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Abstract. The object of the present work is the developraedtapplication of a quite
general approach to optimal design of compositeiriates where elastic symmetries
can also be explicitly expressed as criteria of dpémisation process. Our formulation
is in the form of a highly non linear and non caoxeengle- or multi-objective optimisa-
tion problem subject to equality and inequality stvaints. We show here applications
to the design of maximum stiffness, maximum buygldad, maximum eigenfrequencies,
maximum strength for laminated plates, as well@slzinations of the afore mentioned
criteria; all types of elastic symmetries can bleta into account. We show here a num-

ber of numerical solutions found using the genaiigorithm BIANCA.
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1 Introduction

The use of composite laminates finds many appéoatin mechanical structures, particu-
larly inspired by the need of replacing metals iidep to obtain lightweight structures. How-
ever, composite materials show very special featur&omparison to metals because of their
heterogeneity, and the architecture of their reodment structure can be tailored in order to
obtain different types of anisotropy and coupliagsong different behaviours, which can find
such applications as in smart and adaptive strestur

Therefore, the concept of design and optimisatiaihe constitutive material is established
as a fundamental step in the process of desigmpainiisation of composite structures [1].

Number of research works in this area showed hasigdeof composite laminates raises
very hard difficulties, and that is based on sevéiféerent reasons. First of all, the manifold

of variables in the design process, which are ral ¢onstitutive parameters of a laminate

(number of layers; material, thickness and oriémtabf each layer) and which might take

continuous real values as well as discrete valDeshe other hand, the cumbersome depend-
ence of the laminate properties on the constitytes@ameters, particularly the orientation an-
gles: from the mathematical side, relations aréillgighon linear, and on the physical side
laminates show complex properties of anisotropmesauplings.

The afore mentioned difficulties, which affect laétsame time the theoretical formulation
of the design problems as well as the numericahaukt for resolution, imposed some limits
in the treatment of design and optimisation of cosife laminates.

On one hand, the use is to restrict the numbematute of variables in the design process,
especially in terms of orientation angles which @essically chosen within the discrete set 0,
145, 90 [2-5]. On the other hand, authors use tmduce some simplifying hypothesis in or-

der to ensure the respect of fundamental propestieesmposites such as some kinds of elas-




tic symmetries. For instance, it is common usehtmose symmetric stacking sequences in or-
der to satisfy elastic uncoupling, and balancedross-ply laminates for in-plane orthotropy
[2-8]. On the other hand, this choice induces sapy@oximations when the design of lami-
nate flexural behaviour is concerned: in a geneegl, symmetric stacking sequences are as-
sumed to be orthotropic in bending, even if thisastrue [1-8].

All the burden of restrictions and simplifying hytpesis strongly reduce the search space
in the process of optimal design of composite lat@s. For instance, it is known that sym-
metric stacking sequences represent only one dtfiwolution among the great number of
quasi-trivial non-symmetric exact solutions forstia uncoupling [9]. Morevover, the devel-
opment of modern manufacture technologies, togetiiterthe more and more stringent need
for improving performances and satisfying simultaunsy a larger panel of design criteria for
new applications, push the research beyond thsictdly accepted limitations in the design
and optimisation of composite materials.

A major difficulty is the very cumbersome expressal conditions for elastic symmetries
in terms of the classical Cartesian components an@, consequence, authors are not able to
include such conditions in a synthetic and genfenahulation of design problems for com-
posite laminates. Only few empirical solutions lmewn to a limited number of elastic sym-
metries, and they are universally applied: symroestacking sequences for uncoupling,
balanced or cross-ply laminates for orthotropy, eMorris solutions for isotropy. Con-
cerning orthotropy and isotropy, these solutionglyapnly to in-plane behaviour, whilst for

symmetries of bending behaviour general empiriglglsr are not available, and authors accept

some approximation [1-8]. Only few authors dealihwalastic symmetries applying the lami-

nation parameters of Tsai and Pagano [10] but argemethodology for the design of com-

posite laminates is not established.




The object of the present work is the developmeuit @pplication of an approach to the
optimal design of composite laminates based oruieeof the polar method [11], which al-
lows the explicit expression of conditions on etasymmetries such as uncoupling and bend-
ing orthotropy. The generality of our approach eglion the absence of any simplifying
hypothesis introduced a priori in order to autowsly satisfy some given properties.

The framework of our approach is the Classical lreat@d Plate Theory (CLPT) which is a
simple model for laminates [1]. It is well knowrathwhen dealing with fine evaluation of the
stress state within a laminate, the CLPT is no éonglid, however it is still the reference for
the evaluation of elastic symmetries, which aredrtamt properties for anisotropic and cou-
pled structured materials such as laminated cortgsosi

In our approach, the design of composite lamingtésrmulated as a highly non linear and
non convex optimisation problem, where all combora of elastic symmetries as well as
different required criteria can be taken into actogimultaneously in the form of objective
functions and/or constraints (equality as wellresguality constraints).

As far as the design variables are concerned, aunuiation includes the dependence

upon all the constitutive parameters of a compdaitenate (number of layers; material prop-

erties, thickness and orientation of each layef)c@urse, the high number of variables and
the different classes (continuous, discrete, grdupieey belong to, dramatically increase the
dimension of the design space. As a consequencegwaoped a robust numerical tool for
solving our optimisation problems, which is the ggnalgorithm BIANCA.

In the following, we introduce the polar method, describe our approach to the general
formulation of optimal design of composite lamirsatend we detail the applications to maxi-
mization of stiffness, buckling load, first eigesdluency and strength. Further, we give sev-
eral examples of solutions to optimal design prolsieof laminates found by the use of

BIANCA.




2 The polar method for plane elasticity and the classal laminated plate theory

One of the major difficulties in tailoring propexsi of composite laminates is dealing with
anisotropy and coupling among different behaviokrsen if we limit the scope to the linear
elastic behaviour of composite laminated plate®tiog to Love-Kirchhoff model, the de-
signer must take into account at least the diffebemaviours of the laminate with respect to
in-plane and bending loads, as well as the elastipling between in-plane and bending. The
stiffness behaviours of a laminate are represemetie CLPT (Classical Laminated Plate

Theory) by tensoré, D andB respectively:

N Ag + Bk
M Be + Dk’ (1)

whereN andM are the in-plane loads and bending momen&s)dk are the plate mid-plane
strains and curvatures, respectively. Tenggr8 andD depend on the constitutive parame-

ters of the laminate according to CLPT equations:

AB.D=130,(8) (- 4L) @)
k=1

whereN is the number of constitutive layers of the lanen®(4d) is the stiffness tensor of
the K" constitutive layer oriented by angfe with respect to the reference axes of the lami-
nated plate, and exponemt= 1, 2, 3 for in-plane, coupling and bending beébar respec-
tively. It is well known that the three elastic la@iours can have distinct shapes of anisotropy
and, in particular, elastic couplif®jis non zero for a general laminate, whilst gergigbpli-
cations require the respect of some kind of elastiometry (at least orthotropy) and elastic
uncoupling B = O). We remind here the definition of the homogenisgfiness tensors.’,

B andD: A =_A,B =%B D =1p.
h h I




The lamina and laminate stiffness tensQis A, B andD can be represented within the

framework of the polar method [11]. Generally, forfourth order tensot of the class of

plane elasticity, we give here the relations betwite Cartesian componeritgs and its polar

componentdy, T1, Ry, Ry, @ and @:

L,,= T, + 2 + R cos4p, 4R cos®,
L= R, sin4®, 2R sin2o,
L,= -T, +2I, - Rcos4p ,
L,,= T, - R,cos4@
L - R sind@, 2R sin2p,
L + 21, + R COsAD, 4R cos®,

2212

T

2222 0

The important feature of the polar method is thatdonditions for elastic symmetries assume a
very simple form [12] in terms of polar componeat&l, moreover, polar components are ten-
sor invariants, as shown in Table 1. We remind thatpolar method sheds a new light on the
different shapes of elastic symmetries; for a nu@tailed discussion on these topics we refer to

previous works of the authors [12-13].

3 Elastic symmetries as active criteria in laminate dsign: problems of “type 0”

The introduction of the polar method for plane &tity [11-12] allows a decisive step
forward in the analysis and design of elastic symiegthanks to the very simple form of the
conditions shown in Table 1. Each class of elastrometry corresponds to one polar invari-
ant equal to a given value (often equal to zerbgré&fore, the formulation of the design prob-
lem of a laminate with respect to elastic synmstdan be seen as a system of equations,
which are highly non linear in terms of the lam@abnstitutive parameters, particularly ori-
entation angles. Authors developed a direct appradcresolution of the equations issued
from Table 1 in order to obtain laminates with givaastic symmetries, particularly uncou-

pling and quasi-homogeneity [9, 14]. Nevertheldiss,direct approach is limited in terms of




the number of equations and variables to deal whidt, is to say the number of symmetries
imposed and the number of constitutive layers efléminate.

In order to overcome these limitations, we propeses a more synthetic and general ap-
proach in the form of a single-objective non-caaisied optimization problem, where the ob-
jective functionl(P(x)) to minimise is a quadratic form of the normatdigmlar invariantg$>;

of the laminate:
I (P(x))=PMH P=H,PP, i,j=1..18 (4)

where matrixH is dependent on the elastic symmetries that teiger chooses as active de-
sign criteria, anc is the vector of constitutive parameters of thaitate, which are the ac-
tive variables of the optimisation problem. The emijve functionl(P;) is positive semi-
definite and its minima are zeros, which corresptindolutions of the design problem. Ex-
pressions for parametepsare:

— TOA
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whereM is a normalisation factor, which can be chosewanous ways and it is generally a
tensor norm. Of course, paramet®rsare functions of the laminate constitutive parasrset
(number of layers, material, thickness and oriéotabf each layer) according to the equa-
tions of CLPT, which are therefore the variableshef optimisation problem.

Through the non-constrained minimisation of theeotiye functionl(P(x)), we can take
into account all admissible combinations of elasyimmetries for both in-plane and bending

behaviours, as well as uncoupling. It is also gmesio account for relative shapes and posi-




tions of in-plane and bending symmetries; for ins&a we can express the condition for
quasi-homogeneity, which is the coincidence of libenogenised in-plane and bending be-
haviours, or we can impose the same principal ties in in-plane and bending orthotropies.
We give here an example of the expression of thectie functionl(P(x)) in the case of
design of composite laminates showing in-plane badding orthotropy with coincident
orthotropic axes, as well as uncoupling; this s ¢tombination of elastic symmetries which
we require in our calculations shown in sectiotnSthe following expressionK and K are

the in-plane and bending factor of orthotropic €hap

|(P)=(R,~R)* - (K’ZT)Z +(Py ~Ry)’ - (K’ZT)Z +HR-RJ +X5R =0 (6

As a consequence, non-zero components of midtaxe defined as:
H; =1, 1=57,..,1017; Hes = Higis =2 Hgg = Hgyg = Hyzpe = —1. (7)

For a more detailed description of the objectivection I(P) for various combination of
design criteria, see [13].

The set of design problems for elastic synmmetrieminates in the form of a single-
objective unconstrained minimisation of the foifR) are called design problems of “type 07,

and the corresponding formulation is:

min | (P(x)) (8)

4 A general formulation of optimal design problems fo laminates: optimisation prob-

lems of “type 1" and “type 2”

For the first time, through the application of thelar method, a general approach is pro-
posed for the design of all various classes oftielagmmetries for composite laminates (for-

mulation of design problems of “type 0”, section B) this approach, elastic symmetries are




considered as proper design criteria, and theyoddave to be enforced through the choice of
a special class of stacking sequence: all possiilgions are theoretically considered by the
proposed formulation. Therefore, this approachvadla complete and exhaustive exploration
of the whole design space, which proved to be raportant since most problems of elastic
symmetries for laminates showed to admit infinifysolutions that could not be accessible

otherwise [9, 14].
4.1 Laminate optimisation problems of “type 1”: symniesrand constraints

Since our formulation of the design of elastic syetmes is a single-objective non-
constrained optimisation problem, further desigiteda can be introduced in the form of
constraints (equality and/or inequality) to theimpgation problem. Our formulation takes the
form of a constrained mathematical optimisationbpem, that we call design problems of
“type 1” (in opposition to the unconstrained prablef “type 0” that we introduced in the

previous section):

min | (P(x))

h;(x)=0,j=1.,n,
suchthat: 1 g, (x) < 0,k =1..,n4
X, XX,

wherex is the vector of constitutive parameters of theitete, which are the active variables
of the optimisation problem. Box constraints canrbposed orx in terms of lower and upper
boundsx, andxy respectively. Constraints functiohgx) andgg(x) can represent any proper-
ties of the laminate, which are relevant for thsigle process (stiffness moduli, buckling load,
strength criteria, etc.).

Typically, formulation (9) can be applied to tailgg of the stiffness response of laminates.

For instance, the problem of design of orthotropyih-plane and/or bending behaviour to-




gether with a minimum requirement on the stiffnesssponse in the principal orthotropy di-

rections takes the form:

min | (P(x))
EN*>E,, and/or: Ef" > e,

suchthat: { ED® > Ef, , and/or: ET" > e
X, SX <Xy

max min

whereE,“"and E,"" are Young moduli in the principal and secondargations for in-plane

orthotropy respectively, whilsE,,and €, are minimum required values, which are fixed ac-

min

cording to design need€Ef®, EN™, Epand e, are corresponding quantities for bending).
Optimisation variablex can be composed by any constitutive parametetheofaminate
(material, thickness and orientation of each layer)

The same form as formulation (10) could expressdgmgn of composite laminates with
respect to some strength criteria and/or to a ¢mmdof stability against buckling under a

given load for the laminated plate.
4.2 Laminate optimisation problems of “type 2”: symme$rand new objective functions

When building an optimisation problem of “type it’can be difficult to estimate a priori
an acceptable level of constraint (strength, bugkhesistance, etc.), and more generally it is
not always possible to transform some design @itento constraints of the optimisation
problem. On the contrary, in real world problems tptimal design of composites is more
naturally expressed in terms of the search of lates optimising some properties, such as
minimising weight and/or maximising stiffness andstrength, and at the same time respect-
ing conditions on elastic symmetries, such as uploay, isotropy and/or orthotropy for in-
plane and bending. Authors who dealt with thesgest® [1-8] expressed the optimisation

problem in terms of appropriate objective functiqgmseight, strength, buckling resistance,




etc.), and they did not explicitly write conditiof® the requirements on elastic symmetries
but they applied well-known simplifying hypothesis the stacking sequence in order to en-
sure the respect of symmetries.

As shown in the previous section, solutions respando given conditions on elastic
symmetries are the minima as well as the zerosefjtiadratic formi(P). As a consequence,
we can put a general optimisation problem for a pasite laminate in the following form,

which we denote as design problem of “type 2”:

min f (x)

suchthat: {

| (P(x)) =0 (11)
XL SX <Xy

where the objective functiof(x) can be any design criterion for the laminateff(stss,
strength, buckling resistance, etc.). The variaklean be all the constitutive parameters of
the laminate.

It is worth note that since functid(P) is positive semi-definite, the equality consttam
expression (11) can be translated into an inequedindition: I (P(x)) <& (¢is a small posi-
tive real number). Therefore, problem (11) canegithe treated as a constrained optimisation
problem with an inequality constraint.

For instance, following the formulation given inpegssion (11), we can state the problem

of maximisation of stiffness for a composite laméa

maxE;
suchthat: | (P(x)) < ¢

where E;* is the in-plane Young modulus in principal ortloply direction.

It is worth note here that a combination of sevdesign criteria can be taken into account

through the introduction of additional objectivenftions in the optimisation problem (11).




Moreover, we can consider further equality andf@guality constraints applied to problem
(11), as it is shown for instance in expressionsa(@ (10).

We can give a more detailed description of expoess{11) when applied to a particular
optimisation problem, and in the following sub-saa$ we will describe in detail the cases of
maximisation of buckling load, eigenfrequencies ammdngth for a composite laminated plate,

under constraints on the respect of given elagtimsetries.
4.2.1.Maximisation of buckling load and eigenfrequend@sectangular laminated plates

Instability of laminated plates is a very import&ggue when these very thin structures are
loaded in compression. Also an important topichis optimal design of laminates with re-
spect to free vibration response, since resonaagebe induced by an excitation frequency
which is close to the natural frequencies of thetg[1-8, 15]. Nevertheless, authors do not
take directly into account conditions on elastimayetries in the search for maximum buck-
ling load or maximum natural frequencies.

We consider here the case of a rectangular simgpated uncoupled orthotropic lami-
nated plate loaded in compression by in-plane loddsress resultants, andNy, whilst shear
loadN,y is zero (Figure 1), whilst andb are the lengths of the plate sides.

In this case, buckling shape is sinusoidal, anddgmi andn the number of half waves in

thex andy direction respectively, the critical value of loaltiplier A inducing buckling is:

7[Dyy(/a)* +2(Dy, + 2Deg)(V3)(1/h)’ + D,y (n/B)*] 13
(ma)’N, +(n/b)°N,

Acrit (m, n) =

In equation (13)Dy (i, ] = 1, 2, 6) are the Cartesian components of théibgrstiffness ten-
sor expressed in the reference systemy. Ve notice that expression (13) applies to

orthotropic uncoupled plates, and therefore bendirigotropy is a necessary condition as




well as elastic uncoupling. Moreover, the principaks of orthotropy have to be coincident
with the plate axes.
Optimisation of buckling load of a simply supportathinated plate can be expressed as:

max(minA)
mn

(14)
suchthat: I (P(x)) <&

where functionl(P) corresponds to the necessary conditions of elasicoupling and bend-
ing orthotropy with the principal axes orientedrajahe plate axes.
In the same way, the free vibration modes of a sirappported rectangular plate are sinu-

soidal in bothx andy directions, and the natural vibration frequemgy, for anmn-mode is:

G _ J Dyy(M/a)* +2(D,, +2Dq)(M'a)* (n/b)’ + D (n/b)* (15)
e oh

wherep denotes the mass density of the platefaitsl thickness.

Therefore, maximisation of the eigenfrequency ofverm free vibration mode (given val-

ues ofmandn) for a simply supported laminated plate can be&sged as:

maxa,,,
suchthat: | (P(x)) <& (16)

where the constraint functidifP) corresponds to the necessary conditions of elasicou-

pling and bending orthotropy with the principal sxaiented along the plate axes.
4.2.2.Maximisation of strength for laminated plates

Maximisation of strength of composite laminatea igery delicate issue in order to prevent
failure of composite plates and many authors deidt this subject [1, 4, 6-8].
Mechanisms of failure for composite laminates ammglex and related to different phe-

nomena because of the heterogeneous nature ofnsatgrials. However, the resistance to




failure of a unidirectional composite can be meadury comparing homogeneous functions
of the stresses and strains to material strengtitsli Several failure criteria are available for
orthotropic materials [1], each one characterisga klifferent limit function, and they apply
to each single lamina within a stacking sequenteréfore, laminate strength prediction is
carried out by evaluating the state of stress wid@ch ply based on the laminate theory and,
as it is well known, stresses vary from one planother because of their different orientation,
different properties and different position througke thickness. Normally, first failure of any
layer is not acceptable because it degrades fifiegests and the strength of the whole laminate.
For this reason, a verification of the failure lirffar each layer is necessary.
These reasons motivated our choice for an objedtimetion in strength optimisation of

composite laminates based upon a global quantiighwis a measure of the laminate load
state. According to Park [6], we used a quadrairenff(€) of the strain components to be

minimised, which is a measure of the norm of thaistvector:

f(2) =£fx+£§y+%yx2. (17)

Functionf(g) represents the global response of the laminatke@pplied state of load and it
does not depend on a ply level strain calculatie. can also express the optimisation prob-

lem in terms of maximisation of a strength functiRyex

-1
I%ndex - m (18)

Moreover, we chose here to apply the Hoffman guteron each layer, which is an exten-
sion of Hill criterium by the introduction of linedaerms of the stress components [1]. For a
plane state of stress expressed in the principabtopy directionx; andx,, and for a trans-
versely isotropic material in the plangs, the failure envelop for the Hoffman criterion is

expressed as:




2 2 2
X +X Y +Y
011 + 011022 _ 022 + C t + c t + T122 :1’ (19)

B XCXt xcxt YCYt x xt 0-11 YCYt - Slz

C

whereX., X;, Y, Y; andS;, are the layer strength limits in tension and caagion along the
two material axes and for shear, respectively.
Finally, we can formulate the design problem of posite laminates with respect to

strength as it follows:

max I%ndex
suchthat: f ¢, <1 (20)

I (P(x)) <¢

where function IP(x)) expresses conditions over elastic symmetriesquipling, orthotropy,

and so on).

5 Numerical resolution of optimal design problems forlaminates by the use of the ge-

netic algorithm BIANCA

The mechanical behaviour of composite laminate®@p on harmonic functions of the

layer orientation angles. Therefore, in our forniola of design problems for composite

laminates as shown in previous sections, the dbgéiinctions as well as functions of con-
straints are generally highly non linear and nomvex.

Moreover, optimisation variables are all the cdnstie parameters of the laminate, which
can be of various types (continuous and/or distrétevertheless, in real world problems for
design of composite laminates as well as in mogineering problems, variables are essen-
tially discrete. They might also belong to the stled grouped type, as it is the case for the
constitutive materials of the elementary layer: tm@ice of one particular material corre-

sponds to a fixed set of mechanical properties.




Therefore, we can state that design of compogiteniates leads to hard combinatorial op-
timisation problems defined over a highly multidms@nal search space, which are very dif-
ficult to solve.

Starting from these considerations, we put an it@poreffort in the development of a ro-
bust and effective numeric strategy for solving optimisation problems, and our choice fell
on genetic algorithms and, more generally, on dimary strategies [16, 17]. We developed
our own research program: the genetic algorithmNBIA, but for lack of space, we are not
going to give here details about the structure #wednumerical strategies developed within
BIANCA. A detailed and exhaustive description canfound in [13, 18-19]. All the results
shown in the following subsections are obtainedh®/use of BIANCA, and the quality of
these results proves the efficacy of our theorketipproach as well as the effectiveness of the
numerical method that we chose.

For sake of generality, in the following examples @hose a single constitutive material

for the elementary layer: all calculations are usimg the T300/5208 carbone/epoxy unidirec-

tional composite. Its mechanical properties aremgiin Tables 2. The thickness of the ele-

mentary layer ist = 0.127 mm.

The number of plies is fixed for each calculatiand it is generally not very large (be-
tween 10 and 16 in the following examples), evethig is not a limit for our theoretical and
numerical approach. The choice is motivated by#rg nature of such combinatorial optimi-
sation problems, where the smaller is the numbglie$, the more difficult is to find a solu-
tion, since the number of successful combinatiesndgramatically reduced. For instance, it is
empirically known that the minimum number of lay@éss12 in order to achieve isotropic
laminates [10, 14]. In the following examples, vimw the possibility of finding solutions to
optimal design problems of laminates with small bens of layers through our approach, and

that could be useful in many applications wheraicgdn of weight is an issue.
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In the following subsections, we will give examptdssolutions for various types of prob-
lems shown in sections 3 and 4. In order to vetify quality of the solutions found, one can

enter the stacking sequences shown as results vethaviour equations.
5.1 A design problem of type O: in-plane and bendingaropy and uncoupling

We show here the case of design of given elastiorsstries, leading to a single-objective
unconstrained non linear and non convex programipiiaglem as we showed in section 2. In
the present case, the objective functi@®(x)) expresses such elastic symmetries as in-plane
orthotropy Ka = 0), bending orthotropyKp = 0), coincidence of orthotropy axes between in-
plane and bending behaviours, and uncoupling.

We fixed the number of layers = 10, whilst the optimisation variables are tha&cking
sequence (which is completely free) and the cooeding values of the orientation angles.
The angles can take all values betwe®@° and 90°, with a precision pf= 0.01°.

By running BIANCA, we can find several solutionsttos problem; an example of these

solutions is the following laminate:

[-12.63/5.97/5.82/17.4615.50/7.13+16.64+12.10/13.68/0]. (21)

In order to appreciate the precision of solutiof)(2nd to verify the respect of elastic
symmetries, we give the corresponding values ferglobal objective functiol(P) and for
each sub-objective in Table 3 (we remind that egatitions correspond 1¢P) = 0, see sec-
tion 2), as well as its elastic polar parametersrieplane, bending and coupling stiffness in
Table 4.

From Table 4, we can remark that the laminate (@4ponds to orthotropy for in-plane and

bending @& - @ = 0°, and:@,° — @.° ~ 0°) and the coincidence of orthotropy axes is also

satisfied: @ - ®,° ~ 0°. In the same way, the laminate is almost unleasince polar pa-




rameters for tensomB corresponds to 0.5% of the maximum admissible loogip

(B max = 42866 MPa for a carbone-epoxy laminate).

Elastic symmetries are also evident looking atgbkar curves of the elastic components
for laminate (21), as illustrated in Figure 2 (theve for the coupling coefficief,; is con-
centrated around the origin, sinBe= O). Units are in MPa and the horizontal and vertical
axes represent the andy- directions, respectively.

In order to achieve the results shown here, weBIAMNCA with a population of 50 individu-
als, and quasi-optimal individuals were obtainethimi 21 iterations (generations), as we can
see in Figure 3.

We remind here that this kind of optimisation peshlfor elastic symmetries can be enriched
by adding constraints over different propertieshaf laminate (stiffness, strength, etc.), thus
resulting in a formulation as in expression (9, a design problem of type 1. We ran a num-
ber of calculations over constrained problems kgglanto this type using BIANCA and we
were able to find lots of solutions [21]. Never#ss, for sake of conciseness, we do not show
them here, since in the next sections we will shmove solutions found by running BIANCA

on complex constrained problems of type 2.

5.2 A problem of type 2: maximisation of buckling resise with constraints over elastic

symmetries and in-plane stiffness

The formulation of the optimisation problem is hagein expression (14), where the objec-
tive function is the smallest buckling multiplidg; to be maximised and constraint functions
are over elastic symmetries. In addition, we seé&octa highly stiff orthotropic plate; thus,

constraints are imposed over the extension Younguthalong the orthotropic axes:




max(min A )
m,n

suchthat: I (P(x))<e (£=107%)
E* > 60GPa
E; > 30GPa

The required elastic symmetries here, expressethdyunctionl(P(x)), are in-plane and
bending orthotropyKa = Kp = 1), coincidence of the orthotropic axes in egien and bend-
ing, uncoupling. In addition, the orthotropic ax#ghe laminate must coincide with the axes
of the plate. The precision of the solution in terof elastic symmetries is fixed= 10,

The aspect ratio of the rectangular plate is fixa@d:= 1.5, and compressive loads along
the sides of the plate afd; = Ny = 1 N/mm.

We fixed the number of layers = 16, whilst the optimisation variables are tha&cking
sequence (which is completely free) and the cooeding values of the orientation angles.
The angles can take all values betwe®@° and 90°, with a discrete precisionpof 1°.

We show here an example of solution to problem {@2)d by running BIANCA:

[-24/39F47/37/32+-47/-6/-47/55/59/18+38/-38/19+40/42]. (23)

The maximum value achieved for the buckling criticaultiplier is Aop: = 6.86 16, whilst
the achieved values for the constraint functioms Bf* = 60607 MPa, § = 31157 MPa and
I(P(x)) = 8.80 10°. In Table 5, we give the detail for the contribatiof each required elastic
symmetry to the global function of constrali(®(x)).

From Table 6, we can remark that the laminate (28ponds to the required shape of
orthotropy for extension and bendingu{ — @ ~ 45°, and:®° - @.° =~ 45°) and the coin-
cidence of orthotropy axes is also satisfigd”® — @,° =~ 0°, being the principal orthotropic
axes aligned with the axes of the pla®@{~ ®.° ~ 0°). In the same way, the laminate is al-
most uncoupled, since polar parameters for teBsoorresponds to 0.6% of the maximum

admissible couplingH max = 42866 MPa for a carbone-epoxy laminate).
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We also give here the Cartesian components of eheobenised stiffness tensasB' D’

for laminate (23) (units are GPa):

A'11=86.22; A;,=33.69; As=0.11; A= 44.35; Ay =-0.17 ; Ags = 37.96 ;
B'11=0.88;B1,=0.03; Bis=0.57 ; B> = 0.96 ; Bys = 0.06 ; Bes = 0.03 ;
D'11=90.34 ; D1 = 35.31 ; Dig = 0.09 ; D, = 37.00 ; D6 = —0.04 ; Dgs = 39.58.

The respect of elastic symmetries is confirmedh®ydraphics of polar variation of stiff-
ness properties for laminate (23), shown in Figurtnits are in MPa and the horizontal and

vertical axes represent tkeandy- directions, respectively.

The effectiveness of the genetic algorithm BIANGAproved by the graphics of average
and best values of the objective function overdghrerations, shown in Figures 5. Calcula-
tions were run over a population composed af 400 individuals, and quasi-optimal indi-

viduals were obtained after 150 generations.

5.3 A problem of type 2: maximisation of strength witimstraints over elastic symmetries

and stiffness

The formulation adopted here for the optimisatiérstoength for a laminated plate is the
one given in expression (20), where the objectivecfion is the strength paramei#gyex to
be maximised, and constraint functions are ovestielssymmetries and the respect of a
strength criterion for each layer in the lamindte.addition, we search for a highly stiff
orthotropic plate; thus, constraints are imposeer dlie in-plane Young modulus along the

transverse orthotropic axes:

maXRndex
suchthat: f, ¢, <1

|(P(x))<e (£=10"")
E; > 45GPa




The required elastic symmetries here, expressetthdoyunctionl(P(x)), are in-plane and
bending orthotropyKa = Kp = 0), coincidence of the orthotropic axes in egien and bend-
ing, uncoupling. In addition, the orthotropic ax#ghe laminate must coincide with the axes
of the plate. The precision of the solution in terof elastic symmetries is fixed= 10,

Compressive loads along the sides of the platgiaes: N, = 1 N/mm, Ny = 0 N/mm.

We fixed the number of layers = 16, whilst the optimisation variables are thacking
sequence (which is completely free) and the coomding values of the orientation angles.
The angles can take all values betwe®0° and 90°, with a discrete precisionpof 1°.

We show here an example of solution to problem {@did by running BIANCA:

[0/-6/-84/-5/42/41/5/-72/-22/65/84/514/5/4)]. (25)

The maximum value achieved for the strength objediinction isRngex = 2.0 10, whilst

the achieved values for the constraint functionsr dvansverse stiffness and elastic symme-

tries are: ' = 49468 MPa ant{P(x)) = 7.74 10°. In Table 7, we give the detail for the con-

tribution of each required elastic symmetry to ghabal function of constrain{P(x)).

From Table 8, we can remark that the laminate (2Sponds to the required shape of
orthotropy for extension and bendingf — @ = 0°, and:&° - @° = 0°) and the coinci-
dence of orthotropy axes is also satisfige: — @,° = 0°, being the principal orthotropic axes
aligned with the axes of the plat@(* ~ ®.° = 0°). In the same way, the laminate is almost
uncoupled, since polar parameters for tefidaorresponds to 0.8% of the maximum admis-
sible coupling B max = 42866 MPa for a carbone-epoxy laminate).

We also give here the Cartesian components of theobenised stiffness tensasB D
for laminate (25) (units are GPa):

A'11=127.45; A;;=10.08; Ajs=-0.17 ; A, = 50.34 ; Ay = 0.03 ; Ags = 14.35;

B'11=-1.35:B1,=-0.01:B1=0.34;: By =1.37 : Bog= 0.14 : Bgg=—0.01 ;




D11 =149.70 ; D12 = 6.50 ; D16 =-0.01; D, = 35.23 ; Dpe =-0.13 ; Des = 10.78.
The respect of elastic symmetries is confirmedh®sydraphics of polar variation of stiff-
ness properties for laminate (25), shown in Figure
The effectiveness of the genetic algorithm BIANGAproved by the graphics of average
and best values of the objective function overgheerations, shown in Figures 7. Calcula-
tions were run over a population composedaf 400 individuals, and quasi-optimal indi-

viduals were obtained after less than 150 generstio

5.4 A multi-objective optimization problem: maximisatiof natural frequency and of in-

plane principal stiffness with constraints oversgia symmetries

We show here an example of calculation run usingNEZA and dealing with a multi-
objective optimisation problem for composite lanm@sa maximisation of the first natural fre-
quency and maximisation of the principal in-planeu¥g moduluE,”. At the same time, as
usual, we impose the necessary constraints oveiireggelastic symmetries expressed by
function I(P(x)) The corresponding formulation of the resultingltmobjective optimisation

problem is given as:

max(mina,,)
mn

and
maxE}
suchthat: 1(P(x))<& (£=10")
The required elastic symmetries here, expressethdyunctionl(P(x)), are extension and
bending orthotropyKa = Kp = 0) with coincident axes and uncoupling. The @iea of the
solution in terms of elastic symmetries is fixed: 10,

We ran the calculations using the strategy we agezl within BIANCA in order to deal with

multi-objective optimisation problems, which is antbination offitness sharingand niche




methods [18, 19]. We used a population composed 0200 individuals, and we obtained
the Pareto front within 50 generations.

We fixed the number of layers = 10, whilst the optimisation variables are tha&cking
sequence (which is completely free) and the cooeding values of the orientation angles.
The angles can take all values betwe®@° and 90°, with a discrete precisionpof 1°.

In this case, the result of a run of BIANCA is thmup of non-dominated individuals
(Pareto front) belonging to the final generatiamshown in Figure 8.

The designer can choose among the design soluiglnoaging to the Pareto front accord-
ing to some additional criterion (feasibility, maeiical properties, ...). We give here an ex-
ample corresponding to the point called “solutidnnlFigure 8, which is situated at one end
of the Pareto front: it shows the highest valu¥ ofing modulu€,”* and the smallest value of
the fundamental frequency. Its stacking sequenttesifollowing:

[14/-2/-25/-7/-1/-3/17/1/15/-15]. (27)
For laminate (27) the smallest fundamental frequesieu; = 33.21 Hz and the principal in-
plane Young modulus i&" = 159000 MPa. Solution (27) satisfies as well ¢baditions
over elastic symmetries, as it is shown in detailBable 9.

From Table 10, we can remark that the laminate (8gponds to the required shape of

orthotropy for extension and bendingf — @ = 0°, and:&° - @° = 0°) and the coinci-

dence of orthotropy axes is also satisfige: — @,° ~ 0°, being the principal orthotropic axes
aligned with the axes of the plat@(* ~ ®.° = 0°). In the same way, the laminate is almost
uncoupled, since polar parameters for tefidaorresponds to 3.4% of the maximum admis-
sible coupling B max = 42866 MPa for a carbone-epoxy laminate).

We also give here the Cartesian components of theogenised stiffness tensasB D’

for laminate (27) (units are GPa):




A'11=166.96 ; Aj= 9.58; A1g=—0.75; Ay = 11.82 ; Ays=-0.57 ; Ags = 13.86 ;
B'11=-0.62;B1,=0.14 ; Bjs=-1.81; B2, = 0.35 ; Bys = -0.94 ; Bes = -0.14 ;
D'11=163.83; D1, =11.08 ; D1g = 1.18; Dyp = 11.96 ; Dy = —0.42; Ds = 15.36.
The respect of elastic symmetries is confirmedHhgy draphics of polar variation of stiff-

ness properties for laminate (27), shown in Figure
5.5 Comparison with solutions existing in the literagur

We can notice that the stacking sequences givesxasples in sub-sections 5.1 to 5.4
(laminates (21), (23), (25) and (27)), are all ieggito be orthotropic in bending. Of course,
the respect of bending orthotropy is satisfied imith certain numerical precision and, in the
previous sub-sections, we give the value of theiglaobjective function for bending
orthotropy (Tables 3, 5, 7 and 9), as well as theesponding polar angles, and @, for
bending (Tables 4, 6, 8 and 10): the objective tionccan be compared to the optimum re-
quired value, which is zero, and the angular déifieed—®; can be compared to the polar
condition for orthotropy (see Table 1). NeverthsJese can give a different measure of the
respect of bending orthotropy in terms of the magaal Cartesian componeridgs andD .
More precisely, we define the deviatiog.n, from bending orthotropy in terms of the ratio

between the off-axes componebtg andD,s and a tensor norm ||D]:

Dl IDzel}
A e = MAX : (28)
" {IIDII D]

where the tensor nornD|| is defined as (but a different definition of mois also possible):

D[ =T, +2T7 +R +4R (29)

Values of Agrino fOr solutions (21) to (27) are given in Table abhd they show the very
good agreement with the requirement of bendingobmbipy.

In a similar way, we define a measure of the demafrom uncouplinQ\uncoupling@s:
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|5 |8

Aun(:ou in =max N Al? (30)
" {IINI IIDII}

where W[, |B||, |P|| are the tensor norms of in-plane, coupling amting, respectively.

Values given in Table 12 show the very good agreénveéh the requirement of uncoupl-
ing for solutions from (21) to (27).

In addition, both Tables 11 and 12 show the gogeatability of the precision achieved
for the solutions obtained by running BIANCA on yelifferent problems of design of com-
posite laminates (different numbers of layers, clbje functions and constraints).

We apply now the same measure of deviation frontdingnorthotropyAorho to some solu-
tions found in the literature [5, 20-23]. The refazes that we consider range over a long time
(1992 to 2009), and a common feature is an ussainggstion in the optimal design of com-
posite laminates with respect to buckling, strengtid so on: the required property of bend-

ing orthotropy is considered to be satisfied by syimmetric stacking sequence, and therefore

the design of bending behaviour is simply by-pasgedm the values shown below, we can

see that symmetric stacks, which are exactly uneduymight be quite far from matching the
condition of bending orthotropy even when theyrasele of a large number of layers.

We start in the chronological order with the papeR. Haftka and J. L. Walsh [20], deal-
ing with stacking sequence optimisation with respgecbuckling resistance: the problem is
the maximisation of the buckling factor for simgypported rectangular orthotropic lami-
nated plates loaded in compression (in this cagepbjective function can be expressed ana-
lytically and it is the same that we use in ourgrqpvith or without constraints on stiffness
and strength, and the choice is the use of symengtizicking sequences with orientation an-
gles belonging to the set {0°;+45°;90°}. Being thalutions shown in this paper symmetric,
all the laminates are exactly uncoupled, but tireysametimes far from being orthotropic: the

corresponding values &, range from 1% to 28%. Here some examples:
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in [20], Figure 2, stacking sequence [45/1B/9Q/-45/45];, her = 94.29:Aoriho = 12.3%

in [20], Figure 2, stacking sequence [90/42/985/90}, Aer = 61.99:Aqrtho = 17.9%

in [20], Figure 5, stacking sequenc&b/45/9Q]s, Acr = 1.03:Aortho = 17.4%

in [20], Figure 5, stacking sequencel$/9G/45/90/01, A¢r = 1.32:Aortho = 28.1%

Another example of solutions, which are far froninigeorthotropic, is given in the paper
of M. Walker et al. [21]: the problem is the maxgaiion of the buckling factor for rectangu-

lar laminated plates loaded in compression undérdnt boundary conditions (the objective

function is calculated by the FE method), and theiae is the use of the symmetric and bal-

anced angle-ply staclé/t-0/-6/6] (angled varies continuously between 0 and 90). The corre-
sponding values ohqho Vary continuously between 0% (for the trivial cade) = 0) up to
69% ford = 30.

Later on, the problem of maximisation of bucklimgdls of composite panels was treated
in a paper by Liu et al. [5]: plates are rectangalad simply supported, loaded in compres-
sion and shear; the stacking sequences are symraattiorientation angles belong to the set
{0°;£45°;90°}. We measure here the deviation frorthotropy Ao Of Some solutions shown
in this paper, when they are considered strictiyrsetric:

in [5], page 32, sequence [+45/815/90/04/£45/90/+45/Q/£45/0:] s Aortho = 1.5%

in [5], page 33, sequence [+4515/0:)]s Aortho = 10.7%

More recently, Erdal and Sonmez [22] dealt with mmagation of the buckling load for
simply supported rectangular laminated plates Idadecompression. The search for the op-
timal laminates is performed among the set of symmstacks in order to satisfy the uncou-
pling. Firstly, they considered orientation angbetonging to the set {0°;£45°;90°} and they
show the existence of multiple optima with refeeena previous works in the literature (in

this paper, see Table 1, page 50): even if thewiden the case of 64-ply laminates (rather




high number of layers), the measure of the dewiatiiom orthotropyAorno is around 1% for
these solutions. Further on, they suggest thaethesults can be improved by the introduction
of non standard orientation angles, and they gkamples of solutions in their paper [22],
Tables 2-5, page 51: the measiisgn, ranges from 38% up to 80% for these solutions!

Very recently, a paper by F.X. Irisarri et al. [2§]peared about multi-objective optimisa-
tion of laminated composites. The problem is agfagnmaximisation of the buckling load of a
simply supported rectangular plate loaded in cosgom, taking into account several load
cases simultaneously. As it is classically done, stacking sequences are supposed to be
symmetric in order to achieve uncoupling, and #erch is performed among balanced angle-
ply laminates in order to obtain orthotropy (in tfathis ensures only in-plane orthotropy).
Therefore, the expression for the buckling critif@adtor A is given analytically in terms of
the bending componenBy;, D2, D12 andDgg by neglecting componenB s andDygs, Which
are considered to be zero. A synthesis of ressiltgvien in the paper ([23], Tables 3-6) to-
gether with a measure of the deviation from bendiripotropy, and we observe that the
measure used in [23] rises up to 20% for the pregpa®lutions. In order to compare with our
previous estimations, we also apply our meadgfg, to some of the solutions shown in [23]:

reference laminate, [4®0/-45,/90/45/90+45/0,/45/0,/—45/0): Aortho = 14.6%

Table 3, 30-ply laminate [45/90/4%15/45/90#45,/45/Q)s: Aortho = 16.7%

Table 3, 31-ply laminate [9845/45F45,/90/0/45,/0s et 15)s: Aortho = 15.9%

Table 5, 31-ply laminate +45/90)/(—45/0%/45,/0,/45/0/45/Qy))s: Aortho = 36.3%

We first notice that the measure of the deviatioomf bending orthotropy proposed by
in [23] is underestimated (in their ratio, they shib have chosen the denominator as
min{D11,D»7}). However, the deviation from bending orthotropgems to be too large to be

considered as negligible.




The important deviation from bending orthotropysath solutions, which are supposed to
be orthotropic in bending, sheds a doubt on thigitaalf the optimisation process: results for
maximum buckling load are based on an analyticahéda which neglects the effect of com-
ponentsD;s andDg, When in fact these components are far from beewjigible. At least, it
would be important to investigate the effects aftsanisotropic behaviour on the actual sta-
bility or strength of a laminated plate. Therefone can state that bending orthotropy is an
important property for laminates, and classicallfhars by-pass this problem considering
that componentB1s andDy; are close to zero in the case of laminates maddarfje number
of layers (especially in the case of symmetric hedal angle-ply laminates). The measure
Aortho ShOws that this is not always true, and desigh véspect to bending orthotropy should
be taken into account in the optimisation of conmgdaminates. Our approach allows to do
so, and the examples of solutions (21), (23), &) (27) show that good precision for bend-

ing orthotropy and for elastic uncoupling can béiaeged even for laminates with smaller

numbers of layers (in this case, these properteg@nerally more difficult to obtain).
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Figure 2 — Polar representation of the elastic @rtgs for laminate (21).
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CLASS OF SYMMETRY

POLAR CONDITION

Orthotropy

CDO—cblzK%,K:Oorl

Ro =0

Square symmetry

R =0

Isotropy

Ry=0, R =0

Table 1. Polar conditions for elastic symmetries.

E: (MPa)

E, (MPa)

G2 (MPa)

V12

p (kg/n)

181000

10300

7170

0.28

1578

X; (MPa)

Xc (MPa)

Y, (MPa)

Y. (MPa)

Si2 (MPa)

1500

1500 40 246 68

Table 2. Mechanical properties for T300/5208.

Global objective

In-plane
function|(P)

Bending
orthotropy

Coincidence of
orthotropy

Coupling orthotropy axes

6.32 10° 1.24 10° 7.4010° | 5.0610° 9.39 10°

Table 3. Values of the objective function for smut(21).

Polar parameters To (MPa) | T1 (MPa) | Ry (MPa) | Ry (MPa)| @y (°)

In-plane, A 26880 24744

13417 o)

19605 -0.61

Bending, D 26880 24744 15127 2011y -0.66

Coupling, B 0 0 93 31 39

Table 4. Elastic polar parameters for laminate.(21)




Global objective
function|(P)

In-plane
orthotropy

Bending
orthotropy

Coupling

Coincidence of
orthotropy axes

8.80 10°

3.76 10°

4.55 10%°

7.48 10°

4.90 10°

Table 5. Values of the objective function for smuat(23).

Polar parameters Tp (MPa)

T1 (MPa)

Ro (MPa)

R (MPa)

P (°)

In-plane, A 26880 24744 11084 5234 44.8

Bending, D 26880 24744 12698 6661 44.9

129 141

Coupling, B 0 0

—-24.45

Table 6. Elastic polar parameters for laminate.(23)

Global objective
function|(P)

In-plane
orthotropy

Bending
orthotropy

Coupling

Coincidence of
orthotropy axes

7.74 10°

1.04 10’

4.56 10°

7.26 10°

2.06 10°

Table 7. Values of the objective function for sauat(25).

Polar parameters Tp (MPa)

T1 (MPa)

Ry (MPa) | Ry (MPa)

P (%)

In-plane, A

26880

24744

12530 9640

-0.11

Bending, D

26880

24744

16104 1430

0.05

Coupling, B

0

0

102 362

20.55

Table 8. Elastic polar parameters for laminate.(25)




Global objective
function|(P)

In-plane
orthotropy

Bending
orthotropy

Coupling

Coincidence of
orthotropy axes

7.310%

4.5 10°

1.5 10*

3.5 10%

1.8 10*

Table 9. Values of the objective function for smuat(27).

Polar parameters Tp (MPa)

T1 (MPa)

Ro (MPa)

R (MPa)

D (°)

In-plane, A

26880

24744

13022

1939

-0.1

Bending, D

26880

24744

11553

1889

1.0(

Coupling, B

0

0 228

349

-26.86

Table 10. Elastic polar parameters for laminatg.(27

Solution

(20)

(22)

(24)

(26)

Aortho

0.009%

0.2%

0.2%

0.9%

Table 11. Deviation from bending orthotrofiyno for solutions (21) to (27)

Solution

(20)

(22)

(24)

(26)

Auncoupling

0.2%

1.3%

1.4%

2.4%

Table 12. Deviation from unncouplifgncoupiingfor solutions (21) to (27)




