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Abstract—With the advent of GPS-equipped devices, a mas-
sive amount of location data is being collected, raising the
issue of the privacy risks incurred by the individuals whose
movements are recorded. In this work, we focus on a specific
inference attack called the de-anonymization attack, by which
an adversary tries to infer the identity of a particular individual
behind a set of mobility traces. More specifically, we propose an
implementation of this attack based on a mobility model called
Mobility Markov Chain (MMC). A MMC is built out from the
mobility traces observed during the training phase and is used
to perform the attack during the testing phase. We design
two distance metrics quantifying the closeness between two
MMCs and combine these distances to build de-anonymizers
that can re-identify users in an anonymized geolocated dataset.
Experiments conducted on real datasets demonstrate that the
attack is both accurate and resilient to sanitization mechanisms
such as downsampling.

Keywords-Privacy, geolocation, inference attack, de-
anonymization.

I. INTRODUCTION

With the recent advent of ubiquitous devices and smart-
phones equipped with positioning capacities such as GPS
(Global Positioning System), a massive amount of mobility
traces is collected and gathered in the form of geolocated
datasets by cellphone companies, providers of location-
based services, and developers of smartphone applications.
Some of these geolocated datasets are available in public
repositories and can be used for research or for industrial
purposes (e.g., to optimize the placement of cellular towers,
to conduct market and sociological studies or to analyze the
flow of traffic inside a city). These datasets are composed of
the mobility traces of hundred or thousands of individuals
[1], [2], [3], [4], thus raising the issue of the privacy
risks incurred by these individuals. For instance, from the
movements of an individual it is possible to infer his points
of interests (such as his home and place of work) [5], [6],
[7], [8], to predict his past, current and future locations [9],
[10], or even to infer his social network [11].

In this work, we focus on a particular form of inference
attack called the de-anonymization attack, by which an
adversary tries to infer the identity of a particular individual
behind a mobility trace. More precisely, we suppose that the
adversary has been able to observe the movements of some

individuals during a non-negligible amount of time (e.g.,
several days or weeks) in the past during the training phase.
Later, the adversary accesses a different geolocated dataset
containing the mobility traces of some of the individuals
observed during the training phase, plus possibly some
unknown persons. Then, the objective of the adversary is
to de-anonymize this dataset (called the testing dataset) by
linking it to the corresponding individuals observed during
the training phase. Note that simply replacing the real
names of individuals by pseudonyms before releasing a
dataset is usually not sufficient to preserve the anonymity
of their identities because the mobility traces themselves
contain information that can be uniquely linked back to
an individual. In addition, while a dataset can be sanitized
before being released by adding spatial and temporal noise,
the risk of re-identification through de-anonymization attack
nevertheless still exists.

In this paper, we propose a novel method to de-anonymize
location data based on a mobility model called Mobility
Markov Chain (MMC) [7]. A MMC is a probabilistic
automaton, in which each state corresponds to one (or
possibly several) Point Of Interest (POIs), characterizing
the mobility of an individual and an edge indicates a
probabilistic transition between two states (i.e., POIs). Each
state can have an semantic label attached to it such as
“home”, “work”, “leisure”, “sport”, . . . A MMC is built out
of the mobility traces observed during the training phase and
is used to perform the de-anonymization attack during the
testing phase. More precisely, the mobility of each individual
both from the training and testing sets is represented in the
form of a MMC. Afterwards, a distance is computed between
possible pairs of MMCs from the training and testing sets in
order to identify the closest individuals in terms of mobility.
In short, the gist of this method is that the mobility of an
individual can act as a signature, thus playing the role of a
quasi-identifier [12]. Thus, if the adversary knows Alice and
a signature of her mobility (e.g., he has learnt her MMC out
of the training set), he can try to identify her by finding a
matching signature in the testing set.

The outline of the paper is the following. First, in Sec-
tion II, we review some related work on de-anonymization
attacks and mobility models before briefly introducing in



Section III the background on Mobility Markov Chains
necessary to understand our work. Afterwards in Section
IV, we present the distance metrics between MMCs that
we designed in order to quantify the closeness between
two mobility behaviors, while in Section V we describe
how to build predictors (which we call de-anonymizers)
based on these distances to efficiently and accurately de-
anonymize location data. Finally, we evaluate experimentally
the efficiency of the proposed attack on real geolocated
datasets in Section VI before concluding in Section VII.

II. RELATED WORK

An inference attack corresponds to a process by which an
adversary that has access to some data related to individuals
(and potentially some auxiliary information) tries to deduce
new personal information that was not explicitly present in
the original data. For instance, a famous inference attack
was conducted by Narayanan and Shmatikov on the “Netflix
dataset” [13]. This dataset is a sparse high dimensional
data containing ratings on movies of more than 500 000
subscribers from Netflix that was supposed to have been
anonymized before its release for the Netflix competition1.
However, Narayanan and Shmatikov have performed a de-
anonymization attack that was able to successfully re-
identify more than 80% of the Netflix subscribers by using
the Internet Movie Database2 (IMDB), another database of
movie ratings, as auxiliary knowledge.

Inference attacks have also been developed specifically for
the geolocated context. For instance, Mulder et al. [6] have
proposed two methods for profiling users in a GSM network
that can also be used to perform a de-anonymization attack.
The first method is based on constructing a Markov model
of the mobility behavior of an individual while the second
considered only the sequence of cell IDs visited. Once POIs
have been extracted for each user, an agglomerative hierar-
chical clustering algorithm is used to group users according
to a similarity measure called the cosine similarity [14].
Their first method is relatively similar to ours with two major
differences due to the fact that their dataset comes from
a cellular network. Thus, it relies on the static GSM cells
as the states of the Markov model, while we dynamically
learn the POIs from the mobility traces of an individual.
Therefore, in our setting two individuals do not necessarily
have any POI in common, whereas with GSM cells, in-
dividuals living in the same area have a high probability
of sharing some POIs (i.e., cells). As a consequence, the
second main difference between their work and ours is that
the transitions are only possible between neighboring GSM
cells, as it is impossible to “jump” from one cell to another
if they are not adjacent. Their attack was validated through
experimentations using cell locations from a MIT Media Lab

1http://www.netflixprize.com
2http://www.imdb.com

dataset3 [15] that includes information such as call logs,
Bluetooth devices in proximity, cell tower IDs, application
usage and phone status. During the experiments, the authors
have observed that if the currently profiled user belongs to
a cluster of other similar users, there is a high chance of
making a mistake about the identity inferred among all the
users of this cluster when performing the de-anonymization
attack. The success rate of the re-identification attack varies
from 37% to 39% using the Markov model, against 77% to
88% when the sequence of cells visited is used.

Zang and Bolot [8] have performed a study of the top n
most frequently visited places by an individual in a GSM
network and show how they can act as quasi-identifiers to
re-identify anonymous users. Their study was performed on
the Call Data Record (CDR) from a nationwide US cellular
provider collected over a month and contains approximately
20 millions users. From this dataset, the authors have identi-
fied the top n most frequent places for each user at different
levels of spatial (i.e., sector, cell, zip code, city, state and
country) and time granularity (i.e., day and month). Their
inference attack was able to successfully re-identify 35% of
the population studied when the adversary has no auxiliary
knowledge and even up to 50% when the adversary can use
the knowledge of the social network of users as auxiliary
information. The social network was constructed by creating
a social relationship between two individuals that have called
each other at least once in the past. In their analysis, the
authors emphasize that the distance between home and work
can be an indicator of the privacy level for an individual. In
particular, the larger this distance, the higher the risk that
this individual can be de-anonymized.

Ma et al. [16] have also proposed an inference attack to
de-anonymize users in a geolocated dataset along with a
metric to quantify the privacy loss of an individual. Two
datasets were used in this study, one taken from the Craw-
dad repository recording the movements of San Francisco
YellowCabs [1] and another recording the movements of
Shanghai city public buses4. Two types of adversary models
were considered: the passive one, collecting the whereabouts
of individuals from a public source (possibly sanitized)
and the active one that can deliberately participate to the
data collection or influence it by his acts in order to gain
additional knowledge about the location of some specific
individuals. To retrieve the identities of individuals, the
authors imagine four different estimators that the adversary
can use to measure the similarity between mobility traces
(e.g., between the original traces and the sanitized ones).
Basically, the attack proposed by Ma et al. extracts the
signature of the mobility of an individual and evaluate
depending on the size of this signature (ranging from 1
to 30 timestamped positions) how it uniquely identifies the

3http://reality.media.mit.edu/dataset.php
4To the best of our knowledge, this dataset is not publicly available.



target individual. These methods approach a success rate
of de-anonymization of 80% to 90% on the San Francisco
YellowCabs dataset and between 60% and 70% on the
Shanghai dataset, and this even when the data is sanitized
through the addition of spatial noise. However, contrary to
our work, these inference attacks were conducted on the
whole dataset (there was no split between a training set and
a testing set). In particular, the authors assume that both
type of adversaries (i.e., passive and active ones) pick the
information they need to build the mobility model from the
same dataset on which the success of the de-anonymization
attack is tested. This induces an overly strong bias in the
re-identification results obtained with this approach.

The work in [17] also focuses on re-identifying users of
geolocated datasets. These experiments have been conducted
on two datasets. The first dataset contains the GPS traces
of 24 users from the city of Borlange recorded in a two-
year period (1999-2001)5 while the second one is due to
Nokia6 and is composed of the GPS traces of 150 users
from the city of Lausanne recorded over a year. In this
work, the pair of POIs “home/work” is used as pseudo-
identifiers to de-anonymize users. First, a variant of the k-
means algorithm is used to extract POIs from the mobility
traces. Then, the POI in which the individual considered
stays the most often between 9PM to 9AM is identified
as “home” while the POI in which the individual stays the
most often between 9AM to 5PM is labelled as “work”. The
training phase consists in applying this method on the raw
data to extract the pairs “home/work” for all individuals,
and then to conduct the same attack on sampled traces in
order to assess how much the pair “home/work” can still be
inferred even when the dataset released has been sanitized by
applying downsampling. The success of this method depends
on how the number of sampled traces have been generated.
Indeed, the authors have proposed several sampling schemes
whose bias towards selecting home/work locations or other
POIs can be parametrized. The authors have shown that
when 100 samples are observed, the de-anonymization rate
is approximately 70% for the Nokia dataset and 67% for the
Borlange one. Unfortunately, as most of the previous works
presented, this study does not split the available data into a
training and testing set during the evaluation of the success
of the method but rather generates the samples that will
constitute the testing set directly from the training one. This
introduces a major bias in the evaluation of the techniques,
which we further discuss in Section VI-C.

The work of Xiao et al. [18] relies on the notion of
Semantic Location Histories (SLH) to compute the similarity
between users. In a nutshell, a SLH is simply the sequence of
semantic locations frequently visited by an individual. Like
several previous approaches, this work first uses a hierar-

5http://icapeople.epfl.ch/freudiger/borlange.zip
6To the best of your knowledge, this dataset is not publicly available.

chical clustering algorithm to extract POIs out of mobility
traces. Then, using as external knowledge a database to
associate semantics to a location, each POI is associated
with a semantic tag for each level of the hierarchy (e.g.,
“Italian restaurant” and then “restaurant” at an upper level).
Finally, the SLH is computed by analyzing the sequence of
POIs visited by a user and taking into account their semantic
labels. The similarity measure designed by the authors
is based on the notion of maximal travel match, which
counts the number of similar semantic locations visited (not
necessarily in the same order) by two different SLHs within
a predefined time interval. This metric is computed for each
layer of the cluster hierarchy before being summed over
all possible layers, possibly by weighting the influence of
a particular level (i.e., the deeper the level, the bigger the
influence). Finally, the proposed approach was evaluated
on the Geolife dataset [19]. Contrary to previous work,
the success of the de-anonymization attack is quantified in
terms of the normalized discounted cumulative gain, a metric
originated from information retrieval [20]. In a nutshell, the
objective of this metric is to rank all the possible candidates
to de-anonymization with respect to how close their mobility
is to the behavior of the user considered. In the experiments
conducted, the success of the attack as measured by this
metric was between 0.7 and 0.9. Basically the closer this
value is to 1, the more effective the attack is. Note that,
due to the different metric that was used, this method is not
directly comparable to other previous works.

Finally, Shokri et al. [21] infered the correspondence
between pseudonymized traces of 40 randomly chosen users
of the YellowCabs dataset [1], in which each position is
a cell of 8×5 grid over the San Francisco Bay area, and
user profiles represented in the form of hidden Markov
model. Their attack computes a matching probability be-
tween pseudonymized traces and user profiles by using the
classical Forward-Backward algorithm [22]. As the objective
of this attack was individual tracking, their results are not
directly comparable to our work.

In this section, we have reviewed the previous work on de-
anonymization attacks in the geolocated context. Thereafter,
we will present our novel approach to de-anonymization.
More precisely, we first introduce how to model the mobility
of an individual in the form of a MMC, before describing
how to measure the similarity between two MMCs using
the distances we propose. Finally, we demonstrate exper-
imentally how to use these distance metrics to perform a
de-anonymization attack.

III. MOBILITY MARKOV CHAIN

A Mobility Markov Chain (MMC) [7] models the mobility
behavior of an individual as a discrete stochastic process in
which the probability of moving to a state (i.e, POI) depends
only on the previously visited state and the probability



distribution on the transitions between states. More precisely,
a MMC is composed of:

• A set of states P = {p1, . . . pn}, in which each
state is a frequent POI (ranked by decreasing order
of importance), with the exception of the last state
pn that corresponds to the set composed of the union
of all infrequent POIs. POIs are learned by running
a clustering algorithm on the mobility traces of an
individual. These states are associated to a location, and
generally they also have an intrinsic semantic meaning.
Therefore, semantic labels such as “home” or “work”
can often be inferred and attached to them.

• Transitions, such as ti,j , represent the probability of
moving from state pi to state pj . A transition from one
state to itself is possible if the individual has a non-null
probability from moving from one state to an occasional
location before coming back to this state. For instance,
an individual can leave home to go to the pharmacy
and then come back to his home. In this example, it is
likely that the pharmacy will not be extracted as a POI
by the clustering algorithm, unless the individual visits
this place on a regular basis.

Note that several mobility models based on Markov chains
have been proposed in the past [7], [23], including the use
of hidden Markov models for performing inference attacks
[24]. In a nutshell, building a MMC is a two steps process.
During the first phase, a clustering algorithm is run to extract
the POIs from the mobility traces. For instance in the work
of Gambs et al. [7], a clustering algorithm called Density-
Joinable Cluster (DJ-Cluster) was used (we rely on the
same algorithm in this work), but of course other clustering
algorithms are possible. In the second phase, the transitions
between those POIs are computed.

DJ-Cluster takes as input a trail of mobility traces and
three parameters: the minimal number of points MinPts
needed to create a cluster, the maximum radius r of the circle
within which the points of a cluster should be contained and
a distance d at which neighboring clusters are merged into
a single one. DJ Cluster works in three phases. During the
first phase, which corresponds to a preprocessing step, all
the mobility traces in which the individual is moving (i.e.,
whose speed is above a small predefined value) as well as
subsequent static redundant traces are removed. As a result,
only static traces are kept. The second phase consists in
the clustering itself: all remaining traces are processed in
order to extract clusters that have at least MinPts points
within a radius r of the centre of the cluster. Finally, the
last phase merges all clusters that have at least a trace
in common or whose medoids are within d distance of
each other. Once the POIs (i.e., the states of the Markov
chain) are discovered, the probabilities of the transitions
between states can be computed. To realize this, the trail
of mobility traces is examined in chronological order and

each mobility trace is tagged with a label that is either
the number identifying a particular state of the MMC or
the value “unknown”. Finally, when all the mobility traces
have been labeled, the transitions between states are counted
and normalized by the total number of transitions in order
to obtain the probabilities of each transition. A MMC can
either be represented as a transition matrix or as a graph in
which nodes correspond to states and arrows represent the
transitions between along with their associated probability.
When the MMC is represented as a transition matrix of size
n × n, the rows and columns correspond to states of the
MMC while the value of each cell is the probability of the
associated transition between the corresponding states.

IV. DISTANCES BETWEEN MOBILITY MARKOV CHAINS

In this section, we propose two different distances quan-
tifying the similarity between two Mobility Markov Chains.
These distances are based on different characteristics of the
MMCs and thus give different but complementary results.
We will rely on these distances in the following sections to
perform the de-anonymization attack.

A. Stationary distance

The intuition behind the stationary distance is that the
distance between two MMCs corresponds to the sum of the
distances between the closest states of both MMCs. In order
to compute the stationary distance, the states of the MMCs
are paired in order to minimize this distance. As a result,
it is possible that a state from the first MMC is paired
with several states of the second MMC (this is especially
true if the MMCs are of different size). Furthermore, the
computation of the stationary distance heavily relies on the
stationary vectors of the MMCs. In a nutshell, the stationary
vector of a MMC is a column vector V , obtained by
multiplying repeatedly a vector initialized uniformly Vinit

by the MMC transition matrix M until convergence (i.e.,
until the distribution of values in this vector reaches the
stationary distribution of the MMC).

The stationary distance is directly computed from the
stationary vectors of two MMCs (hence its name). More
precisely, given two MMCs, M1 and M2, the stationary
vectors, respectively V1 and V2, of each model are computed.
Afterwards, Algorithm 1 is run on these two stationary
vectors. For each state in V1, the algorithm searches for
the closest state in V2 (lines 5 to 11) and then multiplies
the distance between these two states by the corresponding
probability of the stationary vector of the state of V1

currently considered (line 12).
Once the algorithm has taken into account all states from

V1, the current value computed represents the distance from
M1 to M2 (distanceAB in line 1, Algorithm 2). This
distance is not symmetric as such and therefore in order
to symmetrize it, Algorithm 1 is called once again, but
on V2 and V1 in order to obtain the distance from M2



to M1 (distanceBA of line 2, Algorithm 2). The result is
made symmetrical by computing the average of these two
distances (line 3, Algorithm 2).

Algorithm 1 Stationary distance(V1, V2)

1: distance = 0
2: for i = 1 to n1 (the number of nodes in V1) do
3: MinDistance = 100000 kilometers
4: Let pi be the ith node of V1

5: for j = 1 to n2 (the number of nodes in V2) do
6: Let pj be the jth node of V2

7: CurrentDistance = Euclidean Distance(pi, pj)
8: if (CurrentDistance < MinDistance) then
9: MinDistance = CurrentDistance

10: end if
11: end for
12: distance = distance+ProbV1

(pi)×MinDistance
13: end for
14: return distance

Algorithm 2 Symmetric stationary distance(V1, V2)

1: distanceAB = Stationary distance(V1, V2)
2: distanceBA = Stationary distance(V2, V1)
3: distance = (distanceAB + distanceAB)/2
4: return distance

B. Proximity distance

The intuition behind the proximity distance is that two
MMCs should be considered as close if they share “im-
portant” states. For instance, if two individuals share both
their home and place of work they should be considered as
being highly similar. Moreover, the importance of a state is
directly proportional to the frequency at which it is visited.
Therefore, the first states ordered by decreasing order of
importance are compared, then the second ones, then the
third ones, and so on. The proximity score obtained for
sharing the first states is considered twice as important as
the score for sharing the second states, which is itself twice
as important as the sharing of the third states, and so forth.

Given two MMC models M1 and M2 (ordered in a
decreasing manner with respect to their stationary probabil-
ities), this distance is parametrized by a threshold ∆ and a
rank. The objective of the rank is to quantify the importance
of matching two states at a specific level. In particular, the
higher is the value of the rank, the bigger is the weight that
will be given to these POIs. For instance for the first pair
of POIs, we have set rank = 10.

Algorithm 3 starts by verifying for each pair of nodes
between M1 and M2 if the Euclidean distance between them
is less than the threshold ∆ (line 8). If this condition is
met, the value of rank is added to the score value (line 9).

Afterwards, rank is divided by two (lines 11-14). Once all
the pair of nodes have been processed, the global distance
is set to be the inverse of the global score if this score is
non-null (lines 17-19). Otherwise, the distance outputted is
set to a large value (e.g., 100 000 kilometers).

Algorithm 3 Proximity distance(V1, V2)

1: Sort the states of V1 by decreasing order of frequency
2: Sort the states of V2 by decreasing order of frequency
3: score = 0, rank = 10
4: for i = 1 to min(n1, n2) do
5: Let pa be the ith node of V1

6: Let pb be the ith node of V2

7: distance = Euclidean distance(pa, pb)
8: if (distance < ∆) then
9: score = score + rank

10: end if
11: rank = rank/2
12: if (rank = 0) then
13: rank = 1
14: end if
15: end for
16: distance = 100000
17: if (score > 0) then
18: distance = 1/score
19: end if
20: return distance

The stationary distance is composed of the sum of the
Euclidian distances of some pairing of the states while the
proximity distance is completely different as it is based on
the semantics behind the MMCs. Indeed, the first state in
the model is inferred as being very representative of the
mobility of an individual (e.g., home), the second as quite
representative (e.g., the place of work), and two individuals
are considered as very similar if they share these two places.
Thereafter, we will see how these distance can be used
to build de-anonymizers and how their diversity can be
leveraged and combined to enhance the success of the de-
anonymization attack.

V. DE-ANONYMIZERS

In this section, we rely on the two distances proposed
in the previous section to build statistical predictors in
order to perform a de-anonymization attack. We call such a
predictor, a de-anonymizer in reference to its main objective.
A de-anonymizer takes as input the MMC representing the
mobility of an individual and tries to identifies within a set of
anonymous MMCs, the one that is the most similar (i.e, the
closest in terms of distance). For example, a de-anonymizer
may learn from the training set a MMC representing the
mobility of Alice and later look for the presence of Alice
in the testing set. A de-anonymizer can be based on one
distance or a combination of them.



The minimal distance de-anonymizer considers that in
each row, the MMC with the minimal distance (i.e., the
column) is the individual corresponding to the identity of
the row. We have considered two instanciations of this de-
anonymizer, one with the stationary distance and the other
with the proximity distance. The stat-prox de-anonymizer
behaves exactly like the minimal stationary distance de-
anonymizer, except when the stationary distance is above
a given threshold and the proximity distance is below its
maximum value (i.e., 100 000 kilometers). The intuition is
that if the minimal stationary distance is very small, we
should use it. Otherwise, we rely on the minimal proximity
distance unless it gives no conclusive result, in which case
we roll back to the minimal stationary distance.

An overview of the process of de-anonymization attack
over geolocated datasets used in our experiments is il-
lustrated in Figure 1. Considering a particular geolocated
dataset, we first sort the mobility traces of each user in a
chronological order. Then, for each user his trail of mobility
traces is split into two disjoint trail of traces of same size,
one for the training set and one for the testing set as ex-
plained in Section VI-A. The former is part of the auxiliary
knowledge gathered by the adversary while the latter is the
ground truth we use to assess the success of the attack.
For each of this dataset, we learn a MMC for each trail
of mobility traces. With respect to the MMCs learnt from
the training set, the adversary knows the correspondence
between these models and the corresponding identities of
the users. Afterwards, the distances described in Section
IV are used to compute a distance matrix between the
MMC models resulting from the training and testing sets.
Subsequently, using this distance matrix as input to one of
the de-anonymizer described in this section, the objective
of the de-anonymization attack is to map back the users of
the testing set to their true identities by linking their models
in the testing set to the corresponding ones in the training
set. Finally, the success rate of the attack is computed by
measured the ratio between the number of correct predictions
over the total number of guesses.

VI. EXPERIMENTS

We evaluate the efficiency of the de-anonymization attack
pictured in the previous section on six different datasets de-
scribed in Section VI-A. Then, we report the results of those
experiments that were conducted by using the distances and
de-anonymizers described in the previous sections. More
precisely, we evaluate the accuracy of the de-anonymization
attack relying on either a single predictor or a combination of
them (Section VI-B). Finally, in Section VI-C, we compare
our work with the performance reported in related works
using biased experiments.

A. Description of datasets

The datasets used in the experiments are the following:
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Figure 1. Overview the de-anonymization attack process.

1) The Geolife dataset [19] has been gathered by re-
searchers from Microsoft Asia and consists of GPS
traces collected from April 2007 to October 2011,
mostly in the area of Shanghai city. This dataset
contains the mobility traces of 178 users captured at
a very high rate of 1 to 5 seconds.

2) The Nokia dataset [2] is the result of a data collection
campaign performed the city of Lausanne for 200
users started in September 2009 and that lasted for
more than two years. The rate at which the location has
been sampled varies depending on the current battery
level.

3) The Arum dataset [4] is composed of the GPS traces
of 5 researchers sampled at a rate of 1 to 5 minutes
in the city of Toulouse from October 2009 to January
2011.

4) The San Francisco Cabs dataset [1] contains GPS
traces of approximately 500 taxi drivers collected over
30 days, between May and July 2008, in the San
Francisco area.

5) The Borlange dataset [17] has been collected as a
part of traffic congestion experiment over two years
from 1999 to 2001. The public version of this dataset
contains the GPS traces of 24 vehicles.

In the following, we first focus on the Geolife dataset
in order to analyze and understand the behaviour of the



de-anonymizers and distances. More precisely, for each
individual of this dataset, we split his trail of mobility
traces into two disjoint parts of approximately the same
size. The first half of the original data forms the train-
ing set, and will be used as the adversary background
knowledge, while the second half constitutes the testing set
on which the de-anonymization attack is conducted. For
instance, if the original trail of one individual is composed
of n mobility traces {mt1,mt2, . . . ,mtn}, it will be split
into a training set {mt1,mt2, . . . ,mtn

2
} and a testing set

{mtn
2 +1,mtn

2 +2, . . . ,mtn} (for illustration purpose we as-
sume that n is an even number). Therefore, the objective of
the adversary is to de-anonymize the individuals of the test-
ing set by linking them to their corresponding counterparts
in the training set.

B. Measuring the efficiency of de-anonymizers

To measure the success rate of the proposed de-
anonymizers, we have sampled the Geolife dataset at dif-
ferent rates and observed the influence of the sampling on
the success rates of the de-anonymizers. Figure 2 shows that
the success rate of the attack with the minimal stationary
distance and the minimal proximity distance varies from
20% to 40%, but that the best performing predictor is stat-
prox with results ranging from 35% to 40%.

At this point of the experiments, it seems important to
be able to compare precisely the de-anonymizers. Indeed,
the success rate of a de-anonymization attack is not the
only aspect that should be considered. For instance, for
an adversary a possible strategy is to focus on weak in-
dividuals that offer a high probability of success for the
attack rather than being able to de-anonymize the entire
dataset. Measuring the probability of success of the inference
attack for a given individual is similar to have some kind of
confidence measure for a given de-anonymization candidate.
Deriving this confidence measure is quite intuitive for our
de-anonymizers. Indeed, for the minimal distance ones, the
smaller is the distance, the higher the confidence.

In order to compare the performance of the de-
anonymizers, we rely on the notion of Receiver Operating
Characteristic (ROC) curve [25]. In a nutshell, a ROC curve
is a graphical plot representing the sensitivity (i.e., as mea-
sured by the true positives rate versus false positives rate) for
a classifier. The intuition behind this metric is that between
two de-anonymizers achieving the same success rate, one
should favor the one displaying the highest confidence.
Henceforth, the following so-called ROC curve (Figure 3)
shows the true positives rate (TPR) versus the false positives
rate (FPR) for the best performing de-anonymizers, with the
candidates sorted by ascending distance. This ROC curve
further confirms that the stat-prox de-anonymizer is the best
alternative among the de-anonymizers we propose.

Our approach performs fairly well for the Geolife dataset
as the achieved success rate is between 35% and 45% for

the stat-prox de-anonymizer. In order to further validate the
approach, we applied it on the Nokia dataset. This dataset
has 195 users, among which we can generate a “valid” MMC
composed of more than one POI for 157 users using the
parameters described previously. As shown on Figure 4, the
success rate varies between 35% and 42%, with the best
score obtained again by the stat-prox de-anonymizer.

C. Fair comparison with prior work

In this section, we have presented various experiments
on de-anonymization attacks that lead to the definition of
an heterogeneous de-anonymizer called stat-prox, which
obtains a success rate between 42% and 45% on different
datasets. While at first glance, this performance may seem
to be poorer than the one achieved by the predictors of Ma
et al. [16], which goes up to 60% to 90%, we believe that
these results are not directly comparable because we clearly
differentiate between the training set and the testing set,
while these authors perform the learning and the testing on
the same dataset, thus inducing a strong experimental bias.

Indeed, our mobility models are built out of the training
set, which is disjoint from the test set, whereas one of the
adversary model of Ma et al. directly extracts mobility traces
forming the test set from the training set. Moreover, in our
case, the training data is temporally separated from the test
data (i.e., the training and the test have been recorded at
different non-overlapping periods of time) because the whole
dataset has been split into two temporally disjoint parts,
whereas the second adversary model of Ma et al. picks the
information it uses to de-anonymize within the same period
as the test data is recorded. Therefore, our approach is quite
different from them as our attack consists first in collecting
mobility data from an individual, before later in the future
trying to identify this individual in a so-called anonymized
dataset, while their attack aims at gathering location data at
the same time at which the de-anonymization attack occurs.
In addition, one important parameter of their attack is the
number of timestamped location data collected, which can
be compared to the number of states we have in our mobility
model. On average and depending on the dataset considered,
we have between 4 and 8 states per MMC, which correspond
to a compact representation of the mobility behavior of an
individual. When restricted to such limited of information
in terms of the number of timestamped location data, the
attacks proposed by Ma et al. do not perform well, with a
de-anonymization rate between 10% to 40%.

For comparison purpose, we conducted the de-
anonymization attack without separating the training
and testing sets. The results obtained by related work
and for the stat-prox de-anonymizer in this setting using
different datasets are summarized in Figure 5. These
experiments are, as expected, so biased that they lead to a
success rate close to 100% for all the datasets. Once again,
we are not pretending that our de-anonymization attack
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Figure 2. Success rate of the de-anonymizers on the Geolife dataset.
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Figure 3. ROC curve for the Geolife dataset.
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Figure 4. Success rate of the de-anonymizers on the Nokia dataset.
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Figure 5. Success rate of the stat-prox de-anonymizer when the training
and testing sets are the same.

would achieve a success rate of nearly 100% and beat all
the previous methods if tested in the same conditions (for
instance in some settings the test set was only a subset
of the training set as it was sampled from it). We are
merely pointing out that for fairness issues, it is important
to compare de-anonymizers using the same setting and that
in order to reduce the experimental bias, the training and
testing set should be clearly separated (which is not the
case in almost all the previous works).

VII. CONCLUSION

In this paper, we have demonstrated that geolocated
datasets gathering the movements of individuals are partic-
ularly vulnerable to a form of inference attack called the
de-anonymization attack. More precisely, we have shown
that the de-anonymization attack can re-identify with a high
success rate the individuals whose movements are contained
in an anonymous dataset provided that the adversary can

used as background information some mobility traces of the
same individuals that he has been able to observe during
the training phase. Out of these traces, the adversary can
build a MMC that models in a compact and precise way
the mobility behavior of an individual. We designed novel
distances quantifying the similarity between two MMCs
and we described how these metrics can be combined to
build de-anonymizers. The de-anonymization attack is very
accurate with a success rate of up to 45% on large-scale real
datasets and this even if the mobility traces are sanitized
by downsampling them (e.g., every 2 minutes instead of
every 10 seconds). We are planning to extend the current
work by following several avenues of research. For instance,
one of our research objective will be to discover among
different clustering algorithms, the one that best fits our
needs while being also robust and stable with respect to
small changes in the inputs (e.g., small spatial and temporal
perturbation). In a different direction, we will also explore



how more complex geo-sanitization mechanisms, such as
spatial cloaking techniques or mix zones, can help to reduce
the success rate of the attack.
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