, because it controls the contact rupture and thus the adherence, is still unsolved. Attard (2001a, b) has recently implemented a completely numerical model, a viscoelastic version of the full self-consistent model in the special case of an exponential relaxation function, based on the canonical relation between the exponential function and its derivative. [START_REF] Lin | The role of viscoelastic adhesive contact in the sintering of polymeric particles[END_REF] have proposed an analytical formulation, but this has up to now turned out to be of limited applicability.

In this paper, we show that the formulation of the adhesive contact of elastic bodies we proposed earlier lends itself to the description of the linear viscoelastic case as well. In addition to forming an extension of the restricted self-consistent model for the adhesion of elastic bodies, the formulas we thus obtain reduce to the results of [START_REF] Ting | The contact stresses between a rigid indenter and a viscoelastic half-space[END_REF] when the adhesive interaction is suppressed, thus providing a consistent description of adhesive contact problems. In particular, the decreasing contact radius case is treated on the same footing as the simpler increasing case.

We will ÿrst recall the basic equations for the restricted self-consistent model, in the linear elastic case. We then extend this approach to the linear viscoelastic case. Finally, we give an example of numerical solutions, for a strongly viscoelastic contact.

The restricted self-consistent model for the adhesion of elastic bodies

The self-consistent formulation of the adhesive contact problem has been reviewed recently [START_REF] Huguet | Surface forces and the adhesive contact of axisymmetric bodies[END_REF]. Here, we will only recall the main points:

• the gap between the surfaces geometrically depends upon the surface displacement;

• the surface displacement depends upon the surface stress through the mechanical behaviour of the solid; • the surface stress depends, among other parameters, upon the gap through the nature of the physical interaction between the surfaces.

These three interdependent relations must be satisÿed simultaneously, which results in a self-consistent solution.

The restricted self-consistent model

We now further assume that the range of the repulsive part of the interaction is much shorter than the range of the attractive part, as usually observed. This assumption leads to the restricted self-consistent adhesive contact problem. The boundary conditions are:

u(r) = -f(r) for r ¡ a;
(1) (r) known for r ¿ a;

(2) where u(r) is the normal surface displacement, is the penetration, a the radius of the contact zone and (r) the surface normal stress distribution. The shape of the indenter f(r) is convex and smooth but otherwise not speciÿed. The details of the physics of the adhesive process dictate the self-consistency equation. The diversity of the adhesive phenomena leads to di erent possible self-consistency equations. We here use a simple but approximate one, which is easily introduced if the adhesive process derives from an interaction potential V between the two surfaces, though it is more general. Then, the adhesion energy is

w ≡ V (+∞) -V (0) = +∞ 0 d z dV d z = - +∞ 0 d z (z): (3) 
Introducing the gap

h(r) = u(r) -+ f(r) (4) 
and applying the change of variable z = h(r), the self-consistency equation (Eq. ( 3)) is

w = - +∞ a (r) dh(r) dr dr: (5) 
The strategy for ÿnding the solution to the self-consistent adhesive problem is to converge to a stress distribution outside the contact zone (Eq. ( 2)), which veriÿes both the boundary conditions inside the contact zone (Eq. ( 1)) and the self-consistency equation (Eq. ( 5)).

For a more detailed discussion of self-consistency equations, refer to Barthel (1998b[START_REF] Barthel | The adhesive contact of spheres: when the interaction is complex[END_REF].

Clearly, the calculation of the gap h(r) from the boundary conditions (Eqs. ( 1) and ( 2)) is central to this self-consistent approach. We will now recall the main results relevant to this point.

Surface elasticity

The necessary relations for the elastic case are essentially derived from the work of [START_REF] Sneddon | Fourier Transform[END_REF][START_REF] Sneddon | The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary proÿle[END_REF] and [START_REF] Lowengrub | The e ect of internal pressure on a penny-shaped crack at the interface of two bonded dissimilar elastic half-spaces[END_REF]. In contrast to our recent papers, we here introduce a new function, Â, which is necessary in the viscoelastic case, but redundant with the more usual g function in the elastic case. For axisymmetric bodies, the auxiliary function g [resp. Â] is a suitable transform (of the Abel type) of the normal surface stress distribution [resp. the normal surface displacement u]:

g(s) ≡ - +∞ s r (r) (r 2 -s 2 ) dr; (6) Â(s) ≡ d ds s 0 ru(r) √ s 2 -r 2 dr (7) = u(s = 0) + s s 0 dr u (r) (s 2 -r 2 ) : (8) 
These transforms are characterized by several properties:

Prop I: they can be analytically inverted (Appendix A.1); Prop II: g(s) depends on (r) for r ¿ s only, and Â(s) depends on u(r) for r ¡ s only;

Prop III: under the conditions of linear elastic behaviour and the absence of shear stresses at the interface, mechanical equilibrium leads to g(s) = KÂ(s) for all s;

where K depends upon the Young modulus E and the Poisson ratio as

K = E 2(1 -2 ) : (10) 
Thus, from the boundary condition Eq. ( 1) and Prop. II (Eq. ( 8)), one obtains Â(r) inside the contact zone (r ¡ a):

Â(r) = -0 (r); (11) 
where

0 (r) = d dr r 0 sf(s) (r 2 -s 2 ) ds = r r 0 ds f (s) (r 2 -s 2 ) (12)
is a signature of the shape of the indenting bodies only. Similarly, we obtain g(r) outside the contact zone (r ¿ a) from the boundary condition Eqs.

(2) and Prop. II (Eq. ( 6)). The main step in the calculation of the solution to the elastic problem is to obtain the extensions of  and g to, respectively, outside and inside the contact zone. This step is straightforward in the elastic case because of the simplicity of the equilibrium relation Eq. (9) (Prop. III), except for the behaviour of g and  at the contact zone boundary a. We will here require continuity of the g(r) function (and thus of the Â(r) function), which implies continuity of the stress distribution (r) (and therefore of the derivative of the displacement ÿeld u(r)) at r = a. This condition actually provides an additional equation, which we now discuss.

Penetration

From the speciÿc form of  given by Eq. ( 11), and the equilibrium relation Eq. ( 9), there results that the assumption of continuity of the stress distribution at the border of the contact zone a determines the penetration as a function of the shape of the bodies f(r), the contact radius a and the attractive stress distribution outside the contact zone by

= 0 (a) + 1 K g(a): (13) 
A problem seems to arise in the JKR case, where it is well known that the stress is discontinuous at r = a. However, it only appears as a limit case of models in which the continuity is obeyed [START_REF] Maugis | Adhesion of spheres: the JKR-DMT transition using a dugdale model[END_REF]Barthel, 1998a). Now that  is completely determined outside the contact zone, we can tackle the calculation of the gap.

The gap and the self-consistency equation

From the inverse of Eq. ( 7), Eq. (A.3), in Appendix A, the surface displacement can be split into

u(r) = 2 a 0 ds Â(s) √ r 2 -s 2 + 2 r a ds Â(s) √ r 2 -s 2 : ( 14 
)
It can be shown that a convenient form for the gap (see Appendix A.2) is

h(r) = h Hertz (r; a) + 2 r a Â(s) -Â(a) √ r 2 -s 2 ds (15) with h Hertz (r; a) = 2 1 R f H (r; a); (16) 
where

f H (r; a) ≡ r a ds (s 2 -a 2 ) √ r 2 -s 2 = a 2 r 2 -a 2 + r 2 2 -a 2 arccos a r : (17) 
This form of the gap will be used below to compute the self-consistency equation in a special case, the general expression being too complex to be of real use.

In addition, from this formulation (Eq. ( 15)), it becomes apparent that, as noted above, the continuity of  entails the suppression of the square root singularity of the gap h at a (cf. Appendix A.2).

Force

Similarly, the total force,

F = 4 +∞ 0 dr g(r) (18) 
can be split into two terms. The outer term is

F ext = 4 +∞ a dr g(r): (19) 
The inner term is

F int = 4 a 0 dr g(r) = 4K(a -0 (a)) (20) = F H (a) + F JKR (a) (21) 
with

F H (a) = 4K(a 0 (a) -0 (a)); (22) F JKR (a) = 4ag(a); ( 23 
)
where F H is the non-adhesive Hertz force which, like the function

0 (r) ≡ r 0 ds 0 (s) (24)
depends only upon the shape of the indenter, and F JKR is the corrective JKR-like at punch term.

Resolution of the adhesive contact problem

In the experiments, two main possibilities are met, where the displacement (ÿxed grip) or the force (ÿxed load) are prescribed. Assuming a self-consistent model as in Eq. ( 5), the problem is thus to determine the contact radius a and the attractive stress distribution by (a) in a ÿxed grip experiment, solving the displacement (Eq. ( 13)) and self-consistency (Eq. ( 5)) equations simultaneously, and then calculating the force; (b) in a ÿxed load experiment, solving the force (Eq. ( 18)) and self-consistency (Eq.

( 5)) equations simultaneously and then calculating the displacement.

Examples of such procedures can be found in Barthel (1998b[START_REF] Barthel | The adhesive contact of spheres: when the interaction is complex[END_REF] and [START_REF] Greenwood | An alternative to the Maugis model of adhesion between viscoelastic spheres[END_REF].

Adhesion of viscoelastic bodies

Linear viscoelastic behaviour

Assuming the simplest viscoelastic behaviour-a constant Poisson ratio-the stress and deformation now obey

(t) = t 0 d (t -) d d ( ); ( 25 
) (t) = t 0 d (t -) d d ( ); ( 26 
)
where the relaxation function (t) and the creep function (t) are inverse for this product of convolution. Therefore we have

(t) = (t 0 ) + t t0 d (t -) 9 9 t0 d ( -) 9 9 ( ) (27) provided (t) is independent of time for t ¡ t 0 .
Since there is no coupling through the response functions and between the temporal and spatial variations of the physical quantities, the equilibrium equation (Eq. ( 9)) for the adhesive contact between a rigid indenter and a viscoelastic solid reads

g(t) = t 0 d (t -) d d Â( ) (28) 
or its inverse

Â(t) = t 0 d (t -) d d g( ): (29) 
The essential Eqs. ( 5), ( 13), (15), and (18) remain unaltered, except for the introduction of the time dependence. For instance, the self-consistency equation Eq. ( 5) now reads 31)) [resp. Eq. ( 4)] for t ¡ tmax [resp. tmax ¡ t]) and the self-consistency equation (Eq. ( 30)). The shaded rectangles exemplify the r-t zones relevant for the calculation of the gap at r 1 (inward) and r 2 (outward). Like the penetration, calculation of the stress inside the contact zone ( point) is done along a horizontal line. The functions ta -(r) and ta + (r) are deÿned in the text (Eqs. ( 34) and ( 43)).

w = +∞ a(t) (r; t) d dr h(r; t) dr: (30) 
The guideline to establishing the adhesive viscoelastic contact equations is thus to express these equations at time t as a function of known quantities at time ¡ t. However, for a given ¡ t, we directly know Â(r; ) for r ¡ a( ) only (from the datum of ( ) and 0 (r)) and g(r; ) for a( ) ¡ r only. This deÿnes two time-space domains, the g-[resp. Â-] domain where g [resp. Â] is known (Fig. 1). The calculation of the extensions of each function (g in the Â-domain and conversely) is now more complex, because the simple proportionality relation Eq. ( 9) is replaced by Eq. ( 28) or its inverse Eq. ( 29), which sometimes must be used recursively, leading to cumbersome nested temporal integrals.

We will therefore restrict ourselves to the two cases which are most signiÿcant: for (a) increasing and (b) subsequently decreasing contact radius. Indeed, as in the adhesionless case, for more complex loading histories, the equations which describe the response of the system become increasingly unwieldy, although they can still be derived with the methods developed in the present paper.

The next two sections will brie y present the general results for the viscoelastic adhesive contact, while the rest of the paper is devoted to the explicit development of a special case as an example.

Increasing contact radius

This is the most straightforward case, since the history of the system is simple enough to easily be taken into account: for a given radius r, we meet at most once with the boundary B between the two domains (Fig. 1). Except for the stress distribution inside the contact zone, and thus the force (Section 3.2.4), all relevant quantities can be expressed with one single temporal integral.

Displacement

From Eq. ( 29), the continuity of  at the edge of the contact zone, which determines , now yields

(t) = 0 (a(t)) + t 0 d (t -) 9 9 g(a(t); ); (31)
which is the form of Eq. ( 13) valid for the viscoelastic case in the increasing contact radius regime.

The gap

Now in the gap equation Eq. ( 15), we have

Â(r; t) = t 0 d (t -) 9 9 g(r; ) (32) 
and thus

h(r; t) = h Hertz (r; t) + 2 t 0 d (t -) 9 9 r a(t) ds g(s; ) -g(a(t); ) √ r 2 -s 2 (33)
from which the self-consistency equation is derived through Eq. (30).

The stress distribution inside the contact zone

Inside the contact zone (r ¡ a(t)), the stress distribution can be calculated from the successive use of Eqs. ( 28) and (11). However, in Eq. ( 28), the time domain extends from 0 to t, while Â(r; t) is known only inside the Â-domain, that is between t a-(r) and t, where t a-(r) is deÿned in the increasing contact radius zone (Fig. 1) by a(t a-(r)) = r:

(34)

Therefore, outside the Â-domain, we have to express Â(r; ) as a function of g(r; ) through Eq. ( 29), from which the following nested integral expression results:

g(r; t) = t ta -(r) d (t -) 9 9 { ( ) -0 (r)} + ta -(r) 0 d (t -) 9 9 0 d ( -) 9 9 g(r; ): (35)
Note that this expression is actually also valid in the decreasing contact radius regime, where it lies at the root of the equation giving the penetration.

The force

The total force

F(t) = F ext (t) + F int (t) (36)
is the sum of the outer term

F ext (t) = 4 ∞ a(t)
dr g(r) (37)

and the inner terms

F int (t) = F int;a (t) + F int;b (t) (38) 
with

F int;a (t) = 4 t 0 d (t -) d d min(a(t);a( )) 0 dr ( ( ) -0 (r)) (39)
and, in a manner similar to the previous paragraph,

F int;b (t) = 4 ta -(a(t)) 0 d (t -) d d 0 d ( -) d d a(t) a( ) dr g(r; ): (40)
Here again, the expression for the force is valid for both in-and outward runs.

Decreasing contact radius

In the decreasing contact radius regime, we may meet up to twice with the boundary B (Fig. 1), from which increasingly complex expressions result.

Displacement

Using Eq. ( 35), continuity of g at the periphery of the contact now gives

g(a(t); t) = t ta -(a(t)) d (t -) 9 9 { ( ) -0 (a(t))} + ta -(a(t)) 0 d (t -) 9 9 0 d ( -) 9 9 g(a(t); ) ; (41) 
which is the form of Eq. ( 13) valid in the decreasing contact radius regime. We note that this equation is simply an extension of the integral equation characteristic of the decreasing contact radius case in the adhesionless contact [START_REF] Ting | The contact stresses between a rigid indenter and a viscoelastic half-space[END_REF], which is recovered here for g = 0. Thus, as in the non-adhesive case, the penetration is to be calculated from this integral equation.

In addition, we note that at t = t a-(a(t)), that is to say when the contact radius reaches its maximum a max = a(t max ), the second term on the right-hand side of Eq. ( 41) is shown through Eq. ( 27) to equal g(a(t); t). Thus the convolution integral of ( ) is zero, with the simple but prominent implication that (t) is continuous at t max .

The gap and the self-consistency relation

In the calculation of the gap, for a given radius we meet twice with the boundary B between domains, leading to an increasing number of nested temporal integrals. As an example of the recursive use of Eqs. ( 28) and ( 29) already applied in Section 3.2.3, we here explicitly give the suitable expression for  to calculate the gap, in which each term is expressed as a function of known quantities (the displacement in the Â-domain, the stress distribution in the g-domain):

Â(s; t) = ta -(s) 0 d (t -) 9 9 g(s; ) + t ta + (s) d (t -) 9 9 g(s; ) + ta + (s) ta -(s) d (t -) 9 9 ta -(s) d ( -) 9 9 Â(s; ) + ta -(s) 0 d ( -) 9 9 0 d ( -) 9 9 g(s; ) ; ( 42 
)
where t a+ (r) is deÿned in the decreasing contact radius zone (Fig. 1) by

a(t a+ (r)) = r: (43) 
Inverting the order of the temporal and the spatial integrals, we obtain an expression for u where all terms can be calculated as a function of the history of the system.

Here again, from the gap expression, the self-consistency equation is derived through Eq. ( 30). These expressions are given explicitly in Appendix B (Eq. (B.42)).

The resolution of the adhesive viscoelastic contact problem

In this case, the solution proceeds as follows: one has to simultaneously solve the penetration equation (Eqs. ( 31) or (41) -the latter one being an integral equation) [resp. the force equation (Eq. ( 36))] and the self-consistency equation Eq. ( 30) for a ÿxed grip [resp. ÿxed load] experiment. We now show that this approach is feasible in practice with the following examples.

Double-Hertz model

To model experiments with a sphere, we assumed a paraboloidal shape of the indenter. Other shapes can naturally be dealt with, and nano-indentation addicts may here assume a sphere-terminated cone, and modify 0 and 0 accordingly. As for the interaction zone, we at ÿrst implemented a Dugdale model. The resulting model was thus the viscoelastic Dugdale-Maugis model. In practice however, we found it much more advantageous to avail ourselves of the so called 'double-Hertz' model, put forward by [START_REF] Greenwood | An alternative to the Maugis model of adhesion between viscoelastic spheres[END_REF], where the attractive stress distribution inside the interaction zone, bounded by the contact radius a and the interaction radius c, is assumed to be ellipsoidal. Indeed, in this model, we beneÿt both from the absence of stress discontinuity at the periphery of the interaction zone and from the analyticity of all the spatial integrals. As a result, the numerical calculations are signiÿcantly easier. All the equations used are given explicitly in Appendix B.

A program has been implemented to work with any pair of viscoelastic functions, provided they are inverse for the convolution integrals Eqs. ( 28) and ( 29). In the 44)) and relaxation (Eq. ( 45)) functions used for the results shown below. The characteristic creep time is the time unit, and the characteristic creep parameter is k = 0:09. following, we assume a normalized standard viscoelastic solid model with creep and relaxation functions given by

(t) = 1 + k 1 -k (1 -exp(-t)); ( 44 
) (t) = k + (1 -k) exp(-t=k); ( 45 
)
where k is the characteristic parameter of the normalized creep process. The relaxation and creep functions for k = 0:09, as assumed below, are illustrated in Fig. 2. Note that for this value of k, the relaxed modulus is about ten times smaller than the instantaneous modulus.

As mentioned in the Introduction, in normalized form, in the elastic case (paraboloidal indenter with radius R, adhesion energy w: see Eqs. (B.19)-(B.22) for the details of the normalization), the adhesive interaction is characterized by a single parameter . We here use the same normalization, where the instantaneous modulus (0) is now substituted for the elastic modulus.

As an example, let us assume (0)=100 MPa, R=2 cm and w=50 mJ m -2 ; we then have the following normalizing factors: force, P 0 3 mN; contact radius, A 0 90 m; penetration: 0 0:4 m and stress: 0 0:4 MPa.

In the following section, we discuss numerical results obtained for an adhesion parameter = 4. Thus, we present examples for a rather extreme (and computationally more demanding) case of notably viscous solid with sizeable adhesion.

We assume a ÿxed grip experiment, and simultaneously solve Eqs. (B.30) and (B.37) (inward run), or (B.38) and (B.56) (outward run), for the normalized radius of the contact zone A(t) and the normalized radius of the interaction zone C(t). We suppose zero penetration and an instantaneous switch-on of the interactions at t=0. The temporal integrals were calculated with a Simpson rule method, with a convergence criterion of 10 -4 . The three-integrals term has been neglected throughout, due to long computation times. We checked in a few cases that inclusion of this term leads to minor changes in the contact radius history at the turning point (maximum contact radius), and is not signiÿcant at later stages.

Numerical results

Example 1: adhesionless contact-adhesive contact

We here contrast the adhesive and adhesionless systems. The indenter is driven with a simple penetration history (Fig. 3) with a penetration velocity of +10 (inward part of the curve-zone 1) or -10 (outward-zone 3), normalized to the characteristic creep time. An intermediate period of reduced penetration velocity (+2-zone 2) is provided for, so as to better illustrate the response of the system.

Between these two cases, the main di erence in the inward part of the run (zones 1 and 2) lies in the contact radius (Fig. 4), which, for an identical penetration, is increased through the interactions. However, in the inward run, the force curves for the two cases are quite similar, featuring in particular a sharp relaxation process in zone 2 (Fig. 5). The one noteworthy di erence is to be found at the very beginning of the curve, where the initially adhesive (i.e. negative) total force, in the adhesive case, swiftly decays into repulsive.

In the third zone, the overall di erences between the two cases are more striking. When the sphere is retracted, a sharp decrease of the contact radius (Fig. 4) to zero occurs for the adhesionless contact, while the contact radius goes on increasing and then stays roughly constant for one unit of time when adhesion is present, before it ÿnally bends down. In the constant contact radius region, the force vs. penetration curve (Fig. 6) is found to be linear. Finally, the maximum tensile force is -13:4, considerably larger than the bare -1:5 expected in an elastic model for such a large value of . Thus in the viscoelastic case, the contact rupture is characterized by two parameters: the "stick time" between the inception of retraction and the decrease of the contact radius, and the (large) adhesive force. In zones 1 and 2, the contact radius increases under the e ect of the interactions, in a manner similar to the classical elastic contact. In zone 3 (outward), in the adhesive contact, the contact radius stays roughly constant for about one time unit before curving down, in sharp contrast to the adhesionless case. We will call this constant contact radius domain the "stick" domain.

- In the adhesive and adhesionless cases, the forces are similar in zones 1 and 2 (inward), due to fast stress relaxation, most evident in zone 2. In the adhesive case however, the contact zone starts receding (in zone 3) only if su cient tensile stresses have built up in the contact zone, which results in a large adhesive force.

Example 2: in uence of the retraction velocity

In the second series of calculations, we changed the retraction velocity, for identical inward runs (Fig. 7). The stick time increases markedly when the retraction velocity decreases (Fig. 8). The adhesive force (Fig. 9), however, is little a ected (an apparent dependence as the power 0.1 of the contact radius velocity at maximum tensile force). This behaviour, which cannot be explained by crack tip e ects only, will be qualitatively explained in the discussion. 

Example 3: shallower indents

Everyday experience or laboratory experiments evidence an increase of the adhesive force with dwell time or maximum penetration depth. The present system features such a behaviour as well. Using the penetration velocities displayed in Fig. 10, decreasing the maximum penetration, which occurs at t = 2, from 20 to 6, the maximum contact radius (Fig. 11) drops from about 5 to about 3, and with identical retraction velocities, we calculate a decrease of the adherence force (Fig. 12) from 13.1 to 8.6. A weak decrease of the adherence force with decreasing retraction velocity (-15:8 for v = 30, -14:9 for v = 15, -13:7 for v = 7:5) is calculated, while the penetration decreases markedly, to negative values for the two slower velocities, because of the competition between creep under mainly compressive (zones 1 and 2) or mainly tensile (zone 3) stresses.

Discussion

Crack tip e ects-creep

The typical size of the interaction zone is of the order 5 × 10 -2 , to be compared with the 8 × 10 -2 expected for an elastic solid with the instantaneous modulus. Typical contact radius velocities are in the range 1-4, except in the stick zone, where it goes to zero. Thus, in the crucial zones-zone 1, which determines the maximum contact radius, and the rupture zone (later stage of zone 3)-, the characteristic time of the interaction stress is of the order of a few 10 -2 , well below the creep time (unity). As a result, the interaction zone behaves essentially elastically, with an e ective modulus close to the instantaneous value. It is only in the stick zone (constant contact radius) that, due to reduced crack tip velocities, viscoelastic crack tip e ects become apparent mainly under the form of a slow increase of the contact radius, due to creep, while the interaction zone contracts by a factor of the order of unity (Fig. 13), because the solid is e ectively softer at long time scales.

Contact zone e ects-stress relaxation

On the other hand, most of the e ects described above may be ascribed to stress relaxation within the contact zone. This relaxation is particularly noticeable in zone 2, where the force decay has a ÿtted characteristic time of 0.089 (Fig. 5), to be compared -13:1) is due to the smaller maximum contact radius: for small penetrations, the contact radius relevant for the calculation of the adherence force is mainly controlled by the maximum contact radius. with the theoretical k =0:09 (Eq. ( 45)). Similarly, in the region where the contact radius is about constant, the stresses relax rapidly and the system actually behaves as a at punch of radius equal to the contact radius a with a modulus equal to the inÿnite-time modulus K ∞ . Indeed, in this case, the predicted slope (or contact sti ness) is

Ä = 3 2 K ∞ a; (46) 
which in the present case is equal to 0.69, identical to the slope in the calculated solution. Similarly, the stick zone, where the contact radius is constant, results from the weak elastic energy build-up in the contact zone. It is only for a sizeable backward displacement that tensile stresses at the crack tip ÿnally meet up with the adhesive interactions. The stick time can thus be estimated from the following argument: in Eq. ( 41), the integral

I = t ta -(a(t)) d (t -) 9 9 { ( ) -0 (a(t))} (47)
is an expression of (the Abel transform of) the stress at a(t) induced by the retraction motion ( ), where the last (double-integral) term has been neglected. It has to equal the (Abel transform of the) stress generated by the interactions, which is g(a(t)). Now, taking rather arbitrarily an interaction zone size of 4 × 10 -2 -not quite the elastic limit, since we are still in a low crack velocity region (Fig. 13), a contact radius of 8, Eq. (B.23) yields a value g(a(t)) 3. Now, during the "stick" phase, the penetration is monotonously decreasing. Then, taking into account the present form for the relaxation function Eq. ( 45), for k1,

I k d dt t -t max + 1 -exp - t -t max k : (48) 
From this equation and g(a(t)) = 3, we estimate that t -t max is, respectively, 0.2, 1 and 3 for penetration velocities of 30, 15 and 7.5, in reasonable agreement with the stick times observed in Fig. 8. Along the same line of thought, in the outward run, reduction of the crack size requires the build-up of su cient tensile stresses inside the contact zone. However, in contrast to an elastic behaviour, where compressive and tensile stresses evolve simultaneously, in the viscoelastic case, the compressive contact zone stresses have relaxed and tensile stresses dominate in the outward leg. Thus, the balance between compressive and tensile stresses found in the elastic case is o set for a viscoelastic contact, which entails an adhesive force much larger than expected in a completely elastic problem, along with a reduced release of elastic energy. Thus, stress relaxation inside the contact zone is the main source of energy dissipation.

More precisely, in a JKR-like regime, where the interaction zone is small, the force is dominated by the inner term in

P 3 2 t 0 d ˜ (t -) d d A(t) ( ) - A(t) 3 3 ; (49) while G(A) t 0 d ˜ (t -) d d ( ( ) -A(t) 2 ); (50) 
which combine to give an expression quite similar to the one proposed by [START_REF] Johnson | Contact mechanics and the adhesion of viscoelastic spheres[END_REF]:

P ˜ (t)A(t) 3 + 3 2 G(A(t))A(t) (51) 
with

G(A) = -3 C 2 -A 2 : (52)
decrease. This "sticking" phenomenon is due to the fast relaxation of the stresses (both compressive and tensile) inside the contact zone, so that crack back-propagation requires the renewal of tensile stresses inside the contact zone, as described by Eq. ( 48). As a result, the adherence force is magniÿed because the tensile stresses needed for crack retraction are no longer balanced by equivalent compressive stresses, since the latter have already relaxed (Eq. ( 55)). Thus, we ÿnd that the ampliÿcation of the adherence force occurs because strain and stress inside the contact zone are out of phase, as typical of viscoelasticity. Crack tip e ects play a more subdued role.

Ongoing work deals with the development of approximate models and the incorporation of roughness therein.

Appendix A. General relations

A.1. Inversion of the auxiliary functions g and Â

The inverse relations to Eqs. ( 6) and ( 7 

A.2. General expression for the gap

We derive Eq. ( 15) from Eq. ( 14)

h(r) ≡ u(r) -+ f(r) (A.4) = 2 a 0 ds -0 (s) √ r 2 -s 2 -2 ( -f(r)) + r a ds Â(s) √ r 2 -s 2 (A.5) = 2 r a ds 0 (s) - √ r 2 -s 2 + r a ds Â(s) √ r 2 -s 2 (A.6) = 2 r a ds 0 (s) -0 (a) √ r 2 -s 2 + r a ds Â(s) -Â(a) √ r 2 -s 2 ; (A.7)
where the equality of Eq. (A.5) and (A.6) results from the inversion of the deÿnition of 0 (cf. Eq. ( 6) and its inverse Eq. (A.2)). In the case of the paraboloidal indenter, the ÿrst term is the Hertz gap Eq. ( 16).

In a double-Hertz model,

F ext = 0 √ c 2 -a 2 - 2 3 c 3 - 1 3 a 3 + c 2 a : (B.6) Altogether, F(a) = 8Ka 3 3R - 2 0 3 c 3 -a 3 √ c 2 -a 2 : (B.7) B.1.4.
The gap With Eqs. ( 15) and ( 9), and using the relation

Y (c -s)(s 2 -c 2 ) -(a 2 -c 2 ) = Y (s -c)(c 2 -s 2 ) + (s 2 -a 2 ); (B.8)
where Y is the Heaviside step function, we have

h(r) = h Hertz (r; a) + 0 2K √ c 2 -a 2 r a (s 2 -a 2 ) -Y (s -c)(s 2 -c 2 ) √ r 2 -s 2 ds (B.9) = h Hertz (r; a) + 0 2K √ c 2 -a 2 r a (s 2 -a 2 ) √ r 2 -s 2 -Y (r -c) r c (s 2 -c 2 ) √ r 2 -s 2 ds (B.10) = h Hertz (r; a) + 0 2K √ c 2 -a 2 {f H (r; a) -Y (r -c)f H (r; c)}; (B.11)
where f H is deÿned by Eq. ( 17). Combining these expressions

h(r) = 2 R + 0 2K √ c 2 -a 2 f H (r; a) - 0 2K √ c 2 -a 2 Y (r -c)f H (r; c): (B.12) B.1.5. Self-consistent approach
The ÿrst term only in Eq. (B.12) contributes to the integral. We have to calculate 

= 2 R + 0 2K √ c 2 -a 2 0 √ c 2 -a 2 I (B.16) and w = 1 3 1 R + 0 4K √ c 2 -a 2 0 √ c 2 -a 2 I H (c; a): (B.17) B.1.6. Normalization
In the case of the sphere, we deÿne

K = 8K 3 : (B.18)
Following [START_REF] Maugis | Adhesion of spheres: the JKR-DMT transition using a dugdale model[END_REF], we normalize F by wR, and introduce

P = F wR ; (B.19) A = a ( wR 2 =K) 1=3 ; (B.20) = ( 2 w 2 R=K 2 ) 1=3 ; (B.21) = 2 0 ( wK 2 =R) 1=3 : (B.22) Then G(S) = 3 S 2 -C 2 √ C 2 -A 2 ; (B.23) = A 2 -3 C 2 -A 2 ; (B.24) P = A 3 -3 C 3 -A 3 √ C 2 -A 2 (B.25)
and 

H (R) = 2 1 + 3 1 √ C 2 -A 2 f H (R; A) -3 1 √ C 2 -A 2 Y (R -C)f H (R; C) ; (B.26) 1 = 6 1 + 3 1 √ C 2 -A 2 I H (C; A) √ C 2 -A 2 : (B.
(r; t) =        -0 c(t) 2 -r 2 c(t) 2 -a(t) 2 if a(t) ¡ r ¡ c(t); 0 i f c(t) ¡ r: (B.28)
From Eq. ( 31), the penetration is given by

(t) = 0 (a(t)) -4 0 t tc -(a(t)) d (t -) 9 9 c 2 ( ) -a 2 (t) c 2 ( ) -a 2 ( ) (B.29) or, in normalized form, (t) = A 2 (t) -3 t tc -(A(t)) d (t -) 9 9 C 2 ( ) -A 2 (t) C 2 ( ) -A 2 ( ) : (B.30) B.2.2. Gap
In this case, Eq. ( 33) becomes h(r; t) = h Hertz (r; t)

+ 0 2 t tc -(a(t)) d (t -) 9 9 [f H (r; a(t)) -Y (r -c( ))f H (r; c( ))] c 2 ( ) -a 2 ( ) (B.31)
or, in normalized form, where M a stands for min(A(t); A( )) and M for min(A(t); C( )).

H (R; t) = 2 f H (R; A(t)) + 3 t tc -(A(t)) d (t -) 9 9 × [f H (R; A(t)) -Y (R -C( ))f H (R; C( ))] C 2 ( ) -A 2 ( ) : (B.

Fig. 1 .

 1 Fig.1. Schematic plot of contact radius vs. time (line B). The r-t plane is divided into two parts: the g-domain (a(t) ¡ r), in which the (attractive) surface stress distribution is known, and the Â-domain (r ¡ a(t)), where the surface displacement is known. A solution is a time dependent-stress distribution which veriÿes the penetration equation (Eq. (31)) [resp. Eq. (4)] for t ¡ tmax [resp. tmax ¡ t]) and the self-consistency equation (Eq. (30)). The shaded rectangles exemplify the r-t zones relevant for the calculation of the gap at r 1 (inward) and r 2 (outward). Like the penetration, calculation of the stress inside the contact zone ( point) is done along a horizontal line. The functions ta -(r) and ta + (r) are deÿned in the text (Eqs. (34) and (43)).

Fig. 2 .

 2 Fig. 2. Exponential creep (Eq. (44)) and relaxation (Eq. (45)) functions used for the results shown below. The characteristic creep time is the time unit, and the characteristic creep parameter is k = 0:09.

Fig. 3 .

 3 Fig. 3. Example 1-Penetration history imposed on the system. Inward (fast (+10): zone 1-slow (+2): zone 2) and outward (fast (-10): zone 3) normalized penetration velocities.

Fig. 4 .

 4 Fig.4. Example 1-Contact radius as a function of time. In zones 1 and 2, the contact radius increases under the e ect of the interactions, in a manner similar to the classical elastic contact. In zone 3 (outward), in the adhesive contact, the contact radius stays roughly constant for about one time unit before curving down, in sharp contrast to the adhesionless case. We will call this constant contact radius domain the "stick" domain.

Fig. 5 .

 5 Fig.5. Example 1-Force as a function of time. In the adhesive and adhesionless cases, the forces are similar in zones 1 and 2 (inward), due to fast stress relaxation, most evident in zone 2. In the adhesive case however, the contact zone starts receding (in zone 3) only if su cient tensile stresses have built up in the contact zone, which results in a large adhesive force.

Fig. 6 .Fig. 7 .

 67 Fig.6. Example 1-Force as a function of penetration: note the linear regime in the "stick" domain. The theoretical slope for a at punch with the relaxed modulus (Eq. (46)) is indicated by the line segment under the curve.

Fig. 8 .Fig. 9 .

 89 Fig. 8. Example 2-Contact radius as a function of time. The points at which the maximum tensile (i.e. adherence) force is reached are indicated. Note the variation of the "stick time" with retraction velocity (see text for a qualitative analysis).

Fig. 10 .Fig. 11 .

 1011 Fig.10. Example 3-Penetration history imposed on the system: identical retraction velocity, but two di erent maximum penetrations.

Fig. 12 .

 12 Fig.12. Example 3-Force as a function of penetration. The weaker adherence force (-8:6 vs. -13:1) is due to the smaller maximum contact radius: for small penetrations, the contact radius relevant for the calculation of the adherence force is mainly controlled by the maximum contact radius.

Fig. 13 .

 13 Fig.13. Evidence for crack tip e ects (taken from Example 1). The contact zone radius (dashed-left-hand scale, note the high magniÿcation) continues increasing well into the decreasing displacement zone (zone 3) as a result of creep at the crack tip. The interaction zone extension c -a (line-right-hand scale) decreases-weakly-with decreasing crack tip velocity da=dt.

F

  gap and the self-consistency relation Due to the intertwining of time and space dependances, we introduce an equivalent form for the gap h(r) = h Hertz (r; a) + u JKR (r; a) + u ext (r; a); (B.39) where in Eq. (15), we single out the JKR term in the gap equation u JKR (r; a) = -s 2 ds = f d (r; d; e) -Y (r -f)f d (r; d; f) the case of the double-Hertz model, the three spatial integrals in Eqs. (B.43)-(B.45) are, respectively,I ext1 = -4 0 f t (r; c 2 ( ); max(a(t); a( )); c( )) c 2 ( ) -a 2 ( ) ; (B.48) I int1 = f t (r; ( ); a(t); min(a( ); a( ) 2 -r 2 9 9r h(r; t) dr: (B.51) The core of the calculation is I d (a; c; d; e) = I H (C(t); A(t)) -2 (C(t) -A(t))( (t) -0 (A(t))) + A int1 (B.57) andT = A ext1 + A int2 : ) -A 2 ( ) {I d (A(t); C(t); C 2 ( ); max(A(t); A( ))) -Y (C(t) -C( ))I d (A(t); C(t); C 2 ( ); C( ))} ; ×{I d (A(t); C(t); ( ); A(t))) -Y (c(t) -min(A( ); A( ))I d (A(t); C(t); ( ); min(A( ); A( )))} (B.60) ) -A 2 ( ) ×{I d (A(t); C(t); C 2 ( ); max(A(t); A( ))) -Y (C(t) -A( ))I d (A(t); C(t); C 2 ( ); A( ))}: (B.61) B.4. Viscoelastic bodies-the force As in Section B.1.3, the total force is the sum of the outer term F ext (t) = 0 c 2 (t) -a 2 (t) int (t) = F int;a (t) + F int;b t) + A(t)C 2 (t)

If the interaction zone may be modelled as elastic, then 1 2 12 2 (C(t) -A(t)):

Assuming fast stress relaxation, (t) (+∞) (54) and

which is the normalized JKR equation with relaxed Hertzian stresses. The maximum force is obtained for a radius

and is

In our example, this approximation results in an adherence force P max equal to -16:7, and a contact radius at the maximum force A Pm of 5.7, consistent with the values computed for large penetrations (Example 2). What happens, then, for penetrations smaller than A Pm (Example 3)? The contact radius at maximum tensile force is of course no longer given by Eq. (56). It is not exactly given by the maximum contact radius either because the interaction zone extension, and |g(a)|, increase when the contact radius velocity increases. However, at the same time, the contact radius decreases. It is a balance of these two competing e ects which determines the contact radius at maximum tensile force. The approximation (Eq. ( 55)) may still be useful, however. Indeed, substituting the calculated contact radius values in Eq. ( 55), we obtain approximate adherence forces of, respectively, -9:3 and -14:7 for computed values of -8:6 and -13:1.

Conclusion

In the ÿrst part of the paper, we have shown that the restricted self-consistent model for the adhesive contact of linear elastic bodies lends itself to generalization to linear viscoelasticity. In the relatively simple model developed in the present paper, two scalar equations (expressing the continuity of the stress distribution at the contact zone boundary and the self-consistency of the description of the adhesive stresses) have to be solved simultaneously for the contact zone radius and the interaction zone extension as a function of time. Complex histories of the contact radius lead to increasing numbers of nested time integrals in these equations, with decreasing practical utility for numerical calculations.

In the second part of the paper, a case study, we chose a highly viscoelastic response. We then evidence a "pinning" of the contact zone in the initial stages of the penetration Let us investigate the behaviour of the gap h(r) for r → a(t). For r = a(1 + ), one can show that, for a di erentiable function j(s), r a

Thus, continuity of  at a entails that the second term in Eq. ( 15) behaves as 3=2 at a. The Hertz term h Hertz (r; a) behaves similarly, since it as the same form (Eq. ( 16)), and therefore the O( 3=2 ) behaviour applies to the total gap.

Appendix B. Adhesive contact models

We derive the main results of the double-Hertz model in the elastic case before extending the results to the viscoelastic case.

B.1. Elastic case B.1.1. Stress

In the double-Hertz model, the normalized stress distribution outside the contact zone is ellipsoidal:

We calculate g outside the contact zone: from Eq. (A.2) we infer that for a 6 r 6 c