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ABSTRACT
With the advent of GPS-equipped devices, more and more
geolocated datasets are being collected everyday, thus rais-
ing the issue of the privacy risks incurred by the individuals
whose movements are recorded. In this work, we focus on a
specific inference attack called the de-anonymization attack,
by which an adversary tries to infer the identity of a particu-
lar individual behind a mobility trace. More specifically, we
propose an implementation based on a mobility model called
Mobility Markov Chain (MMC). A MMC is built out from
the mobility traces observed during the training phase and
is used to perform the attack during the testing phase. We
design distance metrics between MMCs and combine these
distances to build de-anonymizers that can re-identify users
in an anonymous dataset. Moreover, experimentations con-
ducted on real datasets show that the attack is efficient in
terms of accuracy and resilient to sanitization mechanisms.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

1. INTRODUCTION
Recently, with the advent of ubiquitous devices and smart-

phones equipped with positioning capacities such as GPS,
more and more mobility traces are collected and gathered
in the form of geolocated datasets by cellphone companies
or research institutions. Some of these geolocated datasets
are made available in public repositories and can be used
for research or for industrial purposes (e.g., to optimize the
placement of cellular towers, to conduct market or sociolog-
ical studies or to analyze the flow of traffic inside a city). At
the same time, these datasets are composed of the mobility
traces of hundred or thousands of individuals [?, ?, ?, ?],
thus raising the issue of the privacy risks incurred by these
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individuals. For instance, from the movements of an indi-
vidual it is possible to infer his points of interests (such as
his home and place of work) [?, ?, ?, ?], to predict his past,
current and future locations [?, ?], or even to infer his social
network [?].

In this work, we are interested in a particular form of
inference attack called de-anonymization attack, by which
an adversary tries to infer the identity of a particular indi-
vidual behind a mobility trace. More precisely, we suppose
that the adversary has been able to observe the movements
of some individuals during a non-negligible amount of time
(e.g., several days or weeks) in the past during the training
phase. Later, the adversary has access to another geolocated
dataset that contains some of the individuals observed dur-
ing the training phase. The objective of the adversary is then
to de-anonymize this new dataset (called the testing dataset)
by linking it to the corresponding individuals of the training
dataset. Simply replacing the real names of individuals by
pseudonyms before releasing a dataset is usually not suffi-
cient to preserve the anonymity of their identities because
the mobility traces themselves contain information that can
be uniquely linked to an individual. In addition, a dataset
can be sanitized before being released, by adding spatial and
temporal noise, but nevertheless the risk of re-identification
through de-anonymization attack is still possible.

In this paper, we propose a new method to de-anonymize
geolocated data based on a mobility model called Mobil-
ity Markov Chain (MMC) [?]. A MMC is a probabilistic
automaton, in which each state corresponds to a point of
interest (or several points of interests) characterizing the
mobility of an individual and an edge indicates a probabilis-
tic transition between two states (i.e., points of interests).
Each node can potentially have a semantic label attached to
it such that home, work, leisure, sport, . . . A MMC is built
out of the mobility traces observed during the training phase
and is used as a tool to perform the de-anonymization at-
tack during the testing phase. More precisely, the mobility
of each individual both from the training and testing sets is
represented in the form of a MMC. Afterwards, a distance
measure is computed between MMCs from the training and
testing sets in order to identify the closest individuals in
terms of mobility. In short, the gist of this method is that
the mobility of an individual can act as a signature, thus
playing the role of a quasi-identifier. Therefore, if the ad-
versary knows Alice and a signature of her mobility (e.g.,
he has learnt her MMC from the training set), he can try
to identify her by finding a signature in the testing set that



matches her signature.
The outline of the paper is the following. First, in Section

??, we review some related work on de-anonymization attack
and mobility models. In section ??, we briefly introduce
the background on Mobility Markov Chains necessary to
the understanding of our work. Afterwards in Section ??,
we introduce the distance measures between MMCs that we
have designed to be able to quantify the closeness between
two mobility behaviors, while in Section ?? we present how
to build predictors (which we call de-anonymizers) based on
distance measures to efficiently and accurately de-anonymize
geolocated data. Finally, we evaluate experimentally the
efficiency of the proposed attack on real geolocated datasets
in Section ?? before concluding in Section ??.

2. RELATED WORK
An inference attack corresponds to any process by which

an adversary that has access to some data related to in-
dividuals (plus possibly some auxiliary information) tries
to deduce new personal information that was not explicitly
present in the original data. For instance, a famous infer-
ence attack was conducted by Narayanan and Shmatikov on
the “Netflix dataset” [?]. This dataset is a sparse high di-
mensional data containing ratings on movies of more than
500 000 subscribers from Netflix that was supposed to have
been anonymized before its release for the Netflix competi-
tion1. However, Narayanan and Shmatikov have performed
a de-anonymization attack that was able to successfully re-
identify more than 80% of the Netflix subscribers by using
the Internet Movie Database2 (IMDB), another database of
movie ratings, as supplementary background knowledge.

Inference attacks have also been developed specifically for
the geolocated context. For instance, Mulder et al. [?] have
proposed two methods to profile users in a GSM network
that can also be used to perform a de-anonymization at-
tack. The first method is based on constructing a Marko-
vian model of the mobility behavior of an individual while
the second considered only the sequence of cell IDs visited.
The first method is relatively similar to our work with two
major differences due to the fact their method is based on
a cellular network. First, they use the static GSM cells as
the states of the Markovian model, while we dynamically
learn the Points Of Interest (POIs). Therefore, in our set-
ting two individuals do not necessarily have any POIs in
common, whereas with GSM cells, individuals living in the
same area have a high probability of sharing some POIs (i.e.,
cells). As a consequence, the second main difference is that
in their work the transitions are only between neighboring
GSM cells, as it is impossible to “jump” from one cell to an-
other if they are not adjacent. Their attack was validated
through experimentations using cell locations from a MIT
Media Lab dataset3 [?] that includes information such as
call logs, Bluetooth devices in proximity, cell tower IDs, ap-
plication usage and phone status.

Finally in the work of Mulder et al., there was no differ-
ence between the training and testing test, which actually
consist both in the complete dataset. This overlap between
the training and testing set induces a bias on the obtained
results. The authors have also used an agglomerative hi-

1http://www.netflixprize.com
2http://www.imdb.com
3http://reality.media.mit.edu/dataset.php

erarchical clustering algorithm to group users according to
a similarity measure called the cosine similarity. They ob-
served that if the currently profiled user shares the same
cluster with other users, there is a high risk of making a mis-
take on the person when performing the de-anonymization
attack, thus leading to a high rate of false positives.

Zang and Bolot [?] have performed a study of the top n
most frequently visited places by an individual in a GSM
network and show how they can act as quasi-identifiers to
re-identify anonymous users. Their study was performed on
the Call Data Record (CDR) from a nationwide US cellu-
lar provider that was collected over a month and contains
approximately 20 millions users. From this dataset, the au-
thors have identified the top n most frequent places for each
user at different levels of granularity for space (sector, cell,
zip code, city, state and country) and time (day and month).
Their inference attack was able to successfully re-identify
35% of the population studied when the adversary has no
background knowledge and even up to 50% when the adver-
sary can use the knowledge of the social network of users as
auxiliary information. The social network was constructed
by creating a social relationship between two individuals
that have called each other at least once in the past. In
their analysis, the authors emphasize that the distance be-
tween home and work can be an indicator of the privacy level
for an individual. In particular, the larger this distance, the
higher the risk that this individual can be de-anonymized.

Ma et al. [?] proposed an inference attack to de-anonymize
users in a geolocated dataset along with a metric to quantify
the privacy loss of an individual. Two datasets were used
in this study, one stored in the Crawdad repository record-
ing the movements of San Francisco YellowCabs [?] and
the other about Shanghai city public buses4. Two types
of adversary models were considered: the passive one, col-
lecting the whereabouts of individuals from a public source
(possibly sanitized) and the active one that can deliberately
participate or perturb the data collection in order to gain
additional knowledge about the location of some specific in-
dividuals. To retrieve the identities of individuals, the au-
thors imagine four different estimators that the adversary
can use to measure the similarity between mobility traces
(for instance between the original traces and the sanitized
ones). The Maximum Likelihood Estimator (MLE) relies on
the Euclidean distance to compute the similarity between
mobility traces. The Minimum Square Approach (MSQ)
computes the negative sum of the square of the absolute
value of the difference between the original traces and the
sanitized ones. The Basic Approach (BAS) assumes that the
traces have been perturbed by uniform noise. Therefore, a
mobility trace will be considered to be similar to another
trace if it is contained within a sphere of radius r centered
on the original trace. Finally, the Weighted Exponential Ap-
proach (EXP) is similar to BAS, with the exception that no
assumption is made on the type of noise generated or the
knowledge of the adversary about this noise.

The methods proposed by Ma et al. perform particularly
well, approaching a success rate of de-anonymization of 80%
to 90%, and this even in the presence of noise. However,
much like Mulder et al. [?], the authors did not really split
the geolocated dataset between a training set and a testing
set. More precisely, they assume that both type of adver-

4To the best of our knowledge, this dataset is not publicly
available contrary to the other one.



saries (i.e., passive and active ones) can pick up the informa-
tion they used to build their mobility model of an individual
directly from the testing set (i.e., the same dataset on which
the success of the de-anonymization attack is tested). More
precisely, the first version of the passive adversary (called
A1 ) picks up his data directly into the test set while the
second version of the passive one (A2 ) relies on data that
have been generated on data generated at the same time at
the test data although not directly present in this dataset.
Basically, the method proposed by Ma et al. extracts the
best signature of the mobility of an individual and evaluate,
depending on the size of this signature (ranging from 1 to 30
timestamped positions), how it uniquely identifies the target
individual.

3. MOBILITY MARKOV CHAIN
A Mobility Markov Chain (MMC) [?] models the mobility

behavior of an individual as a discrete stochastic process
in which the probability of moving to a state (i.e, point
of interests) depends only on the previously visited state
and the probability distribution on the transitions between
states. More precisely, a MMC is composed of:

• A set of states P = {p1, . . . pn}, in which each state
is a frequent POI (ranked by decreasing order of im-
portance), with the exception of the last state pn that
corresponds to the set made of all infrequented POIs.
POIs are usually learned by running a clustering algo-
rithm on the mobility traces of an individual. These
states generally have an intrinsic semantic meaning
and therefore semantic labels such as “home” or “work”
can often be inferred and attached to them.

• Transitions, such as ti,j , represent the probability of
moving from state pi to state pj . A transition from
one state to itself is possible if the individual has a
non-null probability from moving from one state to an
occasional location before coming back to this state.
For instance, an individual can leave home to go to
the pharmacy and then come back to his home. In
this example, it is likely that the pharmacy will not be
extracted as a POI by the clustering algorithm, unless
the individual visits this place on a regular basis.

Note that many mobility models relying on a Markov chains
have been proposed in the past [?, ?], including the use of
hidden Markov models for performing inference attacks [?].
In a nutshell, building a MMC is a two step process. During
the first phase, a clustering algorithm is run to extract the
POIs from the mobility traces. In the study of Gambs et al.
[?], a clustering algorithm called Density Joinable cluster
(DJ-Cluster) was used that we also rely on in our work,
but of course other clustering algorithms are possible. In
the second phase, the transitions between those POIs are
computed.

DJ-Cluster takes as input a trail of mobility traces and 3
parameters: the minimal number of points MinPts needed
to create a cluster, the maximum radius r of the circle within
which the points of a cluster should be contained and a dis-
tance d at which neighboring clusters are merged into a sin-
gle one. DJ Cluster works in three phases. During the first
phase, which corresponds to a pre-processing step, all the
mobility traces in which the individual is in movement (i.e.,
whose speed is above some small predefined value) as well

as subsequent static redundant traces are removed. As a
result, only static traces are kept. The second step consists
in the clustering itself: all remaining traces are processed in
order to extract clusters that have at least MinPts points
within a radius r of the center of the cluster. Finally, the
last phase merges all clusters that have a trace in common
or whose centroids are within d distance of each other.

Once the POIs (i.e., the states of the Markov chain) are
identified, the probabilities of the transitions between states
can be computed. To realize this, the trail of mobility traces
is examined by chronological order and each mobility trace
is tagged with a label that is either the number identifying
a particular state of the MMC or the value “unknown”. Fi-
nally, when all the mobility traces have been labeled, the
transitions between states are counted and normalized by
the total number of transitions in order to obtain the prob-
abilities of each transition. Note that MMC can be either
represented as a transition matrix or in the form of a graph
in which nodes correspond to states and arrows represent
the transitions between along with their associated proba-
bility. When the MMC is represented as a transition matrix
of size n× n, the rows and columns correspond to states of
the MMC while the value of each cell is the probability of
the associated transition between the corresponding states.

4. DISTANCES BETWEEN
MOBILITY MARKOV CHAINS

In this section, we propose four different distance metrics
between mobility Markov chains that quantify the similar-
ity between two mobility behaviors. These distance metrics
are based on different characteristics of the MMCs and thus
give different but complementary results. We will rely on
these distance metrics in the next sections to perform the
de-anonymization attack.

4.1 Stationary distance
The intuition behind the stationary distance is that the

distance between two MMCs corresponds to the sum of the
distances between the closest states of both MMCs. In order
to compute the stationary distance, the states of the MMCs
are paired in order to minimize this distance. As a result,
it is possible that a state from the first MMC can be paired
with several states of the second MMC (this is especially
true if the MMCs are of different size).

The computation of the stationary distance is based on the
stationary vectors of the MMCs. The stationary vector is a
column vector obtained by multiplying the MMC transition
matrix by itself repeatedly until convergence. The station-
ary distance is directly computed from the stationary vectors
of two MMCs (hence its name). More precisely, given two
MMCs, M1 and M2, the stationary vectors, respectively V1

and V2, of each model are computed. Afterwards, Algorithm
?? is run on these two stationary vectors. For each state in
V1 (line 2), the algorithm searches for the closest state in V2

(lines 5 to 11) and then multiply the distance between these
two states by the corresponding probability of the stationary
vector of the state of V1 currently considered (line 12). Once
the algorithm has taken into account all states from V1, the
current value computed represents the distance from M1 to
M2 (distanceAB in line 1, Algorithm ??). This distance is
not symmetric as such and therefore in order to symmetrize
it, Algorithm ?? is called once again but on V2 and V1 in



order to obtain the distance from M2 to M1 (distanceBA of
line 2, Algorithm ??). The result is made symmetrical by
computing the average of these two distances (line 3, Algo-
rithm ??).

Algorithm 1 Stationary distance(V1, V2)

1: distance = 0
2: for i = 1 to n1 (the number of nodes in V1) do
3: MinDistance = 1000000 kilometers
4: Let pi be the ith node of V1

5: for j = 1 to n2 (the number of nodes in V2) do
6: Let pj be the jth node of V2

7: CurrentDistance = Euclidean Distance(pi, pj)
8: if (CurrentDistance < MinDistance) then
9: MinDistance = CurrentDistance

10: end if
11: end for
12: distance = distance + ProbV1(pi)×MinDistance
13: end for
14: return distance

Algorithm 2 Symmetric stationary distance(V1, V2)

1: distanceAB = Stationary distance(V1, V2)
2: distanceBA = Stationary distance(V2, V1)
3: distance = (distanceAB + distanceAB)/2
4: return distance

4.2 Matching distance
The matching distance is similar to the stationary distance

in the sense that this distance also corresponds to the sum of
distances between the states of these two MMCs. However,
the pairing of the states between the MMCs is done in a
different way as each state from the first MMC is paired
with one and only one state of the second MMC.

The matching distance is based on the Hungarian method
[?], which is a polynomial-time combinatorial optimization
algorithm for assignment problems. More precisely, the method
works as follows. Given two MMCs, M1 and M2 and their
corresponding stationary vectors V1 and V2, Algorithm ??
first verifies if the number of nodes in both models is the
same. If not, we assume without loss of generality that M2

is the MMC with the fewer number of states. Before contin-
uing the computation of the distance, “dummy” states are
added to M2. Each dummy state is a copy of the centroid of
the states of M2. Once this process is completed, the num-
ber of states in V1 and V2 is the same. Afterwards, the dis-
tance matrix (Di,j) and the minimization matrix (Mini,j)
are computed. The distance matrix contains the Euclidean
distance between each pair of nodes in M1 and M2 (lines
??-??), in which nodes in M2 form the rows of the matrix
and nodes in M1 correspond to the columns of Di,j . For in-
stance, the distance Di,j is the Euclidean distance between
the node i in M2 and the node j in M1. The minimization
matrix is equivalent to the distance matrix, except that each
distance Mini,j in which node i is a dummy is assigned a
large default value, such as 100 000 kilometers (line ??). In
short, the goal of this large value is to guide the Hungar-
ian method towards giving priority to real states instead of
dummy ones.

The minimization matrix, which is squared, is passed as
input to the Hungarian method. The Hungarian method
then computes the optimal assignment between states from
M1 and M2 that minimizes the global sum of distances be-
tween pair of states and such that each state from V1 is
exactly matched with one state of V2 (and vice-versa). This
optimal matching is returned as a matrix Index composed
of two columns. Each column contains respectively the in-
dexes of rows and columns of the optimal assignment for the
minimization matrix Mini,j . Figure ?? illustrates graphi-
cally an optimal assignment between two MMCs (one for
Alice and one for Bob). The matrix Index corresponding to
Figure ?? is I = {{1, 1}, {2, 3}, {3, 2}, {4, 3}, {5, 4}}.

For each pair of matching state, the distance between
these two (non dummy) states is multiplied by the average of
probabilities of stationary vectors V1 and V2. However, when
one of the state in M2 is dummy, the nearest real state in
M2 is identified, and the distance between these two states
is then multiplied by the probability corresponding to the
“orphan” state in V1 divided by two (lines ??–??). The dis-
tance returned is the sum of the values computed for each
matching (line ??).

Algorithm 3 Matching distance(V1, V2)

1: Let D be the distance matrix D and Min the minimiza-
tion matrix

2: Let n1 be the number of nodes in V1

3: Let n2 be the number of nodes in V2 (we suppose that V2

is the stationary vector with the fewest number of states
if the number of states between V1 and V2 is different)

4: Add fake states to V2 if necessary to ensure that n2 = n1

5: for i = 1 to n1 do
6: for j = 1 to n2 do
7: Di,j = Euclidean distance(pi, pj)
8: if (pi or pj is fake) then
9: Mini,j = 100000

10: else
11: Mini,j = Di,j

12: end if
13: end for
14: end for
15: Index = HungarianAssignment(Min)
16: Dist = 0
17: for i = 0 to n1 do
18: row = Indexi,0

19: col = Indexi,1

20: if (V2.node(col) is not fake) then
21: proba = (V1(row) + V2(col))/2
22: Dist = Dist + Drow,col × proba
23: else
24: proba = (V1.stationaryV ector(row) + 0)/2
25: Dist = Dist + NearestState(V1.node(row), V2.nodes)
26: end if
27: end for
28: return Dist

4.3 Density-based distance
Like the stationary and the matching distance, the density-

based distance is simply the sum of the distances between
pairs of MMCs states. However, the MMCs states are paired
according to their rank once they are sorted using their cor-
responding probability in the stationary vector.



Alice MMC. Bob MMC.

Figure 1: Example of the optimal matching of two MMCs. The number in each node corresponds to the
numbers of traces that falls inside this state.

First, given two MMC models M1 and M2, the nodes in
both models are sorted by decreasing density (Algorithm
??). Therefore, the first node will be the one with the high-
est stationary probability (lines ?? and ??). Afterwards, the
first node of M1 is matched with the first node of M2 and
the same goes for the rest of the nodes. Finally, the sum of
all distances between matched nodes is computed (line ??
to ??) and the algorithm outputs the total distance.

Algorithm 4 Densitybased distance(V1, V2)

1: Sort the states of V1 by decreasing order of density
2: Sort the states of V2 by decreasing order of density
3: distance = 0
4: for i = 1 to min(n1, n2) do
5: Let pa be the ith node of V1

6: Let pb be the ith node of V2

7: distance = distance + Euclidean distance(pa, pb)
8: end for
9: return distance

4.4 Proximity distance
The intuition behind the proximity distance is that two

MMCs should be considered as very close if they share “im-
portant” states. For instance, if two individuals share both
their home and place of work they should be considered
as being very similar. Moreover, like for the density-based
distance, the importance of a state is directly proportional
to the frequency at which it is visited. The first states or-
dered by decreasing order of importance are compared, then
the second, then the third, and so on. The proximity score
obtained for sharing the first states is consider twice as im-
portant as the score for sharing the second states, which is
itself twice as important as the sharing of the third states,
and so on.

Given two MMC models M1 and M2, a threshold (∆) and
a rank, Algorithm ?? verifies for each pair of nodes between
M1 and M2 (line 2) if the Euclidean distance between them
is less than the threshold ∆ (line 6). For instance, consid-

ering the nodes of Figure ??, the comparison is done with
the nodes from POI1 to POI4 (the POI5 in Alice’s MMC
is not taken into account as it is composed of all the infre-
quent POIs). If the distance between two nodes is less than
∆, the value of rank is added to the score value (line 7).
Afterwards, rank is divided by two (lines 9-12). Once all
the pair of nodes have been processed, the global distance
is obtained by taking 1 and dividing it by the global score if
this score is positive (lines 15-17). Otherwise, the distance
outputted is a large value (e.g., 360 000 kilometers).

Algorithm 5 Proximity distance(V1, V2)

1: score = 0, rank = 10
2: for i = 1 to min(n1, n2) do
3: Let pa be the ith node of V1

4: Let pb be the ith node of V2

5: distance = Euclidean distance(pa, pb)
6: if (distance < ∆) then
7: score = score + rank
8: end if
9: rank = rank/2

10: if (rank = 0) then
11: rank = 1
12: end if
13: end for
14: distance = 360000
15: if (score > 0) then
16: distance = 1/score
17: end if
18: return distance

It is worth noting that both the stationary distance, the
matching distance, and the density-based distance are all
numerical, in the sense that they are a sum of the Euclid-
ian distance of some pairing of the states. The proximity
distance, however, is completely different as it is based on
the semantics behind the MMCs. Indeed, the first state
in the model is inferred as being very representative of the
mobility of an individual (e.g., home), the second as quite



representative (e.g., the place of work), and two individu-
als are considered as very similar if they share these two
places. Thereafter, we will see how these distance can be
used to build de-anonymizers and how their diversity can
be exploited and combined to enhance the success of the
de-anonymization attack.

5. DE-ANONYMIZERS
In this section, we rely on the distance metrics proposed

in the previous section to build statistical predictors in order
to perform a de-anonymization attack. We call such a pre-
dictor, a de-anonymizer in reference to its main objective.
A de-anonymizer takes as input the MMC representing the
mobility of an individual and tries to identifies within a set of
anonymous MMCs, the one that is the most similar (i.e, the
closest in terms of distance). For example, a de-anonymizer
can learn from the training set a MMC that represents the
mobility of Alice and later look for the presence of Alice in
the testing with the goal of identify her if this is the case.
De-anonymizer can be based on one distance metric or a
combination of them.

The de-anonymizers works on the distance matrix that
contains the distances between different MMCs. These dis-
tances can correspond to any distance function such as Dist ∈
{Stationary,Matching, Proximity,DensityBased}. For in-
stance, in the distance matrix the rows can represent Alice,
Bob and Charlie, whose MMCs have been learnt from the
training dataset, while the columns correspond to anony-
mous MMCs (e.g., uMMC1, uMMC2, uMMC3 and uMMC4)
learnt from the testing dataset that we aim to re-identify.
Therefore, the cells of the matrix contain the distance be-
tween the known models and the unknown ones as illustrated
in Table ??.

uMMC1 uMMC2 uMMC3 uMMC4

Alice 10 40 30 20
Bob 13 27 17 3

Charlie 45 22 7 22

Table 1: Illustration of a distance matrix between
MMCs.

Several de-anonymizers were designed that works directly
on the distance matrix:

• The minimal-distance de-anonymizer considers that in
each row, the MMC with the minimal distance (i.e.,
the column) is the individual corresponding to the iden-
tity of the row. For instance in the above example, this
de-anonymizer would consider that the individual be-
hind uMMC1 is Alice.

• The minimal-value de-anonymizer takes as input two
different distance matrices (of size m×n) based on dif-
ferent distances Dist. These original distance matrices
are transformed into another one (also of size m × n)
that contains only the minimal values from the origi-
nal matrices. For example, starting from two distance
matrices M1 and M2, the resulting transformed ma-
trix M̂ is such that M̂(i, j) = Min(M1(i, j),M2(i, j)).

Once this transformed matrix M̂ is built, the minimal
distance de-anonymizer is applied on it.

• The mean-distance de-anonymizer computes the av-
erage of several distance matrices (based on different
distance metrics), which results into a transformed ma-

trix M̂ such that M̂(i, j) = Mean(M1(i, j),M2(i, j)).

Once this tranformed matrix M̂ has been computed,
the minimal-distance de-anonymizer is invoked on this
matrix.



• The maximal-gap de-anonymizer also takes as input
several distance matrices corresponding to different dis-
tance metrics. For each distance matrix, the minimal-
distance anonymizer outputs two predictions (instead
of one) for each row, which corresponds to the first and
second smallest values of the distances in this row. Af-
terwards, the gap (i.e, difference) between these two
values are computed. The higher the gap, the more
confident we can be in the prediction made by the de-
anonymizer on this particular distance matrix. There-
fore, the distance metric with the highest gap among
all the ones considered will be the candidate considered
for the de-anonymization.

• The simple-vote de-anonymizer receives as input a list
of candidates, which corresponds to the identities of
the n minimal values of a particular row in at least
two different distance matrices. The candidate that
receives the highest number of votes will be the one
considered for the de-anonymization. In Table ?? each
column corresponds to different distance metrics while
each row contains the proposed candidates at this po-
sition. For instance, in the first row Bob gets two votes
against one for Alice and therefore he is considered as
the most likely candidate for de-anonymization.

• Finally, the weighted-vote de-anonymizer, much like
the simple-vote one, takes as input a list of candi-
dates coming from different distance matrices. How-
ever, the voting method weights each possible candi-
date depending on the rank he has obtained for the
different distance metrics. For instance, if each dis-
tance metric proposes n candidates, the first one is
given a weight n, while the second receives a weight of
n − 1, and so on. For example, in Table ??, the first
column contains the weights for each candidate. The
outcome of the weighted voting method is that Bob
gets 8 votes, Alice 6 and Charlie 4. Therefore, Bob is
considered as the “winner” (i.e., most likely candidate)
for the de-anonymization.

points m1 m2 m3

3 Bob Alice Bob
2 Charlie Bob Alice
1 Alice Charlie Charlie

Table 2: Illustration of the voting method.

6. EXPERIMENTS
We have evaluated the efficiency of the de-anonymization

attack on 4 different datasets that are described in Section
??. In this section, we report on the results of these exper-
iments that were conducted by using the distance metrics
and de-anonymizers described in the previous sections. More
precisely, after validating the distance metrics on a synthetic
dataset, we explain how to fine-tune the parameters of the
inference attack using a first dataset (Section ??) by measur-
ing the accuracy of the de-anonymization attacks that rely
on a single predictor (Section ??). Then, we describe differ-
ent heuristics that can be used to combine efficiently several
predictors (Section ??). These de-anonymizers based on a
combination of several predictors have a high success rate

that is usually better than de-anonymizer based on a single
predictor as we report in Section ??.

6.1 Datasets
Here are the four datasets used in our experiments :

• The Geolife dataset [?] has been gathered by researchers
from a Microsoft Asia and consists of GPS mobility
traces collected from April 2007 to October 2011, mostly
in the area of the city of Shanghai. It contains the mo-
bility traces of 178 users captured at a very high rate
of 1-5 seconds.

• The synthetic dataset has been generated out of the
Geolife dataset and we used it mainly as a sanity check
for verifying if the behaviour of distance metrics and
de-anonymizers match the intuition. This dataset is
composed of 5 artificial individuals whose traces are
all derived from the mobility traces of U0, the first
user of the Geolife dataset. U1 is obtained by dupli-
cating the mobility trace of U0 (with an appropriate
translation in the time domain for the second repeti-
tion of the mobility traces). The others users, U2 U3,
U4 and U5 are obtained by translating the traces of U1

in the same direction by respectively 1, 10, 100 and
1000 kilometers.

• The Nokia dataset5 [?] is the outcome of a data col-
lection campaign performed the city of Lausanne for
200 users started in September 2009 and ongoing. The
data sampling rate is variable from user to user.

• The Arum dataset [?] is composed of the GPS mobil-
ity traces from 6 researchers sampled at a rate of 1-5
minutes in the city of Toulouse from October 2009 to
January 2011.

In the following, we mainly focus on the Geolife dataset
in order to analyze and understand the behaviour of the
de-anonymizers and distance metrics. More precisely, for
each individual of this dataset, we split his trail of mobility
traces into two disjoint parts of approximately the same size.
The first part forms the training set, and will be used as
the adversary background knowledge, while the second part
constitutes the testing set on which the de-anonymization
is performed. Therefore, the objective of the adversary is
to de-anonymize the individuals of the testing set by linking
them to their corresponding counterparts in the training set.

6.2 Fine-tuning clustering algorithms
and de-anonymizers

The states of a MMC are extracted by running a clustering
algorithm on the mobility traces of an individual. Therefore,
the MMC generated (and by extension the success of the
de-anonymization attack) is highly dependent on the clus-
tering algorithm used and the accuracy of this algorithm,

5It is worth noting that trying to reverse engineer the Nokia
dataset, in order to find private information, is not al-
lowed by the Nokia license. However, the so-called de-
anonymization attack does not per se directly reveal any pri-
vate information. However, it demonstrates that if we knew
the identity of an individual user present in this dataset, we
would be able to find him in another dataset, or conversely,
if we would know the mobility of an identified individual, we
would be able to find him in the Nokia dataset.



which may itself vary depending on the values of its param-
eters. The first step of our analysis consists in determining
the parameters that leads to the best accuracy for the DJ-
clustering algorithm.

Depending on the chosen values for the parameters, not
all users of the original Geolife dataset will lead to the gen-
eration of a well-formed MMC. For instance, when the pa-
rameters of the clustering algorithm are too “conservative”,
some users will not have enough mobility traces to identify
frequent POIs, which results in their MMC being composed
of only one state. On the contrary, choosing parameters that
are too “relaxed” leads to the identification of a high number
of POIs thus conducting to a MMC with too many states,
which is detrimental to the success of the de-anonymization
attack. Thus, the main objective of the tuning phase is to
find the good set of parameters for the clustering algorithm
that maximize the number of users in the training set whose
MMCs does not consist in only one state while keeping the
average number of POIs identified per user in an acceptable
range.

First, we vary the three parameters of the clustering al-
gorithm (MinPts, r and the minimal number of days) and
count the number of MMC generated that have more than
one state. We found that these parameters are themselves
correlated with the duration of the collection process and
the sampling rate used. Table ?? summarizes the values of
the clustering parameters used in the following experiments.

Data set MinPts r (km) Min nb of days
Geolife 20 0.5 10

Synthetic 150 0.05 30
Nokia 10 0.05 10
Arum 40 0.05 30

Table 3: Clustering parameters validated.

We used the synthetic dataset to verify if the behavior of
the distance metrics matched the expected one. Indeed, due
to the way this dataset is built, for each user the training
model should match the testing model. As a consequence
the distance between the MMCs learnt from the training
and testing set should be 0 and any de-anonymizer should
have a success rate of 100%. Furthermore, the translation in
space of the mobility traces of this dataset implies that the
distance between the different users should approximately be
around 1, 10, 100 and 1000 kilometres. These assumptions
were verified in our experiments.

Once the parameters of the clustering algorithm have been
tuned, we have analysed the behaviour of the de-anonymizer.
In particular, the efficiency of the simple and weighted vot-
ing de-anonymizer needed to be assessed, which was the
main objective of the following experiments. For the simple
voting method, we first studied the influence of the num-
ber of candidates proposed by the minimal distance de-
anonymizer used on each distance metric (stationary, match-
ing, proximity and density-based). Each instance of this de-
anonymizer proposes the n candidates that have the smallest
distances in a row, sorted in increasing order. The simple
vote de-anonymizer is applied to this list of candidates in
order to output a single prediction. Figure ?? illustrates the
success rate of this attack as a function of the number of can-
didates (more precisely as the percentage of true positives
obtained over the total number of individuals) and the num-

ber of users that have well-formed MMCs (i.e., MMCs that
have more than one state). This experiment was conducted
on the Geolife dataset with the sampling rate varying in the
range {10s, 30s, 60s, 120s}.
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Figure 2: Success rate with the simple vote function.

From Figure ??, we can observe that the number of users
considered that have a well-formed MMC decreases as the
sampling rate increases, because a low sampling rate results
in fewer mobility traces to build MMCs. We can also observe
that the success rate of the attack decreases as the number
of candidates increases, which is not surprising as a higher
number of candidates renders the task of the de-anonymizer
more complex that when they are few candidates. For in-
stance, the success rate of the attack when 4 candidates are
generated by each distance metric is never more than 15%.
Therefore, we can conclude that for the simple vote method
considering only one candidate per distance is necessary and
sufficient.

Candidate Linear weight Exponential weight
1 n 2n

2 n− 1 2n−1

. . . . . . . . .
n 1 2

Table 4: The linear and exponential voting Weights.

However, in some situations it is helpful to consider more
than one candidate per distance metric but their weight
should be set to be different values, which is the main idea
behind the weighted vote de-anonymizer. In our experi-
ments, we have compared two different ways to weight candi-
dates, one based on linear weights and the other on exponen-
tial ones. In a nutshell, the linear method assigns weights in
a decreasing linear form and the exponential method assigns
weights in a decreasing exponential form starting at 2n, n
being the number of candidates. Table ?? illustrates the as-
signed weights for these two methods, while Figure ?? com-
pares the success rate of the weighted vote de-anonymizer
using both weighting systems for different sampling rates.
From these experiments, we can observe that the exponen-
tial system seems to be more efficient as its success rate is
about 5% better than with the linear system. Moreover, this
de-anonymizer seems to be robust to data sampling with dif-
ferent rates.

6.3 Measuring the efficiency of
simple de-anonymizers
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Figure 3: Success rate of the linear/exponential
weighted votes.
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Figure 4: Success rate of the single de-anonymizers.

In this subsection, we compare the success rate of the de-
anonymizers once the clustering algorithm has been tuned.
To measure the success rate, we have focus on the Geolife
dataset sampled at different rates. The results of these ex-
periments are shown in Figure ??. First, we can observe
that the de-anonymizers that perform best are the min-
imal stationary distance, the minimal proximity distance,
the minimal value, the simple vote and the weighted vote,
with a success rate varying from 20% to 40%. On the
contrary, both the minimal matching distance and minimal
density-based distance performs very poorly with success
rates around 8-15%. Nevertheless, these distance metrics
through the diversity they provided can still be considered
helpful as they participate in the voting process for the com-
bined de-anonymizers. Moreover, the mean distance and
the maximal gap de-anonymizers do not perform very well
either, with a success rate around 10-15% for the former
and 12-27% for the latter. We also observe that the maxi-
mal gap de-anonymizer performs better as the sampling rate
gets higher.

Even though the success rates of the minimal stationary
distance and the minimal proximity distance seems at first
glance to be very similar at any sampling rate, it is impor-
tant to notice that they behave very differently. Indeed,
the sets of individuals that are correctly de-anonymized by
these two de-anonymizers have a small intersection has illus-
trated by the Venn diagram presented in Figure ??. This di-
agram presents in blue the set of individuals de-anonymized
using the stationary minimal distance, in orange those de-

Figure 5: Venn diagram for proximity and station-
ary minimal distance.

anonymized using proximity minimal distance, and in red
those de-anonymized by both. This observation leads us to
believe that these two de-anonymizers can be used in a com-
plementary manner, which is exactly the topic of the next
subsection.

6.4 Combining de-anonymizers
In order to combine the stationary and the proximity min-

imal distance de-anonymizers, we designed the statprox de-
anonymizer. This algorithm behaves exactly like the sta-
tionary minimal distance one, except when the stationary
distance is above a given threshold and the proximity dis-
tance is below its maximum value (i.e., 360 000 kilometers).
The intuition is that if the stationary minimal distance is
very small, we should use it. Otherwise, we rely on the prox-
imity minimal distance unless it gives no conclusive result, in
which case we roll back to the stationary minimal distance.
The statprox de-anonymizer is presented by Algorithm ??,
while the success rate obtained by this de-anonymizer is
shown in Figure ?? and compared to the other accurate
de-anonymizers (namely the stationary and the proximity
minimal distance and the simple and weighted vote). This
results in a very high success rate (between 35 and 45%) for
the statprox de-anonymizer for any sampling rate.
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Figure 6: Success rate of the combined de-
anonymizer.

At this point of the experiments, it seems important to be
able to compare precisely the de-anonymizers. Indeed, the
success rate of a de-anonymization attack is not the only as-
pect that should be considered. For instance, for an adver-
sary a possible strategy is to focus on weak individuals that
offer a high probability of success for the attack rather than
being able to de-anonymize the entire dataset. Measuring
the probability of success of the inference attack for a given
individual is similar to have some kind of confidence measure



Algorithm 6 Stationary-Proximity decision algorithm.

Require: thresholdstat, thresholdprox,
resultstat, resultprox

1: if resultprox < thresholdstat then
2: return resultprox
3: else
4: if resultstat < thresholdstat then
5: return resultstat
6: else
7: if resultprox < 360000 then
8: return resultprox
9: else

10: return resultstat
11: end if
12: end if
13: end if

for a given de-anonymization candidate. Deriving this con-
fidence measure is quite intuitive for our de-anonymizers.
Indeed, for the minimal distance ones, the smaller is the
distance, the higher the confidence, while for the vote based
ones, the higher the voting score is, the higher the confi-
dence.
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Figure 7: ROC curve for Geolife dataset.

In order to compare the performance of the de-anonymizers,
we used a graph inspired from the concept of Receiver Op-
erating Characteristic (ROC) curves. A ROC curve is a
graphical plot representing the sensitivity (i.e. true posi-
tive rate versus false positive rate), for a classifier system as
the value of its discrimination threshold changes. The idea
is that, between two de-anonymizers having the same suc-
cess rate, we should favor the one succeeding more quickly
(when the candidates are sorted using the confidence met-
ric). Henceforth, the following so-called ROC curve (Figure
??) shows the true positives rate (TPR) versus the false pos-
itives rate (FPR) for the best performing de-anonymizers,
with the candidates being sorted by ascending distance or
descending number of votes. This ROC curve further con-
firms that the statprox de-anonymizer seems to be the best
alternative among all the different de-anonymizers that we
have developed.

6.5 De-anonymizing other datasets
We have seen that the de-anonymizers developed work

fairly well for the Geolife dataset as the achieved success
rate is between 35% and 45% for the statprox de-anonymizer
and between 29% and 39% for the simple vote. In this sub-

section, we have tested how the algorithms developed and
trained with a specific dataset (i.e., the Geolife dataset), are
still very accurate with other datasets such as the Nokia and
Arum ones.

First, we test the algorithms on the Nokia dataset. This
dataset has 195 users, among which 157 users can be used
to generate a correct MMC using the parameters described
previously, which varies from 28% to 42% (statprox).
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Figure 8: Success rate of the de-anonymizers with
the Nokia dataset.

These results were confirmed using the ARUM dataset in
which the statprox de-anonymizer obtains a success rate of
80% (i.e., is able to “re-identify” 4 individuals over 5). An
important characteristic of the ARUM dataset is that the
individuals are all from the same institute and all leave in
the same city. Henceforth, their mobility models share some
important characteristics. For instance, their working place
is the same and they all live nearby. However, since their
usual mobility lies within a smaller area, the parameters we
used for building the MMCs are more aggressive.

6.6 Discussion.
In this section, we have presented various experiments on

de-anonymization attacks that lead to the definition of an
heterogeneous de-anonymizer, called statprox, that obtains
a success rate of de-anonymization between 42% and 80%
on different datasets. While this performance may, at first
glance, seem to be poorer than the one achieved by the
predictors of Ma et al. in [?], which goes up to 70-80%,
we believe that these results are not necessarily compara-
ble because we clearly differentiate between the training set
and the testing set, while they perform the learning and the
testing on the same dataset, thus inducing a strong exper-
imental bias. Indeed, first, our mobility models are built
out of the training set, which is disjoint from the test set,
whereas one of the adversary model of Ma et al. (i.e., called
A1 ) directly extracts timestamped data from the test set.
Moreover, in our case the training data is temporally sep-
arated from the test data (i.e., the training and the test
have been recorded at different non-overlapping periods of
time) because the whole dataset has been split into two tem-
porally disjoint parts, whereas the second adversary model
of Ma et al. (i.e., called A2 ) picks the information it uses
to de-anonymize within the same period as the test data is
recorded. Therefore, our approach is quite different from
them as our attack consists first in collecting mobility data
from an individual, before later, trying to identify this indi-
vidual in a so-called anonymized dataset, while their attack



aims at gathering location data at the same time at which
the de-anonymization attack occurs. In addition, one im-
portant parameter of their attack is the number of times-
tamped location data collected, which can be compared to
the number of states we have in our mobility model. On
average and depending on the dataset considered, we have
between 4 and 8 states per MMC, which correspond to a
compact representation of the mobility behavior of an indi-
vidual. When restricted to such limited of information in
terms of number of timestamped location data, the attacks
proposed by Ma et al. do not perform well, with for in-
stance a de-anonymization rate between 10% and 40% for
the adversary A1.

7. CONCLUSION
In this paper, we have demonstrated that geolocated datasets

gathering the movements of individuals are particularly vul-
nerable to a form of inference attack called the de-anonymization
attack, and this even if the mobility traces have been anonymized
prior to release. More precisely, we have shown that the
de-anonymization attack can re-identify with a high success
rate the individuals whose movements are contained in an
anonymous dataset provided that the adversary can used as
background information some mobility traces of the same in-
dividuals that he has been able to observe during the train-
ing phase. Out of these traces, the adversary can build a
MMC that models in a compact and precise way the mobil-
ity behavior of an individual. We designed novel distance
metrics that measure the similarity between two MMCs and
we described how these metrics can be combined to build dif-
ferent types of de-anonymizers. The effectiveness of the de-
anonymizers were first verified on a small synthetic dataset
before being applied on a larger scale on real datasets. The
de-anonymization attack is very accurate with a success rate
of up to 45% on real and large datasets and this even if the
mobility traces are sanitized byy sampling them with a low
frequency (for instance every 2 minutes instead of every 10
seconds).

In the future, we will extend the current work by follow-
ing several avenues of research. For instance, we will study
other clustering algorithms for the extraction of the POIs,
which impact the creation of the states of the MMC and
therefore the MMC itself. In particular, it is possible that
two different clustering algorithms apply on the same trail
of mobility traces can result in two very distinct MMCs that
might be quite far from each other. Therefore, our main goal
will be to discover among different clustering algorithms, the
one that best fits our needs while being also stable with re-
spect to small changes in the inputs (e.g., small spatial and
temporal perturbation). On the opposite direction, we will
also explore how more complex geo-sanitization mechanisms,
such as spatial cloaking techniques or mix zones, can help
to reduce the success rate of the attack. Finally, we will also
try to infer social relationships between individuals from the
mobility traces and design variant of the de-anonymization
attack exploiting this knowledge.
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