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The adhesive contact of viscoelastic spheres
G. Haiat, M.C. Phan Huy, E. Barthel∗

Laboratoire CNRS/Saint-Gobain, Surface du Verre et Interfaces, BP135 39 quai Lucien Lefranc,
99303 Aubervilliers, France

We have formulated the restricted self-consistent model for the adhesive contact of linear
viscoelastic spheres. This model is a generalization of both the Ting (J. Appl. Mech. 33 (1966)
845) approach to the viscoelastic contact of adhesionless spheres and the restricted self-consistent
model for adhesive axisymmetric bodies. We also show how the model can be used in practice
by giving a few examples of numerical solutions.

Keywords: Adhesion and adhesive; Crack propagation and arrest; Contact mechanics; Viscoelastic material;
Integral transforms

1. Introduction

The contact problem as we consider it nowadays seems to have =rst taken shape
in the last quarter of the 19th century when Hertz (1882) and Boussinesq (1885) pre-
sented solutions to the adhesionless contact of linear elastic spheres.
In the 1930s, the =eld of surface forces was mature enough for the problem of the

adhesion of rigid bodies and its relation to the surface interactions to be tackled by
Bradley (1932) and Derjaguin (1934).
In the 1960s, the problem of the adhesionless contact of viscoelastic spheres arose.

The additional di@culty over the elastic case is due to the dependence of the solution
upon the history of the system. In particular, the outward run (decreasing contact
radius) proved di@cult to solve, although a number of approaches were proposed. The
de=nitive solution was proposed by Ting (1966), and interest in the problem waned
soon afterwards.

∗ Corresponding author. Tel.: +33-1-48-39-55-57; fax: +33-1-48-34-74-16.
E-mail addresses: etienne.barthel@saint-gobain.com (E. Barthel).
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The 1970s saw a renewed interest in the adhesive contact of elastic bodies. The
famous controversy between the Russian (DMT) (Derjaguin et al., 1975) and English
(JKR) (Johnson et al., 1971) schools ended when it was =nally recognized that both
the models were indeed limiting cases within a more general model—the restricted
self-consistent model, a terminology coined by Hughes (1980), to our knowledge—
in which the interactions between the surfaces are explicitly accounted for in a more
physical manner (Tabor, 1977). The transition between these limit cases as the range
of the interactions goes from in=nity to zero was well demonstrated by numerical
calculations (Muller et al., 1980, 1982; Greenwood, 1997).
In the 1990s, the =rst analytical model of the transition was proposed by Maugis

(1992), who included the interaction between surfaces through a Dugdale model; in
this model, the DMT to JKR transition is spanned when the normalized interaction
parameter � goes from zero to in=nity. Soon afterwards, the usefulness of the Maugis
model was evidenced in a few experimental cases (Maugis and Gauthier-Manuel, 1994;
Barthel et al., 1996; Lantz et al., 1997). Simultaneously, the limitations of the Maugis
model were pointed out, and the model was generalized in diGerent ways (Barthel,
1998a, 1999; Greenwood and Johnson, 1998).
In the =nal years of the last century, the trend for the measurement of local mechan-

ical properties of solids triggered interest in the adhesive contact of viscoelastic solids.
Indeed, by reducing the size of the indenter, one unavoidably enters a regime in which
the surface forces are signi=cant. Thus, the coupling between mechanical response and
surface interactions has to be taken into account.
It is interesting to note that the limit cases of the elastic adhesive contact problem

turn out to be of limited interest in the case where the bulk response is viscoelastic.
In the DMT limit (for small �), indeed, the adhesive interaction stress is negligible
compared to the mechanical compliance of the solid. As a result, in this model, the
coupling between mechanical compliance and surface interactions is limited to the
addition of a global adhesive force, so that the richness of the basic phenomenon
cannot be accounted for. In contrast, in the JKR limit (for large �), the gradient of
the surface displacement is singular at the periphery of the contact zone, so that the
strain rate is locally in=nite, a shortcoming which deprives this limit of usefulness in
the viscoelastic case.
Indeed, it is actually required that the viscoelastic response be taken into account

to model the process zone. This was treated in depth by Schapery (1975a–c), with a
view to dealing with crack extension in viscoelastic solids, and subsequently for crack
healing (Schapery, 1989). His results lie at the root of further work on viscoelastic
cracks by Greenwood and Johnson (1981), Johnson (1999) and Lin et al. (1999).
For the adhesive viscoelastic contact, however, the crux of the problem is to treat

both the crack zone and the contact zone within a viscoelastic model. As in the ad-
hesionless case, the formulation of the inward run (increasing contact radius) is rea-
sonably straightforward. Hui et al. (1998) have given explicit results for the growing
contact area case. In contrast, the decreasing contact radius (outward run), although
of great signi=cance, because it controls the contact rupture and thus the adherence,
is still unsolved. Attard (2001a, b) has recently implemented a completely numerical
model, a viscoelastic version of the full self-consistent model in the special case of an
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exponential relaxation function, based on the canonical relation between the exponential
function and its derivative. Lin et al. (2001) have proposed an analytical formulation,
but this has up to now turned out to be of limited applicability.
In this paper, we show that the formulation of the adhesive contact of elastic bodies

we proposed earlier lends itself to the description of the linear viscoelastic case as
well. In addition to forming an extension of the restricted self-consistent model for
the adhesion of elastic bodies, the formulas we thus obtain reduce to the results of
Ting (1966) when the adhesive interaction is suppressed, thus providing a consistent
description of adhesive contact problems. In particular, the decreasing contact radius
case is treated on the same footing as the simpler increasing case.
We will =rst recall the basic equations for the restricted self-consistent model, in

the linear elastic case. We then extend this approach to the linear viscoelastic case.
Finally, we give an example of numerical solutions, for a strongly viscoelastic contact.

2. The restricted self-consistent model for the adhesion of elastic bodies

The self-consistent formulation of the adhesive contact problem has been reviewed
recently (Huguet and Barthel, 2000). Here, we will only recall the main points:

• the gap between the surfaces geometrically depends upon the surface displacement;
• the surface displacement depends upon the surface stress through the mechanical
behaviour of the solid;

• the surface stress depends, among other parameters, upon the gap through the nature
of the physical interaction between the surfaces.

These three interdependent relations must be satis=ed simultaneously, which results in
a self-consistent solution.

2.1. The restricted self-consistent model

We now further assume that the range of the repulsive part of the interaction is
much shorter than the range of the attractive part, as usually observed. This assump-
tion leads to the restricted self-consistent adhesive contact problem. The boundary
conditions are:

u(r) = �− f(r) for r ¡a; (1)

	(r) known for r ¿a; (2)

where u(r) is the normal surface displacement, � is the penetration, a the radius of the
contact zone and 	(r) the surface normal stress distribution. The shape of the indenter
f(r) is convex and smooth but otherwise not speci=ed.
The details of the physics of the adhesive process dictate the self-consistency equa-

tion. The diversity of the adhesive phenomena leads to diGerent possible self-consistency
equations. We here use a simple but approximate one, which is easily introduced if
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the adhesive process derives from an interaction potential V between the two surfaces,
though it is more general. Then, the adhesion energy is

w ≡ V (+∞)− V (0) =
∫ +∞

0
dz

dV
dz

=−
∫ +∞

0
dz 	(z): (3)

Introducing the gap

h(r) = u(r)− �+ f(r) (4)

and applying the change of variable z = h(r), the self-consistency equation (Eq. (3))
is

w =−
∫ +∞

a
	(r)

dh(r)
dr

dr: (5)

The strategy for =nding the solution to the self-consistent adhesive problem is to con-
verge to a stress distribution outside the contact zone (Eq. (2)), which veri=es both the
boundary conditions inside the contact zone (Eq. (1)) and the self-consistency equation
(Eq. (5)).
For a more detailed discussion of self-consistency equations, refer to Barthel (1998b,

1999).
Clearly, the calculation of the gap h(r) from the boundary conditions (Eqs. (1) and

(2)) is central to this self-consistent approach. We will now recall the main results
relevant to this point.

2.2. Surface elasticity

The necessary relations for the elastic case are essentially derived from the work of
Sneddon (1951, 1965) and Lowengrub and Sneddon (1965). In contrast to our recent
papers, we here introduce a new function, �, which is necessary in the viscoelastic
case, but redundant with the more usual g function in the elastic case. For axisymmetric
bodies, the auxiliary function g [resp. �] is a suitable transform (of the Abel type) of
the normal surface stress distribution 	 [resp. the normal surface displacement u]:

g(s) ≡ −
∫ +∞

s

r	(r)√
(r2 − s2)

dr; (6)

�(s) ≡ d
ds

∫ s

0

ru(r)√
s2 − r2

dr (7)

=

[
u(s= 0) + s

∫ s

0
dr

u′(r)√
(s2 − r2)

]
: (8)

These transforms are characterized by several properties:

Prop I: they can be analytically inverted (Appendix A.1);
Prop II: g(s) depends on 	(r) for r ¿ s only, and �(s) depends on u(r) for r ¡ s

only;
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Prop III: under the conditions of linear elastic behaviour and the absence of shear
stresses at the interface, mechanical equilibrium leads to

g(s) =K�(s) for all s; (9)

where K depends upon the Young modulus E and the Poisson ratio � as

K=
E

2(1− �2)
: (10)

Thus, from the boundary condition Eq. (1) and Prop. II (Eq. (8)), one obtains �(r)
inside the contact zone (r ¡a):

�(r) = �− �0(r); (11)

where

�0(r) =
d
dr

∫ r

0

sf(s)√
(r2 − s2)

ds= r
∫ r

0
ds

f′(s)√
(r2 − s2)

(12)

is a signature of the shape of the indenting bodies only. Similarly, we obtain g(r)
outside the contact zone (r ¿a) from the boundary condition Eqs. (2) and Prop. II
(Eq. (6)).
The main step in the calculation of the solution to the elastic problem is to obtain

the extensions of � and g to, respectively, outside and inside the contact zone. This
step is straightforward in the elastic case because of the simplicity of the equilibrium
relation Eq. (9) (Prop. III), except for the behaviour of g and � at the contact zone
boundary a. We will here require continuity of the g(r) function (and thus of the �(r)
function), which implies continuity of the stress distribution 	(r) (and therefore of the
derivative of the displacement =eld u(r)) at r = a. This condition actually provides an
additional equation, which we now discuss.

2.2.1. Penetration
From the speci=c form of � given by Eq. (11), and the equilibrium relation Eq.

(9), there results that the assumption of continuity of the stress distribution 	 at the
border of the contact zone a determines the penetration � as a function of the shape
of the bodies f(r), the contact radius a and the attractive stress distribution outside
the contact zone by

�= �0(a) +
1
K

g(a): (13)

A problem seems to arise in the JKR case, where it is well known that the stress is
discontinuous at r = a. However, it only appears as a limit case of models in which
the continuity is obeyed (Maugis, 1992; Barthel, 1998a).
Now that � is completely determined outside the contact zone, we can tackle the

calculation of the gap.
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2.2.2. The gap and the self-consistency equation
From the inverse of Eq. (7), Eq. (A.3), in Appendix A, the surface displacement

can be split into

u(r) =
2
�

∫ a

0
ds

�(s)√
r2 − s2

+
2
�

∫ r

a
ds

�(s)√
r2 − s2

: (14)

It can be shown that a convenient form for the gap (see Appendix A.2) is

h(r) = hHertz(r; a) +
2
�

∫ r

a

�(s)− �(a)√
r2 − s2

ds (15)

with

hHertz(r; a) =
2
�

1
R

fH(r; a); (16)

where

fH(r; a) ≡
∫ r

a
ds

(s2 − a2)√
r2 − s2

=
{
a
2

√
r2 − a2 +

(
r2

2
− a2

)
arccos

(a
r

)}
: (17)

This form of the gap will be used below to compute the self-consistency equation in
a special case, the general expression being too complex to be of real use.
In addition, from this formulation (Eq. (15)), it becomes apparent that, as noted

above, the continuity of � entails the suppression of the square root singularity of the
gap h at a (cf. Appendix A.2).

2.2.3. Force
Similarly, the total force,

F = 4
∫ +∞

0
dr g(r) (18)

can be split into two terms. The outer term is

Fext = 4
∫ +∞

a
dr g(r): (19)

The inner term is

Fint = 4
∫ a

0
dr g(r) = 4K(a�− �0(a)) (20)

= FH(a) + FJKR(a) (21)

with

FH(a) = 4K(a�0(a)− �0(a)); (22)

FJKR(a) = 4ag(a); (23)

where FH is the non-adhesive Hertz force which, like the function

�0(r) ≡
∫ r

0
ds �0(s) (24)

depends only upon the shape of the indenter, and FJKR is the corrective JKR-like Mat
punch term.
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2.2.4. Resolution of the adhesive contact problem
In the experiments, two main possibilities are met, where the displacement (=xed

grip) or the force (=xed load) are prescribed. Assuming a self-consistent model as in
Eq. (5), the problem is thus to determine the contact radius a and the attractive stress
distribution by

(a) in a =xed grip experiment, solving the displacement (Eq. (13)) and self-consistency
(Eq. (5)) equations simultaneously, and then calculating the force;

(b) in a =xed load experiment, solving the force (Eq. (18)) and self-consistency (Eq.
(5)) equations simultaneously and then calculating the displacement.

Examples of such procedures can be found in Barthel (1998b, 1999) and Greenwood
and Johnson (1998).

3. Adhesion of viscoelastic bodies

3.1. Linear viscoelastic behaviour

Assuming the simplest viscoelastic behaviour—a constant Poisson ratio—the stress
	 and deformation � now obey

	(t) =
∫ t

0
d�  (t − �)

d
d�

�(�); (25)

�(t) =
∫ t

0
d� �(t − �)

d
d�

	(�); (26)

where the relaxation function  (t) and the creep function �(t) are inverse for this
product of convolution. Therefore we have

	(t) = 	(t0) +
∫ t

t0
d�  (t − �)

9
9�

∫ �

t0
d�′�(�− �′)

9
9�′ 	(�

′) (27)

provided 	(t) is independent of time for t ¡ t0.
Since there is no coupling through the response functions  and � between the

temporal and spatial variations of the physical quantities, the equilibrium equation (Eq.
(9)) for the adhesive contact between a rigid indenter and a viscoelastic solid reads

g(t) =
∫ t

0
d�  (t − �)

d
d�

�(�) (28)

or its inverse

�(t) =
∫ t

0
d� �(t − �)

d
d�

g(�): (29)

The essential Eqs. (5), (13), (15), and (18) remain unaltered, except for the introduction
of the time dependence. For instance, the self-consistency equation Eq. (5) now reads

w =
∫ +∞

a(t)
	(r; t)

d
dr

h(r; t) dr: (30)
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Fig. 1. Schematic plot of contact radius vs. time (line B). The r–t plane is divided into two parts: the
g-domain (a(t)¡r), in which the (attractive) surface stress distribution is known, and the �-domain
(r ¡a(t)), where the surface displacement is known. A solution is a time dependent-stress distribution
which veri=es the penetration equation (Eq. (31)) [resp. Eq. (4)] for t ¡ tmax [resp. tmax ¡t]) and the
self-consistency equation (Eq. (30)). The shaded rectangles exemplify the r–t zones relevant for the calcu-
lation of the gap at r1 (inward) and r2 (outward). Like the penetration, calculation of the stress inside the
contact zone (	 point) is done along a horizontal line. The functions ta− (r) and ta+(r) are de=ned in the
text (Eqs. (34) and (43)).

The guideline to establishing the adhesive viscoelastic contact equations is thus to
express these equations at time t as a function of known quantities at time �¡ t.
However, for a given �¡ t, we directly know �(r; �) for r ¡a(�) only (from the
datum of �(�) and �0(r)) and g(r; �) for a(�)¡r only. This de=nes two time–space
domains, the g- [resp. �-] domain where g [resp. �] is known (Fig. 1). The calculation
of the extensions of each function (g in the �-domain and conversely) is now more
complex, because the simple proportionality relation Eq. (9) is replaced by Eq. (28) or
its inverse Eq. (29), which sometimes must be used recursively, leading to cumbersome
nested temporal integrals.
We will therefore restrict ourselves to the two cases which are most signi=cant:

for (a) increasing and (b) subsequently decreasing contact radius. Indeed, as in the
adhesionless case, for more complex loading histories, the equations which describe
the response of the system become increasingly unwieldy, although they can still be
derived with the methods developed in the present paper.
The next two sections will brieMy present the general results for the viscoelastic

adhesive contact, while the rest of the paper is devoted to the explicit development of
a special case as an example.

3.2. Increasing contact radius

This is the most straightforward case, since the history of the system is simple enough
to easily be taken into account: for a given radius r, we meet at most once with the
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boundary B between the two domains (Fig. 1). Except for the stress distribution inside
the contact zone, and thus the force (Section 3.2.4), all relevant quantities can be
expressed with one single temporal integral.

3.2.1. Displacement
From Eq. (29), the continuity of � at the edge of the contact zone, which determines

�, now yields

�(t) = �0(a(t)) +
∫ t

0
d� �(t − �)

9
9� g(a(t); �); (31)

which is the form of Eq. (13) valid for the viscoelastic case in the increasing contact
radius regime.

3.2.2. The gap
Now in the gap equation Eq. (15), we have

�(r; t) =
∫ t

0
d� �(t − �)

9
9� g(r; �) (32)

and thus

h(r; t) = hHertz(r; t) +
2
�

∫ t

0
d� �(t − �)

9
9�

∫ r

a(t)
ds

g(s; �)− g(a(t); �)√
r2 − s2

(33)

from which the self-consistency equation is derived through Eq. (30).

3.2.3. The stress distribution inside the contact zone
Inside the contact zone (r ¡a(t)), the stress distribution can be calculated from the

successive use of Eqs. (28) and (11). However, in Eq. (28), the time domain extends
from 0 to t, while �(r; t) is known only inside the �-domain, that is between ta−(r)
and t, where ta−(r) is de=ned in the increasing contact radius zone (Fig. 1) by

a(ta−(r)) = r: (34)

Therefore, outside the �-domain, we have to express �(r; �) as a function of g(r; �′)
through Eq. (29), from which the following nested integral expression results:

g(r; t) =
∫ t

ta− (r)
d�  (t − �)

9
9�{�(�)− �0(r)}

+
∫ ta− (r)

0
d�  (t − �)

9
9�

∫ �

0
d�′ �(�− �′)

9
9�′ g(r; �

′): (35)

Note that this expression is actually also valid in the decreasing contact radius regime,
where it lies at the root of the equation giving the penetration.

3.2.4. The force
The total force

F(t) = Fext(t) + Fint(t) (36)
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is the sum of the outer term

Fext(t) = 4
∫ ∞

a(t)
dr g(r) (37)

and the inner terms

Fint(t) = Fint; a(t) + Fint; b(t) (38)

with

Fint; a(t) = 4
∫ t

0
d�  (t − �)

d
d�

∫ min(a(t);a(�))

0
dr (�(�)− �0(r)) (39)

and, in a manner similar to the previous paragraph,

Fint; b(t) = 4
∫ ta− (a(t))

0
d�  (t − �)

d
d�

∫ �

0
d�′ �(�− �′)

d
d�′

∫ a(t)

a(�)
dr g(r; �′): (40)

Here again, the expression for the force is valid for both in- and outward runs.

3.3. Decreasing contact radius

In the decreasing contact radius regime, we may meet up to twice with the boundary
B (Fig. 1), from which increasingly complex expressions result.

3.3.1. Displacement
Using Eq. (35), continuity of g at the periphery of the contact now gives

g(a(t); t) =
∫ t

ta− (a(t))
d�  (t − �)

9
9�{�(�)− �0(a(t))}

+
∫ ta− (a(t))

0
d�  (t − �)

9
9�

(∫ �

0
d�′ �(�− �′)

9
9�′ g(a(t); �

′)
)

; (41)

which is the form of Eq. (13) valid in the decreasing contact radius regime. We
note that this equation is simply an extension of the integral equation characteristic of
the decreasing contact radius case in the adhesionless contact (Ting, 1966), which is
recovered here for g=0. Thus, as in the non-adhesive case, the penetration � is to be
calculated from this integral equation.
In addition, we note that at t = ta−(a(t)), that is to say when the contact radius

reaches its maximum amax = a(tmax), the second term on the right-hand side of Eq.
(41) is shown through Eq. (27) to equal g(a(t); t). Thus the convolution integral of
�(�) is zero, with the simple but prominent implication that �(t) is continuous at tmax.

3.3.2. The gap and the self-consistency relation
In the calculation of the gap, for a given radius we meet twice with the boundary B

between domains, leading to an increasing number of nested temporal integrals. As an
example of the recursive use of Eqs. (28) and (29) already applied in Section 3.2.3,
we here explicitly give the suitable expression for � to calculate the gap, in which each
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term is expressed as a function of known quantities (the displacement in the �-domain,
the stress distribution in the g-domain):

�(s; t) =
∫ ta− (s)

0
d� �(t − �)

9
9� g(s; �) +

∫ t

ta+ (s)
d� �(t − �)

9
9� g(s; �)

+
∫ ta+ (s)

ta− (s)
d� �(t − �)

9
9�

{∫ �

ta− (s)
d�′  (�− �′)

9
9�′ �(s; �

′)

+
∫ ta− (s)

0
d�′  (�− �′)

9
9�′

∫ �′

0
d�′′ �(�′ − �′′)

9
9�′′ g(s; �

′′)

}
; (42)

where ta+(r) is de=ned in the decreasing contact radius zone (Fig. 1) by

a(ta+(r)) = r: (43)

Inverting the order of the temporal and the spatial integrals, we obtain an expression
for u where all terms can be calculated as a function of the history of the system.
Here again, from the gap expression, the self-consistency equation is derived through
Eq. (30). These expressions are given explicitly in Appendix B (Eq. (B.42)).

3.4. The resolution of the adhesive viscoelastic contact problem

In this case, the solution proceeds as follows: one has to simultaneously solve the
penetration equation (Eqs. (31) or (41) —the latter one being an integral equation)
[resp. the force equation (Eq. (36))] and the self-consistency equation Eq. (30) for a
=xed grip [resp. =xed load] experiment. We now show that this approach is feasible
in practice with the following examples.

4. Double–Hertz model

To model experiments with a sphere, we assumed a paraboloidal shape of the in-
denter. Other shapes can naturally be dealt with, and nano-indentation addicts may
here assume a sphere-terminated cone, and modify �0 and �0 accordingly. As for the
interaction zone, we at =rst implemented a Dugdale model. The resulting model was
thus the viscoelastic Dugdale–Maugis model. In practice however, we found it much
more advantageous to avail ourselves of the so called ‘double-Hertz’ model, put for-
ward by Greenwood and Johnson (1998), where the attractive stress distribution inside
the interaction zone, bounded by the contact radius a and the interaction radius c, is
assumed to be ellipsoidal. Indeed, in this model, we bene=t both from the absence of
stress discontinuity at the periphery of the interaction zone and from the analyticity of
all the spatial integrals. As a result, the numerical calculations are signi=cantly easier.
All the equations used are given explicitly in Appendix B.
A program has been implemented to work with any pair of viscoelastic functions,

provided they are inverse for the convolution integrals Eqs. (28) and (29). In the
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Fig. 2. Exponential creep (Eq. (44)) and relaxation (Eq. (45)) functions used for the results shown below.
The characteristic creep time is the time unit, and the characteristic creep parameter is k = 0:09.

following, we assume a normalized standard viscoelastic solid model with creep and
relaxation functions given by

�(t) = 1 +
k

1− k
(1− exp(−t)); (44)

(t) = k + (1− k) exp(−t=k); (45)

where k is the characteristic parameter of the normalized creep process. The relaxation
and creep functions for k =0:09, as assumed below, are illustrated in Fig. 2. Note that
for this value of k, the relaxed modulus is about ten times smaller than the instantaneous
modulus.
As mentioned in the Introduction, in normalized form, in the elastic case (paraboloidal

indenter with radius R, adhesion energy w: see Eqs. (B.19)–(B.22) for the details of
the normalization), the adhesive interaction is characterized by a single parameter �.
We here use the same normalization, where the instantaneous modulus  (0) is now
substituted for the elastic modulus.
As an example, let us assume  (0)=100 MPa, R=2 cm and w=50 mJm−2; we then

have the following normalizing factors: force, P0 � 3 mN; contact radius, A0 � 90 �m;
penetration: $0 � 0:4 �m and stress: 	0 � 0:4 MPa.
In the following section, we discuss numerical results obtained for an adhesion pa-

rameter � = 4. Thus, we present examples for a rather extreme (and computationally
more demanding) case of notably viscous solid with sizeable adhesion.
We assume a =xed grip experiment, and simultaneously solve Eqs. (B.30) and (B.37)

(inward run), or (B.38) and (B.56) (outward run), for the normalized radius of the
contact zone A(t) and the normalized radius of the interaction zone C(t). We suppose
zero penetration and an instantaneous switch-on of the interactions at t=0. The temporal
integrals were calculated with a Simpson rule method, with a convergence criterion of
10−4. The three-integrals term has been neglected throughout, due to long computation
times. We checked in a few cases that inclusion of this term leads to minor changes
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Fig. 3. Example 1—Penetration history imposed on the system. Inward (fast (+10): zone 1—slow (+2):
zone 2) and outward (fast (−10): zone 3) normalized penetration velocities.

in the contact radius history at the turning point (maximum contact radius), and is not
signi=cant at later stages.

4.1. Numerical results

4.1.1. Example 1: adhesionless contact—adhesive contact
We here contrast the adhesive and adhesionless systems. The indenter is driven with

a simple penetration history (Fig. 3) with a penetration velocity of +10 (inward part of
the curve—zone 1) or −10 (outward—zone 3), normalized to the characteristic creep
time. An intermediate period of reduced penetration velocity (+2—zone 2) is provided
for, so as to better illustrate the response of the system.
Between these two cases, the main diGerence in the inward part of the run (zones

1 and 2) lies in the contact radius (Fig. 4), which, for an identical penetration, is
increased through the interactions. However, in the inward run, the force curves for
the two cases are quite similar, featuring in particular a sharp relaxation process in
zone 2 (Fig. 5). The one noteworthy diGerence is to be found at the very beginning of
the curve, where the initially adhesive (i.e. negative) total force, in the adhesive case,
swiftly decays into repulsive.
In the third zone, the overall diGerences between the two cases are more striking.

When the sphere is retracted, a sharp decrease of the contact radius (Fig. 4) to zero
occurs for the adhesionless contact, while the contact radius goes on increasing and
then stays roughly constant for one unit of time when adhesion is present, before it
=nally bends down. In the constant contact radius region, the force vs. penetration
curve (Fig. 6) is found to be linear. Finally, the maximum tensile force is −13:4,
considerably larger than the bare −1:5 expected in an elastic model for such a large
value of �. Thus in the viscoelastic case, the contact rupture is characterized by two
parameters: the “stick time” between the inception of retraction and the decrease of
the contact radius, and the (large) adhesive force.
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Fig. 4. Example 1—Contact radius as a function of time. In zones 1 and 2, the contact radius increases
under the eGect of the interactions, in a manner similar to the classical elastic contact. In zone 3 (outward),
in the adhesive contact, the contact radius stays roughly constant for about one time unit before curving
down, in sharp contrast to the adhesionless case. We will call this constant contact radius domain the “stick”
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Fig. 5. Example 1—Force as a function of time. In the adhesive and adhesionless cases, the forces are
similar in zones 1 and 2 (inward), due to fast stress relaxation, most evident in zone 2. In the adhesive case
however, the contact zone starts receding (in zone 3) only if su@cient tensile stresses have built up in the
contact zone, which results in a large adhesive force.

4.1.2. Example 2: in=uence of the retraction velocity
In the second series of calculations, we changed the retraction velocity, for identical

inward runs (Fig. 7). The stick time increases markedly when the retraction velocity
decreases (Fig. 8). The adhesive force (Fig. 9), however, is little aGected (an appar-
ent dependence as the power 0.1 of the contact radius velocity at maximum tensile
force). This behaviour, which cannot be explained by crack tip eGects only, will be
qualitatively explained in the discussion.

14



-15

-10

-5

0

5

10

15

Fo
rc

e

2520151050-5-10-15
Penetration

 adhesionless
 with adhesion
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Fig. 7. Example 2—Penetration history imposed on the system. An identical fast inward run is followed by
retraction at three diGerent velocities.

4.1.3. Example 3: shallower indents
Everyday experience or laboratory experiments evidence an increase of the adhesive

force with dwell time or maximum penetration depth. The present system features such
a behaviour as well. Using the penetration velocities displayed in Fig. 10, decreasing
the maximum penetration, which occurs at t = 2, from 20 to 6, the maximum contact
radius (Fig. 11) drops from about 5 to about 3, and with identical retraction velocities,
we calculate a decrease of the adherence force (Fig. 12) from 13.1 to 8.6.
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Fig. 8. Example 2—Contact radius as a function of time. The points at which the maximum tensile (i.e.
adherence) force is reached are indicated. Note the variation of the “stick time” with retraction velocity (see
text for a qualitative analysis).
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Fig. 9. Example 2—Force as a function of penetration. A weak decrease of the adherence force with
decreasing retraction velocity (−15:8 for v=30, −14:9 for v=15, −13:7 for v=7:5) is calculated, while the
penetration decreases markedly, to negative values for the two slower velocities, because of the competition
between creep under mainly compressive (zones 1 and 2) or mainly tensile (zone 3) stresses.

4.2. Discussion

4.2.1. Crack tip e?ects—creep
The typical size of the interaction zone is of the order 5 × 10−2, to be compared

with the 8×10−2 expected for an elastic solid with the instantaneous modulus. Typical
contact radius velocities are in the range 1–4, except in the stick zone, where it goes
to zero. Thus, in the crucial zones—zone 1, which determines the maximum contact
radius, and the rupture zone (later stage of zone 3)—, the characteristic time of the
interaction stress is of the order of a few 10−2, well below the creep time (unity). As
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Fig. 10. Example 3—Penetration history imposed on the system: identical retraction velocity, but two diGerent
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Fig. 11. Example 3—Contact radius as a function of time. The points at which the maximum tensile (i.e.
adherence) force is reached are indicated.

a result, the interaction zone behaves essentially elastically, with an eGective modulus
close to the instantaneous value. It is only in the stick zone (constant contact radius)
that, due to reduced crack tip velocities, viscoelastic crack tip eGects become apparent
mainly under the form of a slow increase of the contact radius, due to creep, while
the interaction zone contracts by a factor of the order of unity (Fig. 13), because the
solid is eGectively softer at long time scales.

4.2.2. Contact zone e?ects—stress relaxation
On the other hand, most of the eGects described above may be ascribed to stress

relaxation within the contact zone. This relaxation is particularly noticeable in zone 2,
where the force decay has a =tted characteristic time of 0.089 (Fig. 5), to be compared
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Fig. 12. Example 3—Force as a function of penetration. The weaker adherence force (−8:6 vs. −13:1)
is due to the smaller maximum contact radius: for small penetrations, the contact radius relevant for the
calculation of the adherence force is mainly controlled by the maximum contact radius.
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Fig. 13. Evidence for crack tip eGects (taken from Example 1). The contact zone radius (dashed—left-hand
scale, note the high magni=cation) continues increasing well into the decreasing displacement zone (zone
3) as a result of creep at the crack tip. The interaction zone extension c − a (line—right-hand scale)
decreases—weakly—with decreasing crack tip velocity da=dt.

with the theoretical k=0:09 (Eq. (45)). Similarly, in the region where the contact radius
is about constant, the stresses relax rapidly and the system actually behaves as a Mat
punch of radius equal to the contact radius a with a modulus equal to the in=nite-time
modulus K∞. Indeed, in this case, the predicted slope (or contact stiGness) is

( = 3
2K∞a; (46)

which in the present case is equal to 0.69, identical to the slope in the calculated
solution. Similarly, the stick zone, where the contact radius is constant, results from
the weak elastic energy build-up in the contact zone. It is only for a sizeable backward
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displacement that tensile stresses at the crack tip =nally meet up with the adhesive
interactions. The stick time can thus be estimated from the following argument: in Eq.
(41), the integral

I =
∫ t

ta− (a(t))
d�  (t − �)

9
9�{�(�)− �0(a(t))} (47)

is an expression of (the Abel transform of) the stress at a(t) induced by the retraction
motion �(�), where the last (double-integral) term has been neglected. It has to equal
the (Abel transform of the) stress generated by the interactions, which is g(a(t)). Now,
taking rather arbitrarily an interaction zone size of 4 × 10−2—not quite the elastic
limit, since we are still in a low crack velocity region (Fig. 13), a contact radius of 8,
Eq. (B.23) yields a value g(a(t)) � 3. Now, during the “stick” phase, the penetration is
monotonously decreasing. Then, taking into account the present form for the relaxation
function Eq. (45), for k�1,

I � k
d�
dt

(
t − tmax + 1− exp

(
− t − tmax

k

))
: (48)

From this equation and g(a(t)) = 3, we estimate that t − tmax is, respectively, 0.2, 1
and 3 for penetration velocities of 30, 15 and 7.5, in reasonable agreement with the
stick times observed in Fig. 8.
Along the same line of thought, in the outward run, reduction of the crack size

requires the build-up of su@cient tensile stresses inside the contact zone. However, in
contrast to an elastic behaviour, where compressive and tensile stresses evolve simulta-
neously, in the viscoelastic case, the compressive contact zone stresses have relaxed and
tensile stresses dominate in the outward leg. Thus, the balance between compressive
and tensile stresses found in the elastic case is oGset for a viscoelastic contact, which
entails an adhesive force much larger than expected in a completely elastic problem,
along with a reduced release of elastic energy. Thus, stress relaxation inside the contact
zone is the main source of energy dissipation.
More precisely, in a JKR-like regime, where the interaction zone is small, the force

is dominated by the inner term in

P � 3
2

∫ t

0
d�  ̃ (t − �)

d
d�

(
A(t)$(�)− A(t)3

3

)
; (49)

while

G(A) �
∫ t

0
d�  ̃ (t − �)

d
d�

($(�)− A(t)2); (50)

which combine to give an expression quite similar to the one proposed by Johnson (1999):

P �  ̃ (t)A(t)3 + 3
2G(A(t))A(t) (51)

with

G(A) =−�
3
�
√

C2 − A2: (52)
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If the interaction zone may be modelled as elastic, then

1 � �2

12
�2(C(t)− A(t)): (53)

Assuming fast stress relaxation,

(t) �  (+∞) (54)

and

P �  (+∞)A(t)3 −
√
6A(t)3=2; (55)

which is the normalized JKR equation with relaxed Hertzian stresses. The maximum
force is obtained for a radius

APm =
1

(+∞)2=3

(
3
2

)1=3

(56)

and is

Pmax =− 1
(+∞)

3
2
: (57)

In our example, this approximation results in an adherence force Pmax equal to −16:7,
and a contact radius at the maximum force APm of 5.7, consistent with the values
computed for large penetrations (Example 2).
What happens, then, for penetrations smaller than APm (Example 3)? The contact

radius at maximum tensile force is of course no longer given by Eq. (56). It is not
exactly given by the maximum contact radius either because the interaction zone exten-
sion, and |g(a)|, increase when the contact radius velocity increases. However, at the
same time, the contact radius decreases. It is a balance of these two competing eGects
which determines the contact radius at maximum tensile force. The approximation (Eq.
(55)) may still be useful, however. Indeed, substituting the calculated contact radius
values in Eq. (55), we obtain approximate adherence forces of, respectively, −9:3 and
−14:7 for computed values of −8:6 and −13:1.

5. Conclusion

In the =rst part of the paper, we have shown that the restricted self-consistent model
for the adhesive contact of linear elastic bodies lends itself to generalization to linear
viscoelasticity. In the relatively simple model developed in the present paper, two
scalar equations (expressing the continuity of the stress distribution at the contact zone
boundary and the self-consistency of the description of the adhesive stresses) have to be
solved simultaneously for the contact zone radius and the interaction zone extension as
a function of time. Complex histories of the contact radius lead to increasing numbers of
nested time integrals in these equations, with decreasing practical utility for numerical
calculations.
In the second part of the paper, a case study, we chose a highly viscoelastic response.

We then evidence a “pinning” of the contact zone in the initial stages of the penetration
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decrease. This “sticking” phenomenon is due to the fast relaxation of the stresses
(both compressive and tensile) inside the contact zone, so that crack back-propagation
requires the renewal of tensile stresses inside the contact zone, as described by Eq.
(48). As a result, the adherence force is magni=ed because the tensile stresses needed
for crack retraction are no longer balanced by equivalent compressive stresses, since
the latter have already relaxed (Eq. (55)). Thus, we =nd that the ampli=cation of the
adherence force occurs because strain and stress inside the contact zone are out of
phase, as typical of viscoelasticity. Crack tip eGects play a more subdued role.
Ongoing work deals with the development of approximate models and the incorpo-

ration of roughness therein.

Appendix A. General relations

A.1. Inversion of the auxiliary functions g and �

The inverse relations to Eqs. (6) and (7) are:

s	(s) =− 2
�

d
ds

∫ +∞

s
dr

rg(r)√
(r2 − s2)

(A.1)

or

	(s) =
2
�

[∫ +∞

s
dr

g′(r)√
(r2 − s2)

]
(A.2)

and

u(r) =
2
�

∫ r

0

�(s)√
(r2 − s2)

ds: (A.3)

A.2. General expression for the gap

We derive Eq. (15) from Eq. (14)

h(r) ≡ u(r)− �+ f(r) (A.4)

=
2
�

{∫ a

0
ds

�− �0(s)√
r2 − s2

− �
2
(�− f(r)) +

∫ r

a
ds

�(s)√
r2 − s2

}
(A.5)

=
2
�

{∫ r

a
ds

�0(s)− �√
r2 − s2

+
∫ r

a
ds

�(s)√
r2 − s2

}
(A.6)

=
2
�

{∫ r

a
ds

�0(s)− �0(a)√
r2 − s2

+
∫ r

a
ds

�(s)− �(a)√
r2 − s2

}
; (A.7)

where the equality of Eq. (A.5) and (A.6) results from the inversion of the de=nition
of �0 (cf. Eq. (6) and its inverse Eq. (A.2)). In the case of the paraboloidal indenter,
the =rst term is the Hertz gap Eq. (16).
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Let us investigate the behaviour of the gap h(r) for r → a(t). For r = a(1 + �), one
can show that, for a diGerentiable function j(s),∫ r

a
ds

j(s)√
r2 − s2

= (2�)1=2j(a) + O(�3=2): (A.8)

Thus, continuity of � at a entails that the second term in Eq. (15) behaves as �3=2 at
a. The Hertz term hHertz(r; a) behaves similarly, since it as the same form (Eq. (16)),
and therefore the O(�3=2) behaviour applies to the total gap.

Appendix B. Adhesive contact models

We derive the main results of the double-Hertz model in the elastic case before
extending the results to the viscoelastic case.

B.1. Elastic case

B.1.1. Stress
In the double-Hertz model, the normalized stress distribution outside the contact zone

is ellipsoidal:

	(r) =




−	0

√
c2 − r2

c2 − a2
if a6 r6 c;

0 if c¡ r:

(B.1)

We calculate g outside the contact zone: from Eq. (A.2) we infer that for a6 r6 c

g′(r) =−�
2

	0√
c2 − a2

r; (B.2)

so that

g(r) =




�
4
	0

r2 − c2√
c2 − a2

if a6 r6 c;

0 if c¡ r:

(B.3)

B.1.2. Penetration
From Eqs. (13) and (B.3), we obtain the displacement

�= �0(a)− �	0

4K

√
c2 − a2: (B.4)

B.1.3. Force
For a paraboloidal indenter and a double-Hertz model, the inner term is

Fint =
8Ka3

3R
− �	0a

√
c2 − a2: (B.5)

22



In a double-Hertz model,

Fext =
�	0√
c2 − a2

(
−2
3
c3 − 1

3
a3 + c2a

)
: (B.6)

Altogether,

F(a) =
8Ka3

3R
− 2�	0

3
c3 − a3√
c2 − a2

: (B.7)

B.1.4. The gap
With Eqs. (15) and (9), and using the relation

Y (c − s)(s2 − c2)− (a2 − c2) = Y (s− c)(c2 − s2) + (s2 − a2); (B.8)

where Y is the Heaviside step function, we have

h(r)

= hHertz(r; a) +
	0

2K
√
c2 − a2

∫ r

a

(s2 − a2)− Y (s− c)(s2 − c2)√
r2 − s2

ds (B.9)

= hHertz(r; a) +
	0

2K
√
c2 − a2

[∫ r

a

(s2 − a2)√
r2 − s2

− Y (r − c)
∫ r

c

(s2 − c2)√
r2 − s2

ds
]

(B.10)

= hHertz(r; a) +
	0

2K
√
c2 − a2

{fH(r; a)− Y (r − c)fH(r; c)}; (B.11)

where fH is de=ned by Eq. (17). Combining these expressions

h(r) =
(

2
�R

+
	0

2K
√
c2 − a2

)
fH(r; a)− 	0

2K
√
c2 − a2

Y (r − c)fH(r; c): (B.12)

B.1.5. Self-consistent approach
The =rst term only in Eq. (B.12) contributes to the integral. We have to calculate

I =
∫ c

a
dr
√

c2 − r2
9
9r fH(r; a): (B.13)

It can be shown that

I =
�
6
IH(c; a) (B.14)

with

IH(c; a) = (c − a)2(c + 2a): (B.15)

Thus

w =
(

2
�R

+
	0

2K
√
c2 − a2

)
	0√

c2 − a2
I (B.16)
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and

w =
1
3

(
1
R
+

�	0

4K
√
c2 − a2

)
	0√

c2 − a2
IH(c; a): (B.17)

B.1.6. Normalization
In the case of the sphere, we de=ne

K =
8K
3

: (B.18)

Following Maugis (1992), we normalize F by �wR, and introduce

P =
F

�wR
; (B.19)

A=
a

(�wR2=K)1=3
; (B.20)

$=
�

(�2w2R=K2)1=3
; (B.21)

�=
2	0

(�wK2=R)1=3
: (B.22)

Then

G(S) =
�
3
�

S2 − C2
√
C2 − A2

; (B.23)

$= A2 − �
3
�
√

C2 − A2; (B.24)

P = A3 − �
3
�

C3 − A3
√
C2 − A2

(B.25)

and

H (R) =
2
�

{(
1 +

�
3
�

1√
C2 − A2

)
fH(R; A)

− �
3
�

1√
C2 − A2

Y (R− C)fH(R; C)

}
; (B.26)

1 =
�
6
�
(
1 +

�
3
�

1√
C2 − A2

)
IH(C; A)√
C2 − A2

: (B.27)

B.2. Viscoelastic bodies—increasing contact radius

B.2.1. Displacement
The surface stress outside the contact zone (a(t)¡r) is now given by

	(r; t) =




−	0

√
c(t)2 − r2

c(t)2 − a(t)2
if a(t)¡r¡c(t);

0 if c(t)¡r:

(B.28)
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From Eq. (31), the penetration is given by

�(t) = �0(a(t))− �
4
	0

∫ t

tc− (a(t))
d� �(t − �)

9
9�

c2(�)− a2(t)√
c2(�)− a2(�)

(B.29)

or, in normalized form,

$(t) = A2(t)− �
3
�
∫ t

tc− (A(t))
d� �(t − �)

9
9�

C2(�)− A2(t)√
C2(�)− A2(�)

: (B.30)

B.2.2. Gap
In this case, Eq. (33) becomes

h(r; t) = hHertz(r; t)

+
	0

2

∫ t

tc− (a(t))
d� �(t − �)

9
9�

[fH(r; a(t))− Y (r − c(�))fH(r; c(�))]√
c2(�)− a2(�)

(B.31)

or, in normalized form,

H (R; t) =
2
�

{
fH(R; A(t)) +

�
3
�
∫ t

tc− (A(t))
d� �(t − �)

9
9�

× [fH(R; A(t))− Y (R− C(�))fH(R; C(�))]√
C2(�)− A2(�)

}
: (B.32)

B.2.3. Self-consistency
We compute

w =
∫ c(t)

a(t)
	(r; t)

d
dr

h(r; t) dr: (B.33)

This =rst term in Eq. (B.31) contributes as in the elastic case, or

	0

3R
√

c(t)2 − a(t)2
IH(c(t); a(t)): (B.34)

The second term contributes

	2
0

2
√

c(t)2 − a(t)2

∫ t

tc− (a(t))
d� �(t − �)

9
9�

[
1√

c(�)2 − a(�)2

∫ c(t)

a(t)
dr
√
(c(t)2 − r2)

9
9r [fH(r; a(t)− Y (r − c(�))fH(r; c(�))]

]
(B.35)

25



and the self-consistency equation is

w=
	0

3
√

c(t)2 − a(t)2

{
1
R
IH(c(t); a(t))

+
�	0

4

∫ t

tc− (a(t))
d� �(t − �)

9
9�

IH(c(t); a(t))− IH(c(t); c(�))√
c(�)2 − a(�)2

}
(B.36)

or, in normalized form,

1 =
��

6
√

C(t)2 − A(t)2

{
IH(C(t); A(t))

+
��
3

∫ t

A(t)
d� �(t − �)

9
9�

IH(C(t); A(t))− IH(C(t); C(�))√
C(�)2 − A(�)2

}
: (B.37)

B.3. Viscoelastic bodies—decreasing contact radius

B.3.1. Displacement
The normalized form of Eq. (41) is

0 =
∫ t

ta− (A(t))
d�  ̃ (t − �)

d
d�

{$(�)− $0(A(t))}

+
�
3
�

[√
C2(t)− A2(t) +

∫ ta− (A(t))

0
d�  ̃ (t − �)

d
d�

×
∫ �

0
d�′ �̃(�− �′)

d
d�′

A2(t)− C2(�′)√
C2(�′)− A2(�′)

]
: (B.38)

B.3.2. The gap and the self-consistency relation
Due to the intertwining of time and space dependances, we introduce an equivalent

form for the gap

h(r) = hHertz(r; a) + uJKR(r; a) + uext(r; a); (B.39)

where in Eq. (15), we single out the JKR term in the gap equation

uJKR(r; a) =− 2
�
�(a) arccos

(a
r

)
(B.40)

and

uext(r; a) =
2
�

∫ r

a
ds

�(s)√
r2 − s2

: (B.41)
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 From Eq. (42), we are led to split uext into three terms

uext = uext1 + uint1;+uint2; (B.42)

with

uext1 =
∫ t

0
d� �(t − �)

9
9�

∫ r

max(a(t);a(�))
ds

g(s; �)√
r2 − s2

; (B.43)

uint1 =
∫ t

ta− (a(t))
d� �(t − �)

9
9�

∫ �

ta− (a(t))
d�′  (�− �′)

9
9�′

×
∫ min(r;a(�);a(�′))

a(t)
ds

�(s; �′)√
r2 − s2

; (B.44)

uint2 =
∫ t

ta− (a(t))
d� �(t − �)

9
9�

∫ ta− (min(r;a(�)))

0
d�′  (�− �′)

9
9�′

∫ �′

0
d�′′ �(�′ − �′′)

9
9�′′

∫ min(r;a(�))

max(a(t);a(�′))
ds

g(s; �′′)√
r2 − s2

: (B.45)

Introducing

ft(r; d; e; f) ≡
∫ min(f;r)

e

(d− s2)√
r2 − s2

ds= fd(r; d; e)− Y (r − f)fd(r; d; f) (B.46)

with

fd(r; d; e) ≡
∫ r

e

(d− s2)√
r2 − s2

ds=
{
− e
2

√
r2 − e2 −

(
r2

2
− d

)
arccos

(e
r

)}
;

(B.47)

then, in the case of the double-Hertz model, the three spatial integrals in Eqs.
(B.43)–(B.45) are, respectively,

Iext1 =−�
4
	0

ft(r; c2(�);max(a(t); a(�)); c(�))√
c2(�)− a2(�)

; (B.48)

Iint1 = ft(r; �(�′); a(t);min(a(�); a(�′))); (B.49)

Iint2 =−�
4
	0

ft(r; c2(�′′);max(a(t); a(�′)); a(�))√
c2(�′′)− a2(�′′)

: (B.50)

B.3.3. Self-consistency
We calculate

w =
∫ c(t)

a(t)

√
c(t)2 − r2

9
9r h(r; t) dr: (B.51)
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The core of the calculation is

Id(a; c; d; e) =
∫ c

a
dr

√
c2 − r2

9
9r fd(r; d; e)

=−1
3
(c2 − a2)3=2 arccos

( e
a

)
+ e

(
d− c2

3

)
I3(a; c; e)

− 2e
3

I5(a; c; e); (B.52)

where

I3(a; c; e) =
�
2

(c
e
− 1

)
−
{c
e
arctan

t−
e

− arctan t−
}
; (B.53)

I5(a; c; e) =
c2 − e2

2

{
�
2
− t−

1 + t2−
− arctan t−

}
(B.54)

with

t− =

√
a2 − e2

c2 − a2
: (B.55)

Finally, in normalized form, the self-consistency equation is

1 =
�√

C(t)2 − A(t)2

(
Td +

�
3
�T	

)
(B.56)

with

Td = IH(C(t); A(t))− �
2
(C(t)− A(t))($(t)− $0(A(t))) + Aint1 (B.57)

and

T	 = Aext1 + Aint2: (B.58)

Aext1 =−
[∫ ta− (C(t))

tc− (A(t))
d�+

∫ t

ta+ (C(t))
d�

]

×
[
�(t − �)

d
d�

1√
C2(�)− A2(�)

{Id(A(t); C(t); C2(�);max(A(t); A(�)))

−Y (C(t)− C(�))Id(A(t); C(t); C2(�); C(�))}
]
; (B.59)

Aint1 =
∫ t

ta− (A(t))
d� �(t − �)

d
d�

∫ �

ta− (A(t))
d�′  (�− �′)

d
d�′

×{Id(A(t); C(t); $(�′); A(t)))
−Y (c(t)−min(A(�); A(�′))Id(A(t); C(t);V(�′);min(A(�); A(�′)))} (B.60)
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and

Aint2 =−
∫ t

ta− (A(t))
d� �(t − �)

d
d�

∫ ta− (min(C(t);A(�)))

0
d�′  (�− �′)

d
d�′

×
∫ �′

0
d�′′ �(�′ − �′′)

9
9�′′

1√
C2(�′′)− A2(�′′)

×{Id(A(t); C(t); C2(�′′);max(A(t); A(�′)))

−Y (C(t)− A(�))Id(A(t); C(t); C2(�′′); A(�))}: (B.61)

B.4. Viscoelastic bodies—the force

As in Section B.1.3, the total force is the sum of the outer term

Fext(t) =
�	0√

c2(t)− a2(t)

{
−2
3
c3(t)− 1

3
a3(t) + a(t)c2(t)

}
(B.62)

and the inner term

Fint(t) = Fint; a(t) + Fint; b(t) (B.63)

with

Fint; a(t) = 4
∫ t

0
d�  (t − �)

d
d�

∫ min(a(t);a(�))

0
dr (�(�)− �0(r)) (B.64)

and

Fint; b(t)

= 4
∫ ta− (a(t))

0
d�  (t − �)

d
d�

∫ �

0
d�′ �(�− �′)

d
d�′

∫ a(t)

a(�)
dr g(r; �′) (B.65)

= �	0

∫ ta− (a(t))

0
d�  (t − �)

d
d�

∫ �

0
d�′ �(�− �′)

d
d�′

× m− a(�)√
c2(�′)− a2(�′)

{
m2 + ma(�) + a(�)2

3
− c2(�′)

}
; (B.66)

where m stands for min(a(t); c(�′)). In normalized form, we have

P =
3
2

{∫ t

0
d�  ̃ (t − �)

d
d�

(
Ma$(�)− M 3

a

3

)

+
�
3
�

[
1√

C2(t)− A2(t)

{
−2
3
C3(t)− 1

3
A3(t) + A(t)C2(t)

}
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+
∫ ta− (a(t))

0
d�  ̃ (t − �)

d
d�

∫ �

0
d�′ �̃(�− �′)

d
d�′

× M − A(�)√
C2(�′)− A2(�′)

{
M 2 +MA(�) + A(�)2

3
− C2(�′)

}]}
; (B.67)

where Ma stands for min(A(t); A(�)) and M for min(A(t); C(�′)).
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