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On the best observation of wave and
Schrödinger equations in quantum ergodic

billiards

Yannick Privat∗ Emmanuel Trélat† Enrique Zuazua‡§

Abstract

This paper is a proceedings version of the ongoing work [20], and
has been the object of the talk of the second author at Journées EDP
in 2012.

In this work we investigate optimal observability properties for
wave and Schrödinger equations considered in a bounded open set
Ω ⊂ IRn, with Dirichlet boundary conditions. The observation is done
on a subset ω of Lebesgue measure |ω| = L|Ω|, where L ∈ (0, 1) is
fixed. We denote by UL the class of all possible such subsets. Let
T > 0. We consider first the benchmark problem of maximizing the
observability energy

∫ T
0

∫
ω |y(t, x)2 dx dt over UL, for fixed initial data.

There exists at least one optimal set and we provide some results on
its regularity properties. In view of practical issues, it is far more in-
teresting to consider then the problem of maximizing the observability
constant. But this problem is difficult and we propose a slightly dif-
ferent approach which is actually more relevant for applications. We
define the notion of a randomized observability constant, where this
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constant is defined as an averaged over all possible randomized ini-
tial data. This constant appears as a spectral functional which is an
eigenfunction concentration criterion. It can be also interpreted as a
time asymptotic observability constant. This maximization problem
happens to be intimately related with the ergodicity properties of the
domain Ω. We are able to compute the optimal value under strong er-
godicity properties on Ω (namely, Quantum Unique Ergodicity). We
then provide comments on ergodicity issues, on the existence of an
optimal set, and on spectral approximations.

1 The optimal observability problems

Let T > 0 fixed, and let Ω ⊂ IRn be a bounded open connected set. We
consider in parallel the wave equation

∂2y

∂t2
= 4y, (1)

and the Schrödinger equation

i
∂y

∂t
= 4y, (2)

posed in Ω, with Dirichlet boundary conditions. For any measurable subset
ω ⊂ Ω, we observe the restrictions of the solutions of (1) and of (2) to ω.

For the wave equation, the notion of observability is the following. For
all (y0, y1) ∈ L2(Ω,C) × H−1(Ω,C), there exists a unique solution y ∈
C0(0, T ;L2(Ω,C)) ∩ C1(0, T ;H−1(Ω,C)) of (1) such that y(0, ·) = y0(·) and
yt(0, ·) = y1(·). We say that an observability inequality holds whenever there
exists C > 0 such that

C‖(y0, y1)‖2
L2(Ω,C)×H−1(Ω,C) 6

∫ T

0

∫
ω

|y(t, x)|2 dxdt, (3)

for all (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C). It is well known that within the class
of C∞ domains Ω, this observability property holds if the pair (ω, T ) satisfies
the Geometric Control Condition in Ω (see [2]), according to which every ray
of geometrical optics that propagates in Ω and is reflected on its boundary
∂Ω intersects ω within time T . We define the observability constant by

C
(W )
T (χω) = inf

{ ∫ T
0

∫
ω
|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2(Ω,C)×H−1(Ω,C)

∣∣ (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C) \ {(0, 0)}

}
.

(4)

2



For the Schrödinger equation, the observability goes as follows. For every
y0 ∈ L2(Ω,C), there exists a unique solution y ∈ C0(0, T ;L2(Ω,C)) of (2)
such that y(0, ·) = y0(·). The system is said observable whenever there exists
C > 0 such that

C‖y0‖2
L2(Ω,C) 6

∫ T

0

∫
ω

|y(t, x)|2 dxdt, (5)

for every y0 ∈ L2(Ω,C). If there exists T ∗ such that the pair (ω, T ∗) satisfies
the Geometric Control Condition then the observability inequality (5) holds
for every T > 0 (see [16]). We define the observability constant by

C
(S)
T (χω) = inf

{∫ T
0

∫
ω
|y(t, x)|2 dx dt
‖y0‖2

L2(Ω,C)

∣∣ y0 ∈ L2(Ω,C) \ {0}

}
. (6)

In the sequel we fix L ∈ (0, 1), and we define the set

UL = {χω | ω is a measurable subset of Ω of Lebesgue measure |ω| = L|Ω|},

where χω is the characteristic function of ω. Our objective is to maximize the
observability properties of the wave or Schrödinger equation over the class
UL, in a certain sense. We consider the two following mathematical problems.

First problem (fixed initial data).

• Wave equation (1): given (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C),
we investigate the problem of maximizing the functional

GT (χω) =

∫ T

0

∫
ω

|y(t, x)|2 dx dt, (7)

over UL, where y ∈ C0(0, T ;L2(Ω,C))∩C1(0, T ;H−1(Ω,C))
is the solution of (1) such that y(0, ·) = y0(·) and ∂y

∂t
(0, ·) =

y1(·).

• Schrödinger equation (2): given y0 ∈ L2(Ω,C), we inves-
tigate the problem of maximizing the functional GT defined
by (7) over UL, where y ∈ C0(0, T ;L2(Ω,C)) is the solution
of (2) such that y(0, ·) = y0(·).
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This first problem is the simplest possible and is interesting to be ana-
lyzed from the mathematical point of view, but in view of practical issues
it is necessary to define an optimization problem that is independent on the
initial data. Indeed, this kind of problem is motivated e.g. by the appli-
cation to the optimal placement of sensors, in view of reconstructing some
environment by means of local measures. The most natural criterion is then
the observability constant itself, defined by (4) or by (6). But, firstly, the
problem of maximizing (4) or (4) over UL happens to be very difficult1, and
secondly, the observability constant, defined by an infimum, is probably a
too much pessimistic criterion in practice: indeed when an engineer realizes
a large number of measures (and would like these measures to be of high
quality as far as possible), it is probable that only a few number of them will
be ”of low quality”, corresponding to the observability constant.

In view of this remark, it makes sense to consider rather an averaged
version of the observability inequality over randomized initial data. The
procedure that we propose here goes as follows. It is inspired by the works
of N. Burq and N. Tzvetkov on nonlinear partial differential equations with
random initial data (see [4, 5]).

Let (φj)j∈IN∗ be a Hilbertian basis of L2(Ω) consisting of eigenfunctions
of the Dirichlet Laplacian operator on Ω, associated with the negative eigen-
values (−λ2

j)j∈IN∗ . For all initial data (y0, y1) ∈ L2(Ω,C) × H−1(Ω,C), the
corresponding solution y (1) can be expanded as

y(t, x) =
+∞∑
j=1

(
aje

iλjt + bje
−iλjt

)
φj(x), (8)

where

aj =
1

2

(∫
Ω

y0(x)φj(x) dx− i

λj

∫
Ω

y1(x)φj(x) dx

)
,

bj =
1

2

(∫
Ω

y0(x)φj(x) dx+
i

λj

∫
Ω

y1(x)φj(x) dx

)
.

(9)

for every j ∈ IN∗. Note that (aj)j∈IN∗ and (bj)j∈IN∗ belong to `2(C) and that
‖(y0, y1)‖2

L2×H−1 = 2
∑+∞

j=1(|aj|2 + |bj|2). Following Burq and Tzvetkov, we

now randomize some given initial data (y0, y1) as follows. Let (βν1,j)j∈IN∗ and

1It is similar to the well-known open problem of determining what are the best constants
in Ingham’s inequalities.
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(βν2,j)j∈IN∗ two sequences of random laws on a probability space (X,A,P)
that are independent, identically distributed with a common distribution θ
for which there exists c > 0 such that

∫
IR

eγxdθ(x) 6 ecγ
2
. For example,

Bernoulli or gaussian random laws can be considered. For every ν ∈ X, we
set

y0
ν(t, ·) =

+∞∑
j=1

(
βν1,jaj + βν2,jbj

)
φj(·), y1

ν(t, ·) =
+∞∑
j=1

iλj
(
βν1,jaj − βν2,jbj

)
φj(·),

so that the corresponding solution of (1) is

yν(t, ·) =
+∞∑
j=1

(
βν1,jaje

iλjt + βν2,jbje
−iλjt

)
φj(·).

Then, instead of considering the deterministic observability inequality (3),
we define the randomized observability inequality

C
(W )
T,rand(χω)‖(y0, y1)‖2

L2(Ω,C)×H−1(Ω,C) 6 E
(∫ T

0

∫
ω

|yν(t, x)2| dx dt
)
, (10)

where

C
(W )
T,rand(χω) =

1

2
inf

(aj),(bj)∈`2(C)P+∞
j=1(|aj |2+|bj |2)=1

E

∫ T

0

∫
ω

∣∣∣∣∣
+∞∑
j=1

(
βν1,jaje

iλjt + βν2,jbje
−iλjt

)
φj(x)

∣∣∣∣∣
2

dx dt

 ,

(11)
The same procedure is made for the Schrödinger equation, leading to

define the randomized observability constant

C
(S)
T,rand(χω) = inf

(cj)∈`2(C)P+∞
j=1 |cj |

2=1

E

∫ T

0

∫
ω

∣∣∣∣∣
+∞∑
j=1

βνj cje
iµjtφj(x)

∣∣∣∣∣
2

dx dt

 . (12)

We have the following result.

Theorem 1. [[20]] For every measurable subset ω of Ω, there holds

2C
(W )
T,rand(χω) = C

(S)
T,rand(χω) = T inf

j∈IN∗

∫
ω

φj(x)2 dx.
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This motivates the consideration of the second problem below.

Second problem. We investigate the problem of maximizing the
functional

J(χω) = inf
j∈IN∗

∫
ω

φj(x)2 dx, (13)

over UL.

This criterion is a spectral energy (de)concentration one. Our main con-
tribution is to provide evidence of the intimate relations between this problem
and strong ergodicity properties of the set Ω.

This second problem can be motivated in another way, by considering the
following time averaging procedure. First of all, note that, for all initial data
(y0, y1) ∈ L2(Ω,C)×H−1(Ω,C), the quantity

1

T

∫ T

0

∫
ω

|y(t, x)|2 dx dt,

where y is the corresponding solution of the wave equation (1), has a limit
as T tends to +∞. This leads to define the time asymptotic observability
inequality

C(W )
∞ (χω)‖(y0, y1)‖2

L2(Ω,C)×H−1(Ω,C) 6 lim
T→+∞

1

T

∫ T

0

∫
ω

|y(t, x)2| dx dt, (14)

where

C(W )
∞ (χω) = inf

{
lim

T→+∞

1

T

∫ T
0

∫
ω
|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

∣∣ (y0, y1) ∈ L2 ×H−1 \ {(0, 0)}

}
.

(15)
Similarly, for the Schrödinger equation, we define

C(S)
∞ (χω) = inf

{
lim

T→+∞

1

T

∫ T
0

∫
ω
|y(t, x)|2 dx dt
‖y0‖2

L2(Ω,C)

∣∣ y0 ∈ L2(Ω,C) \ {0}

}
.

(16)
We have the following result.

Theorem 2. [20] Assume that the domain Ω is such that every eigenvalue
of the Dirichlet Laplacian operator is simple. For every measurable subset ω
of Ω, there holds

2C(W )
∞ (χω) = C(S)

∞ (χω) = inf
j∈IN∗

∫
ω

φj(x)2 dx = J(χω).
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Note that the assumption of the simplicity of the spectrum of the Dirichlet
Laplacian is generic with respect to the domain Ω.

It can be observed that, although such optimal design problems have been
widely investigated in the engineering literature (see e.g. [14, 17, 22] and ref-
erences therein), few mathematical works exist that provide a theoretical rig-
orous analysis. We quote the remarkable articles [11, 12], where the problem
of optimal domain is studied for the stabilization of one-dimensional wave
equations with localized damping. These articles were actually the start-
ing point of our own analysis. They are based on a thorough investigation
through spectral considerations. In [18] we investigated the second problem
presented previously in the one-dimensional case. We also quote the article
[19] where we study the related problem of finding the optimal location of
the support of the control for the one-dimensional wave equation. We refer
to [20] for other references to related problems.

2 First problem

In this section, we consider fixed initial data (y0, y1) ∈ L2(Ω)×H−1(Ω) (resp.,
y0 ∈ L2(Ω)) for the wave equation (1) (resp., for the Schrödinger equation
(2)), whose Fourier coefficients are defined by (9). Plugging (8) into (7) leads
to

GT (χω) =

∫ T

0

∫
ω

|y(t, x)|2 dxdt =
+∞∑
j,k=1

αjk

∫
ω

φi(x)φj(x) dx, (17)

where

αjk =

∫ T

0

(aje
iλjt + bje

−iλjt)(āke
−iλkt + b̄ke

iλkt) dt. (18)

The coefficients αjk, (j, k) ∈ (IN∗)2, depend only on the initial data (y0, y1),
and can be easily computed as

αjk =
2aj āk
λj − λk

sin

(
(λj − λk)

T

2

)
ei(λj−λk) T

2 +
2aj b̄k
λj + λk

sin

(
(λj + λk)

T

2

)
ei(λj+λk) T

2

+
2bj āk
λj + λk

sin

(
(λj + λk)

T

2

)
e−i(λj+λk) T

2 +
2bj b̄k
λj − λk

sin

(
(λj − λk)

T

2

)
e−i(λj−λk) T

2

(19)
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whenever λj 6= λk, and

αjk = T (aj āk + bj b̄k) +
sin(λjT )

λj
(aj b̄ke

iλjT + bj āke
−iλjT ). (20)

whenever λj = λk. We define the integrable function on Ω

ϕ(x) =

∫ T

0

|y(t, x)|2dt =
+∞∑
i,j=1

αijφi(x)φj(x). (21)

Then, from (17), there holds

GT (χω) =

∫
ω

ϕ(x) dx, (22)

for every measurable subset ω of Ω. With this expression, solving the first
problem, that is the problem of maximizing the functional GT over UL, is
quite immediate and we have the following result.

Theorem 3. [20] There exists at least one measurable subset ω of Ω, solution
of the first problem, characterized as follows. There exists a real number λ
such that every optimal set ω is contained in the level set {ϕ > λ}.

Moreover, if Ω has a C∞ boundary and if there exists R > 0 such that

+∞∑
j=0

Rj

j!

(
‖Ajy0‖2

L2 + ‖Aj−1y1‖2
L2

)1/2
< +∞, (23)

in the case of the wave equation, and

+∞∑
j=0

Rj

j!
‖Ajy0‖L2 < +∞, (24)

in the case of the Schrödinger equation, where A =
√
−4 (square root of the

Dirichlet-Laplacian), then the first problem has a unique2 solution χω ∈ UL,
satisfying moreover the following properties:

2Similarly to the definition of elements of L∞, the subset ω is unique within the class
of all measurable subsets of Ω quotiented by the set of all measurable subsets of Ω of zero
Lebesgue measure.

8



• there exists η > 0 such that d(ω, ∂Ω) > η, where d denotes the Eu-
clidean distance;

• ω has a finite number of connected components;

• if Ω is symmetric with respect to an hyperplane, then ω enjoys the same
symmetry property.

Remark 1. The conditions (23) or (24) stipulate that the initial data share
analyticity properties (note that they imply that y0 and y1 are analytic on
Ω).

Remark 2. The optimal solution may not be unique whenever the function
ϕ is constant on some subset of Ω of positive measure. If ϕ is constant equal
to c on some subset I ⊂ Ω of positive measure, and if |{ϕ > c}| < L|Ω| <
|{ϕ > c}|, then there exists an infinite number of measurable subsets ω ⊂ Ω
maximizing (22), all of them containing the subset {ϕ > c}. The part of ω
lying in {ϕ = c} can indeed be chosen arbitrarily.

Remark 3. In the one-dimensional case Ω = [0, π], one has φj(x) =
√

2
π

sin(jx)

and λj = j for every j ∈ IN∗. If moreover T = 2pπ with p ∈ IN∗, then αij = 0
whenever i 6= j, and αjj = pπ(|aj|2 + |bj|2) for all (i, j) ∈ (IN∗)2, and therefore

G2pπ(χω) =
+∞∑
j=1

αjj

∫
ω

sin2(jx) dx. (25)

Hence in that case the functional G2pπ does not involve any crossed terms.
The second problem for this one-dimensional case was studied in details
in [18]. In particular, in this case the non-uniqueness phenomenon can be
exactly characterized in terms of Fourier series.

Remark 4. If we relax, even slightly, the analyticity assumptions (23), then
the optimal optimal set ω is not necessarily unique and moreover may have
an infinite number of connected components. In [20] we prove that, in the
framework of Remark 3, there exist smooth initial data (y0, y1) for the wave
equation (resp., y0 for the Schrödinger equation) defined on [0, π] for which
the optimal set ω has a fractal structure (it is of Cantor type) and thus in
particular has an infinite number of connected components.
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3 Second problem and quantum ergodicity

The second problem
sup
χω∈UL

J(χω) (26)

is posed on a set UL that does not have nice compactness properties. It
is usual in optimal design problems to consider a convexified version of the
problem. Here, the convex closure of UL for the weak star topology of L∞ is

UL =

{
a ∈ L∞(Ω, [0, 1])

∣∣ ∫
Ω

a(x) dx = L|Ω|
}
. (27)

Replacing χω ∈ UL with a ∈ UL, the convexified version of the second prob-
lem (26) is

sup
a∈UL

J(a), (28)

where

J(a) = inf
j∈IN∗

∫
Ω

a(x)φj(x)2 dx. (29)

Remark 5. Note that

sup
χω∈UL

inf
j∈IN∗

∫
Ω

χω(x)φj(x)2 dx 6 sup
a∈UL

inf
j∈IN∗

∫
Ω

a(x)φj(x)2 dx, (30)

but it is not obvious to see whether the inequality is strict or not. Indeed,
since the functional J under consideration fails to be lower semi-continuous,
the usual Γ-convergence theory does not apply to our problem. This dif-
ficulty can be made evident in dimension one (see Remark 3). In that

case, one has φj(x) =
√

2
π

sin(jx) for every j ∈ IN∗, and it is easy to see

that supa∈UL
J(a) = L and that the supremum is reached with the con-

stant function a(·) = L. Besides, the sequence of functions χωN
, where

ωN = ∪Nk=1

[
kπ
N+1
− Lπ

2N
, kπ
N+1

+ Lπ
2N

]
for every N ∈ IN∗, converges to the con-

stant function a(·) = L for the weak star topology of L∞, but nevertheless,
computations show that lim supN→+∞ J(χωN

) < L.

In what follows, we make the following assumption on Ω.

Weak Quantum Ergodicity (WQE) property. There ex-
ists a subsequence of (φ2

j)j∈IN∗ converging to 1
|Ω| in weak star L∞

topology.
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Under this assumption, there holds

sup
a∈UL

inf
j∈IN∗

∫
Ω

a(x)φj(x)2 dx = L, (31)

and moreover the supremum is reached with the constant function a = L on
Ω. Hence, from now on we have

sup
χω∈UL

inf
j∈IN∗

∫
Ω

χω(x)φj(x)2 dx 6 L, (32)

and we wonder whether this inequality is strict or not, or in other words,
whether there is a gap or not between the second problem and its convexified
version.

Remark 6. The WQE assumption is always true in dimension one, as obvi-
ous consequence of Lebesgue Lemma. The situation is more complicated in
dimension greater than one and we have the following facts.

• In a hypercube, or in the unit ball of IRn, WQE holds true.

• More generally, WQE follows from ergodicity properties. In [8, 10, 24]
it is proved that, if the domain Ω is an ergodic billiard with piecewise
smooth boundary, then the following property QE is satisfied.

Quantum Ergodicity (QE) property. There exists a
subsequence of (φ2

j)j∈IN∗ of density one converging to 1
|Ω| in

weak star L∞ topology.

Obviously, QE implies WQE. Actually the result (known as Shnirelman
Theorem) is stronger: a density-one subsequence of the probability
measures µj = φ2

j dx converges weakly to the Liouville measure of Ω.
Here the domain Ω is seen as a billiard where the flow moves at unit
speed and bounces at the boundary according to the Geometric Optics
laws.

To obtain a no-gap result, we need to strengthen WQE into the following
assumption.

Quantum Unique Ergodicity (QUE) property. The whole
sequence (φ2

j)j∈IN∗ converges to 1
|Ω| in weak star L∞ topology.

11



Theorem 4. ([20]) If Ω satisfies QUE, then

sup
χω∈UL

inf
j∈IN∗

∫
ω

φj(x)2 dx = L, (33)

for every L ∈ (0, 1). In other words, under QUE there is no gap between the
problem (26) and its convexified version (28).

Remark 7. The QUE property is very well-known in quantum physics and
mathematical physics. The quantity µj(ω) =

∫
ω
φ2
j(x) dx represents the prob-

ability of finding the quantum state in ω.
Obviously, QUE implies QE. Note that the QE property lets open the

possibility of having an exceptional subsequence of φ2
j converging weakly to

some other measure. It may indeed happen that a subsequence (necessarily
of density zero under QE) converges to an invariant measure like for instance
a measure carried by closed geodesics or invariant tori generated by such
geodesics. This energy concentration phenomenon is referred to as a (strong)
scar and up to now remains a widely unknown issue (see [3, 7]).

The QUE assumption postulates that there is no such concentration phe-
nomenon (see [23]), but very few results are known. In the one-dimensional
case, QUE is always true. But in the multi-dimensional case, up to now no ex-
ample is known where QUE holds (in the context of the Dirichlet-Laplacian).
The ergodicity of Ω is however a necessary assumption for QUE to hold. Note
that strictly convex billiards whose boundary is C6 are not ergodic (see [15]),
and there are sequences of positive density of eigenfunctions which concen-
trate on caustics. Rational polygonal billiards are not ergodic, but generic
polygonal billiards are ergodic (see [13]). Recently, Hassell has shown in
[9] that there exist some convex (stadium-shaped) sets satisfying QE but not
QUE. Note that it is a longstanding conjecture that every compact negatively
curved manifold should satisfy QUE (see [21]). Using a concept of entropy,
it is proved in [1] that on a compact manifold with negative curvature the
eigenfunctions cannot concentrate entirely on closed geodesics and at least
half of their energy remains chaotic.

It is an open question of knowing whether the statement of Theorem 4
still holds true for domains satisfying QE or only WQE. Note however that
we have the following corollary.

Corollary 1. Assume that Ω satisfies QE. There exists a subset I of IN∗ of

12



density 1 such that

sup
χω∈UL

inf
j∈I

∫
ω

φj(x)2 dx = L.

Remark 8. QUE is a sufficient condition implying the no-gap statement
(33), but is not sharp: it is not a necessary condition. For instance the two-
dimensional square does not satisfy QUE (nor QE), but satisfies WQE, and
in this configuration it can be easily shown that the no-gap result (33) holds.

Remark 9. The question of knowing whether the supremum in (33) is
reached or not is unexpectedly difficult. We have a clear answer only in
dimension one. We gather hereafter the results we have been able to prove.

• In the one-dimensional case Ω = [0, π], for L ∈ (0, 1), the supremum
of J over UL (which is equal to L) is reached if and only if L = 1/2.
In that case, it is reached for all measurable subsets ω ⊂ [0, π] of
measure π/2 such that ω and its symmetric ω′ = π−ω are disjoint and
complementary in [0, π].

• For the two-dimensional square Ω = [0, π]2, the supremum of J over
the class of all possible subsets ω = ω1 × ω2 of Lebesgue measure Lπ2,
where ω1 and ω2 are measurable subsets of [0, π], is reached if and only
if L ∈ {1/4, 1/2, 3/4}. In that case, it is reached for all such sets ω
satisfying

1

4
(χω(x, y) + χω(π − x, y) + χω(x, π − y) + χω(π − x, π − y)) = L,

for almost all (x, y) ∈ [0, π2].

It is by the way interesting to note that there exist optimal sets not sat-
isfying the Geometric Control Condition, and thus in this case the de-
terministic observability constant is equal to 0, whereas 2C

(W )
T,rand(χω) =

C
(S)
T,rand(χω) = TL.

We conjecture that, if Ω is the unit N -dimensional hypercube, then there
exists a finite number of values of L ∈ (0, 1) such that the the supremum in
(33) is reached; for generic domains Ω, there exists a finite number of values
of L ∈ (0, 1) such that the the supremum in (33) is reached.
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Remark 10. As a final remark, let us stress that our main contribution is
to put in evidence the intimate relations existing between shape optimiza-
tion problems and the (strong) ergodicity properties of the domain Ω under
consideration. It can be noticed that such a connection was suggested in
the early work [6], where the authors were concerned with the question of
determining sufficient conditions on dissipative terms added into a conser-
vative equation, ensuring an exponential decay of the solutions. The role
of the quantum effects of bouncing balls and of the whispering galleries was
underlined in their study. Our results here provide clear statements making
such a connection and suggest new issues in the analysis of optimal design
problems.

We end the study of the second problem by considering the spectral trun-
cation of the functional J defined by (13)

JN(χω) = min
16j6N

∫
ω

φj(x)2 dx, (34)

for every N ∈ IN∗ and every measurable subset ω of Ω. The spectral approx-
imation of the second problem is defined as

sup
χω∈UL

JN(χω). (35)

As before, the functional JN is extended to UL by

JN(a) = min
16j6N

∫
Ω

a(x)φj(x)2 dx,

for every a ∈ UL. We have the following result.

Theorem 5. 1. For every measurable subset ω of Ω, the sequence (JN(χω))N∈IN∗

is nonincreasing and converges to J(χω).

2. There holds
lim

N→+∞
max
a∈UL

JN(a) = max
a∈UL

J(a).

Moreover, if (aN)n∈IN∗ is a sequence of maximizers of JN in UL, then
up to a subsequence (aN)n∈IN∗ converges to a maximizer of J in UL in
L∞ weak star topology.
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3. For every N ∈ IN∗, the problem (35) has a unique solution χωN , where
ωN ∈ UL. Moreover, ωN has a finite number of connected components.

The theorem allows one to construct a maximizing sequence for the second
problem. Several numerical simulations are provided in [20].

Remark 11. Note however that the following property is proved in [18]. In
the one-dimensional case Ω = [0, π], ωN is the union of at most N intervals,
is symmetric with respect to π/2, and moreover there exists LN ∈ (0, 1] such
that, for every L ∈ (0, LN ], the optimal domain ωN satisfies∫

ωN

sin2 x dx =

∫
ωN

sin2(2x) dx = · · · =
∫
ωN

sin2(Nx) dx.

This technical property (quite difficult to prove), stated in [12, Theorem
3.2] but whose proof is not completely correct, causes the so-called spillover
phenomenon, according to which the optimal domain ωN solution of (35) with
the N first modes is the worst possible domain for the problem with the N+1
first modes. Actually, ωN concentrates around the nodes kπ

N+1
, k = 1, . . . , N .

This is rather a bad news for practical purposes, but is in accordance with
the fact that the problem has no solution whenever L 6= 1/2.
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