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Dynamic Boundary Stabilization of Hyperbolic Systems

Felipe Castillo, Emmanuel Witrant, Christophe Prieur and Luc Dugard

Abstract— Systems governed by hyperbolic partial differential
equations with dynamics associated with their boundary con-
ditions are considered in this paper. These infinite dimensional
systems can be described by linear or quasi-linear hyperbolic
equations. By means of Lyapunov based techniques, some
sufficient conditions are derived for the exponential stability
of such systems. A polytopic approach is developed for quasi-
linear hyperbolic systems in order to guarantee stability in a
given region around an equilibrium point. An isentropic inviscid
flow model is used to illustrate some of the main results.

I. INTRODUCTION

Lyapunov function based techniques are commonly used

for the stability analysis of dynamical systems, such as

those described by partial differential equations (PDE).

Many distributed physical systems are described by strict

hyperbolic PDE. One of the main properties of this

class of PDE is the existence of the so-called Riemann

transformation which is a powerful tool for the proof of

classical solutions, the analysis and the control, among

other properties [1]. This kind of systems with infinite

dimensional dynamics is relevant for a wide range of

physical systems having an engineering interest. Among the

potential applications, hydraulic networks [2], road traffic

networks [3], gas flow in pipelines [4] or flow regulation in

deep pits [5] are of significant importance.

The stability problem of the boundary control in hyperbolic

systems has been considered for a long time in the literature,

as reported in [6] [7] [8], among other references. Most

results consider that the boundary control can react fast

enough when compared to the travel time of the waves.

More precisely, no time response limitation is considered at

the boundary conditions. In applications such as the ones

addressed in [9] [10], the wave travel time can be considered

much larger than the actuator time response, allowing to

establish a static relationship between the control input and

the boundary condition. Nevertheless, there are applications

where the dynamics associated with the boundary control

cannot be neglected. Discrete approximations of this kind

of systems have been used to address this problem (see [11]).

The present paper focuses on the stability problem of linear

and quasi-linear hyperbolic systems in presence of dynamic

behavior at the boundary conditions. To demonstrate

asymptotic stability of this kind of hyperbolic systems,

Riemann coordinates are used along with a Lyapunov
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function formulation. Sufficient conditions are derived on the

system in terms of boundary conditions to prove Lyapunov

stability. The sufficient conditions and the stability property

are presented in a linear matrix inequality (LMI) framework.

In this paper, the general results obtained are applied on an

homogeneous system of conservation laws to the design of

a stabilizing boundary control of an isentropic and inviscid

flow in a pipe with constant cross section. More prescisely,

the problem of the regulation of the air pressure, density

and speed inside a pipe is addressed. The physical model is

a strict quasi-linear hyperbolic system since the presence of

friction or thermal sources is not considered. This model is

written in terms of the Euler equations introduced in [12],

which are commonly used in compressible flow dynamics

to describe the flow in ducts.

The paper is organized as follows. First in Section II, the

class of hyperbolic systems under consideration is given. In

Section III, the main stability results for linear hyperbolic

systems with dynamic behavior at the boundary conditions

are presented. In Section IV, an extention for quasi-linear

hyperbolic systems is developed using a polytopic approach

that allows to ensure stability in a defined region around an

equilibrium point. Finally, the main result is applied to a

boundary regulation of pressure, density and speed in a pipe

with isentropic and inviscid air flow (see Section V).

II. PROBLEM FORMULATION

In this section, a brief introduction on linear and quasi-linear

hyperbolic systems in one dimension space is given and

the specific hyperbolic systems considered in this work are

presented. Let n be a positive integer and Ω be an open non-

empty convex set of Rn. Consider the general class of quasi-

linear hyperbolic systems of order n defined as follows:

∂ts(x, t) + F (s(x, t))∂xs(x, t) = 0 (1)

where ∂t and ∂x denote the partial derivative with respect to

t and x respectively, s(x, t) ∈ Ω, and F : Ω → R
n×n is a

continuously differentiable function called the characteristic

matrix of (1). Consider the special case where the system (1)

is strictly hyperbolic, then (1) accepts a bijection ξ(s) ∈ Θ ⊂
R

n, at least locally, such that the sytem can be transformed

into a system of coupled transport equations [13]:

∂tξi(x, t) + λi(ξ(x, t))∂xξi(x, t) = 0 (2)

i ∈ [1, ..., n]



where ξi(x, t) are called the Riemann coordinates of (1),

which are constant along the characteristic curves described

by

dx

dt
= λi(ξ(x, t)) (3)

and where ξ = [ξ1, ξ2, ..., ξn]
T .

A. Linear Hyperbolic Systems with Dynamic Boundary Con-

ditions

Consider the following linear hyperbolic equation in Rie-

mann coordinates:

∂tξ(x, t) + Λ∂xξ(x, t) = 0 ∀x ∈ [0, 1], t ≥ 0 (4)

where Λ is a diagonal and invertible matrix in R
n×n such

that Λ = diag(λ1, λ2, ..., λn) with

λ1 < ... < λm < 0 < λm+1 < ... < λn (5)

The state description can be partitioned as: ξ =

[

ξ−
ξ+

]

where ξ− is in R
m and ξ+ is in R

n−m. Let define:

Λ+ = diag(|λ1|, |λ2|, ..., |λn|) (6)

The problem of stability of linear hyperbolic systems has

been considered by [6], [10], [8], among others, using static

boundary conditions defined as:

(

ξ−(1, t)
ξ+(0, t)

)

= G

(

ξ−(0, t)
ξ+(1, t)

)

(7)

for a given matrix G ∈ R
n×n. The linear hyperbolic systems

with dynamics associated with their boundary conditions are

less explored in literature, although there are approaches

using finite-dimensional approximations such as in [11] that

have succesfully stabilized this kind of systems. Consider the

following dynamics for the boundary conditions:

Ẋc = AXc +Bu (8)

Yc = Xc

with

Xc =

(

ξ−(1, t)
ξ+(0, t)

)

, u = KYξ, Yξ =

(

ξ−(0, t)
ξ+(1, t)

)

(9)

where K ∈ R
n×n and u ∈ R

n. Given a continuously

differentiable function ξ0 : [0, 1] → Θ that satisfies the zero-

order and one-order compatibility conditions [14], then the

initial condition can be defined as:

ξ(x, 0) = ξ0(x), ∀x ∈ [0, 1] (10)

B. Quasi-Linear Hyperbolic Systems with Dynamic Bound-

ary Conditions

Consider the following quasi-linear hyperbolic equation in

Riemann coordinates:

∂tξ(x, t) + Λ(ξ)∂xξ(x, t) = 0 ∀x ∈ [0, 1], t ≥ 0 (11)

where Λ is a diagonal matrix function Λ : Θ → R
n×n such

that Λ(ξ) = diag(λ1(ξ), λ2(ξ), ..., λn(ξ)) with

λ1(ξ) < ... < λm(ξ) < 0 < λm+1(ξ) < ... < λn(ξ)

∀ ξ ∈ Θ
(12)

Using an equivalent notation to the one used in the linear

hyperbolic case, the same boundary conditions (8) along with

the initial condition (10) can be considered for (11). Notice

that the main difference between the linear and quasi-linear

hyperbolic system is that for the quasi-linear system, the

propogation speed depends on the state ξ.

III. STABILITY OF LINEAR HYPERBOLIC SYSTEMS WITH

DYNAMIC BOUNDARY CONDITIONS

The first problem under consideration is the stability

analysis of (4), (8) and (10). The aim of this section is to

use Lyapunov functions to state a sufficient condition for the

exponential stability of (4), (8) and (10). The main results

obtained for linear hyperbolic systems can be consolidated

in the following theorem:

Theorem 1. Consider the system (4), (8) and (10). Assume

that there exists a diagonal positive definite matrix Q ∈
R

n×n such that the following LMI is satisfied

[

QAT +AQ+ Λ+Q BY

Y TBT −Λ+Q

]

≺ 0 (13)

where K = Y Q−1, then there exist two constants α > 0
and M > 0 such that, for all continuously differentiable

functions ξ0 : [0, 1] → Θ satisfying the zero-order and

one-order compatibility conditions, the solution of (4), (8)

and (10) satisfies, for all t ≥ 0,

||Xc(t)||2 + ||ξ(x, t)||L2(0,1) ≤
Me−αt

(

||Xc(0)||2 + ||ξ0(x)||L2(0,1)

) (14)

Proof. Considering the system (4), it is possible to replace

ξ(x, t) by

(

ξ−(1− x, t)
ξ+(x, t)

)

and obtain a PDE whose cor-

responding diagonal characteristic matrix function is Λ+.

Therefore, it can be may assumed without loss of generality

that m = 0 and Λ+ = Λ and that the boundary conditions

(8) have the following form:

Ẋc = AXc +Bu (15)

Xc = ξ(0, t), u = KYξ, Yξ = ξ(1, t)



Given a diagonal positive definite matrix P , consider, as

an extension of the Lyapunov function proposed in [7],

the quadratic Lyapunov function candidate defined for all

continuously differentiable functions ξ : [0, 1] → Θ as:

V (ξ,Xc) = XT
c PXc +

∫ 1

0

(

ξTPξ
)

e−µxdx (16)

where µ is a positive scalar that will be precised below.

Computing the time derivative of V along the solutions of

(4), (8) and (10) yields the following:

V̇ = XT
c

(

ATP + PA
)

Xc

+ Y T
ξ KTBTPXc +XT

c PBKYξ

−
[

e−µxξTΛPξ
] ∣

∣

1

0
− µ

∫ 1

0

(

ξTΛPξ
)

e−µxdx

(17)

After some rearrangements, (17) can be written in terms of

the boundary conditions (15) as follows:

V̇ = −µXT
c ΛPXc − µ

∫ 1

0

(

ξTΛPξ
)

e−µxdx

+

[

Xc

Yξ

]T





ATP + PA PBK

+ΛP + µΛP
KTBTP −e−µΛP





×
[

Xc

Yξ

]

(18)

Notice that (13) is equivalent to consider that

[

ATP + PA+ ΛP PBK

KTBTP −ΛP

]

≺ 0 (19)

which is obtained by multiplying both sides of (19) by

diag
(

P−1, P−1
)

and performing the variable transforma-

tions Q = P−1 and Y = KQ. Thus, for a small enough and

positive µ, the third term of (18) is always negative. Consider

the following inequality:

λmin(P )||ξ(x, t)||L2(0,1) ≤ ξ(x, t)Pξ(x, t)

≤ λmax(P )||ξ(x, t)||L2(0,1)

(20)

where λmin(P ) and λmax(P ) denote respectively the min-

imum and maximum eigenvalue of P . This can also be

applied with Λ, implying that:

V̇ ≤ −µ
λ1λmin(P )

λmax(P )
V (ξ) (21)

Therefore for a sufficiently small µ > 0, the function (16) is

a Lyapunov function for the hyperbolic system (4), (8), and

(10). This concludes the proof.

IV. STABILITY OF QUASI-LINEAR HYPERBOLIC

SYSTEMS WITH DYNAMIC BOUNDARY CONDITIONS

The stability of quasi-linear hyperbolic systems has been

exhautively studied in literature. A proof of the Lyapunov

stability of (11) under the static boundary conditions (7) has

been investigated in details in [6], assuming that ρ1(K) < 1
(where ρ1(K) = Inf{||∆K∆−1||; ∆ ∈ Dn,+} and Dn,+

denotes the set of n × n real diagonal positive definite

matrices) and using as a Lyapunov function candidate:

V (ξ) = V1(ξ) + V2(ξ, ξx) + V3(ξ, ξx, ξxx) (22)

with

V1(ξ) =

∫ 1

0

(

ξTQ(ξ)ξ
)

e−µxdx

V2(ξ, ξx) =

∫ 1

0

(

ξTx R(ξ)ξx
)

e−µxdx

V3(ξ, ξx, ξxx) =

∫ 1

0

(

ξTxxS(ξ)ξxx
)

e−µxdx

(23)

where Q(ξ), R(ξ) and S(ξ) are symmetric positive definite

matrices. In this paper, the stability of system (11), (8) and

(10) is studied in a different way by introducing a polytopic

approach in the characteristic matrix Λ(ξ).

Let define a non empty convex set Ξ ⊂ Θ and a map T : Ξ →
Zϕ. Consider the following polytopic linear representation of

the nonlinear characteristic matrix:

Λ(ξ) =

2l
∑

i=1

αi(ϕ)Λ(wi) (24)

∀ ξ ∈ Ξ and therefore ∀ϕ ∈ Zϕ, where ϕ is a varying

parameter vector that takes values in the parameter space

Zϕ (a convex set) such that [15]:

Zϕ := {[ϕ1, ..., ϕl]
T ∈ R

l, ϕi ∈ [ϕi, ϕi
] ∀ i = 1...l} (25)

where l is the number of varying parameters, αi(ϕ) is a

scheduling function αi : Zϕ → [0, 1], wi are the vertices

of the polytope formed by all extremities of each varying

parameter ϕ ∈ Zϕ and
∑2l

i=1 αi(ϕ)Λ(wi) : Zϕ → R
n×n.

In general, all the admissible values of the vector ϕ are

constrained in an hyperrectangle in the parameter space Zϕ.

The scheduling functions αi(ϕ) are defined as (see [15]):

αi(ϕ) =

∏l

k=1 |ϕk − C(wi)k|
∏l

k=1 |ϕk − ϕ
k
]|

(26)

where:

C(wi)k ={ϕk|ϕk = ϕk if (wi)k = ϕ
k

(27)

or ϕk = ϕ
k

otherwise}



which exhibits the following properties:

αi(ϕ) ≥ 0,

2l
∑

i=1

αi(ϕ) = 1 (28)

Consider (11) as an equivalent parameter varying hyperbolic

system defined by:

∂tξ(x, t) +

2l
∑

i=1

αi(ϕ)Λ(wi)∂xξ(x, t) = 0

∀ϕ ∈ Zϕ, ∀x ∈ [0, 1], t ≥ 0

(29)

It is clear that ϕ depends on ξ. However, as long as

ξ remains in the set Ξ, the varying parameters ϕi can

be considered as independent varying parameters (LPV

framework [16]) that change the characteristic matrix,

giving as a result, a conservative tool for stability analysis.

Using (29), the following theorem states some sufficient

conditions to ensure exponential stability for system (11),

(8) and (10) in a defined region Zϕ.

Theorem 2. Consider the system (11), (8) and (10). Assume

that there exists a diagonal positive definite matrix Q ∈
R

n×n such that the following LMI is satisfied ∀i ∈ [1, ..., l]

[

QAT +AQ+ Λ+(wi)Q BY

Y TBT −Λ+(wi)Q

]

≺ 0 (30)

where K = Y Q−1, then there exist two constants α > 0
and M > 0 such that, for all continuously differentiable

functions ξ0 : [0, 1] → Ξ satisfying the zero-order and

one-order compatibility conditions, the solution of (11), (8)

and (10) satisfies (14), for all t ≥ 0

Proof. Consider once again the Lyapunov function candidate

(16). Computing the time derivative of V along the solutions

of (11), (8) and (10) yields the following:

V̇ = XT
c

(

ATP + PA
)

Xc + Y T
ξ KTBTPXc

+XT
c PBKYξ −

2l
∑

i=1

αi(ϕ)
[

e−µxξTΛ(wi)Pξ
] ∣

∣

1

0

−
2l
∑

i=1

αi(ϕ)µ

∫ 1

0

(

ξTΛ(wi)Pξ
)

e−µxdx

(31)

Using the same procedure performed in the proof of

Theorem 1, assuming once again that µ > 0 is small enough

and the fact that by definition,
∑2l

i=1 αi(ϕ) = 1 and αi ≥ 0,

gives that (16) is a Lyapunov function for the system (11),

(8) and (10) as long as (30) is satisfied.

This polytopic approach guarantees the stability and robust-

ness of the quasi-linear hyperbolic system in a determined

region Zϕ, which cannot be achieved with the approach

presented in Theorem 1 as it would only guarantee the

stability of (11), (8) and (10) in a small enough neighborhood

around the equilibrium.

V. ILLUSTRATING EXAMPLE: ISENTROPIC INVISCID

FLOW IN A PIPE WITH CONSTANT CROSS SECTION

In this section, the air flow inside a constant cross section

pipe is modeled using the Euler equations. The stabilization

problem is solved by using boundary control computed

using Riemann coordinates as presented in Sections III

and IV. Two boundary controllers are designed: one to

stabilize the system in a neighborhood around a steady-state

equilibrium by using Theorem 1 and a second one to

stabilize the system in a defined region around the system’s

equilibrium by using Theorem 2.

Consider the Euler equations expressed in terms of the

primitive variables: density (ρ), speed (u) and pressure (p),

∂tW +A(W )∂xW + C(W ) = 0 (32)

where

W =





ρ

u

p



 ; A(W ) =





u ρ 0
0 u 1

ρ

0 a2ρ u





a =
√

γp
ρ

is the speed of sound, γ is the specific heat ratio

and C(W ) is a function that describes the friction losses

and heat exchanges. Since in this example, the isentropic

case is analyzed, then C(W ) = 0. The eigenvalues of

the characteristic matrix A(W ), called the characteristic

velocities, are:

λ1(W ) = u+ a, λ2(W ) = u, λ3(W ) = u− a (33)

and their respective Riemann invariants (see [17]):

a+
γ − 1

2
u,

√

p

ργ
, a− γ − 1

2
u (34)

Let assume that the velocities (33) verify:

λ3(W ) < 0 < λ2(W ) < λ1(W ) (35)

which enforces (32) to be a strict hyperbolic system and

ensures the existence of a transformation to the Riemann

coordinates. Consider the following change of coordinates:

ξ1 =

√

γp

ρ
+

γ − 1

2
u−

√

γp̃

ρ̃
− γ − 1

2
ũ

ξ2 =

√

p

ργ
−
√

p̃

ρ̃γ

ξ3 =

√

γp

ρ
− γ − 1

2
u−

√

γp̃

ρ̃
+

γ − 1

2
ũ

(36)



where (W̃ = [ρ̃, ũ, p̃]T ) is an arbitrary steady-state. With

these new coordinates (ξ1, ξ2, ξ3), system (32) can be rewrit-

ten in the quasi-linear hyperbolic form (11) as follows:

∂t





ξ1
ξ2
ξ3



+





λ1(ξ) 0 0
0 λ2(ξ) 0
0 0 λ3(ξ)



 ∂x





ξ1
ξ2
ξ3





=





0
0
0





(37)

Since the change of coordinates (36) is a mapping, ρ, u and

p can be expressed in terms of the Riemann invariants as:

u =
ξ1 − ξ3 + (γ − 1)ũ

γ − 1

ρ =





ξ1 − γ−1
2 (u− ũ) +

√

γp̃
ρ̃

√
γ
(

ξ2 +
√

p̃
ρ̃γ

)





2

γ−1

p = ργ

(

ξ2 +

√

p̃

ρ̃γ

)2

(38)

Note that the equilibrium [ρ̃, ũ, p̃]T expressed in terms of

Riemann coordinates is [0, 0, 0]T .

A. Boundary Control Design using a Linear Hyperbolic

Model

In this subsection, a boundary control for system (32) is

designed in an equilibrium point using the results obtained

in Theorem 1. It is clear that (32), evaluated near the

steady-state equilibrium ξ̃ = 0, can be considered as a

linear hyperbolic system of the form (4). Considering W̃ =
[1.16, 20, 100000]T and the dynamic boundary conditions (8)

defined with:

A =





−300 10 13
15 −40 5
4 9 −300





B =





−3 0 0
0 −10 0
0 0 3





(39)

the following K is obtained applying Theorem 1:

K =





−31.91 −0.28 −2.58
−4.12 −0.56 2.53
−2.96 0.21 −32.4



 (40)

with the respective diagonal positive definite matrix associ-

ated with the Lyapunov function (16):

P−1 = Q =





0.013 0 0
0 0.09 0
0 0 0.013



 (41)

To illustrate this result, numerical simulations of (32)

with (8) and (40) are performed with an initial condition

W0 = W (x, 0) close enough to the equilibrium in order to

consider Λ constant. Let define W0 = [1.168, 21, 101000]T .

Figures 1, 2 and 3 show the results obtained when using

the boundary control (40).

Fig. 1: Time evolution of the density profile ρ using the controller
for linear hyperbolic systems

Fig. 2: Time evolution of the speed profile u using the controller
for linear hyperbolic systems

B. Boundary Control for the Quasi-Linear Model

In this subsection, a boundary control for system (32) is

designed with proved stability in a region described by a

polytope around an equilibrium point. The characteristic ma-

trix defined in terms of physical quantities can be expressed

as follows:



Fig. 3: Time evolution of the pressure profile p using the controller
for linear hyperbolic systems

Λ(W ) =





a+ u 0 0
0 u 0
0 0 a− u



 (42)

Define the varying parameter ϕ = [a, u]T , which is enough

to describe the propagation speed of the Riemann invariants.

Define the limits on each parameter as [a, a] and [u, u] to

describe the region Zϕ where the stability of system (32)

is ensured by using Theorem 2. Consider the equilibrium

W̃ = [1.16, 20, 100000]T once again. W̃ imposes at the

equilibrium point ũ = 20 and ã = 347. Taking this into

account, the region Zϕ is defined by setting the following

limits of each parameter:

a = 355, a = 340, u = 40, u = 5 (43)

Applying Theorem 2, the following controller is obtained:

K =





−19.95 −0.037 −0.84
−4.11 −0.063 1.83
0.5 0.027 −15.7



 (44)

with the respective diagonal positive definite matrix associ-

ated with the Lyapunov function (16):

P−1 = Q =





0.022 0 0
0 0.16 0
0 0 0.022



 (45)

Figures 4, 5 and 6 present the results obtained in the

numerical simulations using (44). Notice that the condition

ϕ ∈ Zϕ ∀ t > 0 is satisfied (Figures 5 and 7).

To illustrate the differences between the approaches pre-

sented in this work, the controller (40) derived using The-

orem 1, valid in a neighborhood close enough to the

Fig. 4: Time evolution of the density profile ρ using the polytopic
approach

Fig. 5: Time evolution of the speed profile u using the polytopic
approach

Fig. 6: Time evolution of the pressure profile p using the polytopic
approach

equilibrium W̃ where Λ may be considered constant, is

simulated under the same conditions where (44) was tested.



Fig. 7: Time evolution of the speed of sound a profile using the
polytopic approach

The results are presented in Figures 8 and 9. Notice that the

polytopic controller presents a better response together with

the guarantee of stability.

Fig. 8: Time evolution of the particle speed profile using the linear
approach of Theorem 1

VI. CONCLUSION

In this paper, some sufficient conditions for the exponential

stability of a linear and a quasi-linear hyperbolic PDE sys-

tem with dynamics associated with the boundary conditions

were derived. The stability analysis has been done using

a Lyapunov function which allows to express the stability

conditions in an LMI framework. A polytopic approach

was implemented to guarantee the stability of quasi-linear

hyperbolic system inside a defined polytope. A simulation

example has shown the effectiveness of the contributions

presented in this work and the advantages in terms of stability

guarantee and robustness of the polytopic approach. This

work could be implemented in different kind of physical

systems governed by hyperbolic PDE’s. This application may

be considered in future work.

Fig. 9: Time evolution of the density profile using the polytopic
approach of Theorem 2
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