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A stochastic model of passenger generalized time
along a transit line

Fabien Leurent), Vincent Benezech, Francois Combes
Université Paris Est, Laboratoire Ville Mobilité dnsport, Ecole des Ponts ParisTech

Abstract

Along a transit line, vehicle traffic and passentgaffic are jointly subject to variability in
travel time and vehicle load hence crowding. Theepaprovides a stochastic model of
passenger physical time and generalized time, dimeguwaiting on platform and in-vehicle
run time from access to egress station. Five ssunfevariability are addressed: (i) vehicle
headway which can vary between the stations prdvilat each service run maintains its
rank throughout the local distributions of headwafyg vehicle order in the schedule of
operations; (iii) vehicle capacity; (iv) passengarival time; (v) passenger sensitivity to
qguality of service. The perspective of the operatwhich pertains to vehicle runs, is
distinguished from the user’s one at the disagdeeigael of the individual trip, as in survival
theory. Analytical properties are established thrdt the distributions of vehicle headways,
vehicle run times, passenger wait times, passetigeel times, and their counterparts in
generalized time, in terms of distribution funcspmean, variance and covariance. Many of
them stem from Gaussian and log-normal approximatio

Keywords

Vehicle load. Headway rank. Passenger exposurd. tive. Run time. Journey time.

1. Introduction

Background. The operations of a transit line, and even mdra metwork of lines, are
submitted to variability in a number of ways. Omr thperator side, vehicle type may not be
homogeneous, the passenger load depends on theesssliedule and varies along the route,
traffic disruptions arise due to causes eitherrir@ke(such as human error, material incident,
passenger incident or accident...) or external (saischdverse weather, malevolent intrusion,
conflict with another flow...). On the demand sidée tpassenger experiences travel
conditions along his trip, from service waiting apldtform occupancy at the access station
up to station egress passing by vehicle occupandyita journey time, which vary according
to the occurrence of the trip in a series of ratiens and also between passengers on a given
occurrence. A major issue pertains to service byiige any disruption causing a large delay
induces a significant loss in quality of serviceddhe frequent reiteration of such events will
make the passenger reconsider his travel decisioetwork route and even of transportation
mode. Stated Preferences surveys have shown #mgieint significant delays amount to
additional travel time in a more than proportionahy: for instance, the factor of
proportionality was estimated to 1.5 for delaysmafre than 10 minutes occurring three out of
20 times in Paris suburban railways (Kraesal, 2005). Such behavioral patterns must be
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taken into account in network planning, both withietwork traffic assignment models and
the cost-benefit analysis of transportation prgect

Objective. The paper’s objective is to provide a stochastadel of traffic variability and
passenger exposure along a transit route. The ndelsigned as a sophisticated time-flow
relationship at the level of the service routeaimatrix form between the stations of access
and egress; thus it can be used as a componenpassgnger traffic assignment model to a
transit network. On the supply side, the model mgions involve the statistical distribution
of the local vehicle headways at station nodesarntie local run times along inter-station
links, together with the distribution of vehiclepegity in terms of seated and standing
passengers. On the demand side, a spatial pastessumed for the access-egress matrix of
passenger flows, together with a statistical distion (temporal pattern say on a day-to-day
basis) of a volume index.

The model yields the following outcomes: (i) thetdbution of vehicle journey times by pair
of access-egress stations, together with the loligion of passenger loading; (ii) the
distribution of passenger physical time by accepsss pair; (iii) the distribution of
passenger generalized time by access-egress gaumag that crowding density adds
discomfort cost to travel times. Thus the interptdyoperations variability with the spatial
pattern and temporal distribution of passenger slasvcaptured in an explicit and consistent
framework.

Approach. The paper deals with the physics of traffic opers and passenger exposure to
travel conditions both of service operations andiale load. The main variables of vehicle
traffic, passenger traffic and passenger travelcast into a probabilistic framework in the
form of random variables. Variability sources adentified, among which the major one is
the heterogeneity of vehicle headways. Analyticapprties are established between the main
model variables, in the form of functional relasbips linking the CDF, PDF, mean and
variance of them. This is achieved by making corer@nspecific assumptions: noteworthy
assumptions include the conservation of headwaly bbgirservice run, normal approximations
for headways and vehicle loads, or alternativeggiormal approximations when the interest
lies in a product rather than in a sum of variab{@gerall, the paper blends up probabilistic
analysis taken mostly from the theory of renewal anrvival, with traffic analysis at the two
levels of transit vehicles and passengers, reyadgtiPrevious analytical work along that line
has addressed vehicle traffic only (e.g. Carey ldndencinski, 1994; Meester and Muns,
2007) or passenger traffic restricted to the isdugassenger waiting at a platform station, as
in Bowman and Turnquist (1981). Our specific asstimng extend the scope to a “transit leg”
that includes the in-vehicle journey from acces®goess station as well as waiting on the
access platform. Recent work has shown the distoibuof travel conditions and the
distinction between the operator and user perspectislam and Vandebona (2011) on the
basis of micro-simulation and Yuat al (2011) on the basis of traffic observations.

Structure. The rest of the paper is organized in five sestio/ehicle traffic is considered
first, by focusing on headways and deriving somesequences on journey times by pair of
entry-exit stations (Section 2). Then, passengad loy vehicle is characterized with respect
to headway rank and the index of demand volumeti@@e8). Next, we turn our attention to
passenger exposure to in-vehicle crowding, waitetiand travel time (Section 4). The
consequences of service irregularity and othemtians affect not only the physical times but
also the “generalized time” which takes into acdaime discomfort of specific travel states
(Section 5). Lastly, the conclusion points to thedel scope, limitations and potential
developments (Section 6).
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2. On vehicle headways and journey times

In this paper, a transit line operated along alsirsgrvice route in a single direction is
considered. The stations are indexedrbylM and the sections or links between adjacent
stations byald A. Each vehicle run is characterized by a trajectorgpace and time. The
journey time is made up of the run times on the¢iees plus the dwell times at the stations.

The objective of this section is to model the statal distribution of vehicle run times
between station pairs along the line. The stasifopulation of interest is the set of runs
during a reference period, for instance the morpiaak hour of working days.

First, we shall model the distribution of vehicleddways (8§ 2.1). Second, their propagation
between stations is addressed in 8§ 2.2. Then, lptsis made about the “conservation of
headway rank” (8 2.3), which entails specific pntigs for the distribution of vehicle
headways (8 2.4) and that of journey times (8§ 2.5).

2.1 On vehicle headways
Denote bynm(i) the time between the departure of vehiclieEom stationm and that of the
previous vehiclej —1. In the population of vehicle runs, the Cumulabesktribution Function
(CDF) of nm is denoted asH, with inverse function Hﬁn_l). Let us recall classical
properties:
)] The service frequency at statiom during the reference periodfy,, is the
reciprocal of the average headwady; =1/E[Nm] .

i) Service irregularity is related to the deviationrpf from its average value. It can
be assessed by the variance of this distributdjm,], or equivalently by its
standard deviatiow[nm] or the relative dispersiofnm] =o[nm]/E[Nm] -

Assuming that the incoming passengers at statioarrive independently from one another
and from service schedule, their arrivals can beletenl as a Poisson process and, if the
process intensity is medium or high, then it canshély assumed that the number of
passengers waiting for a given vehicle is propagido the headway (neglecting any capacity

constraint). Furthermore, the distribution of pagge waiting times am stems from that of
vehicle headway in a specific way (see Section 4).

2.2 Spatial propagation

The instant of departure of vehidlefrom stationm, hy(i), is separated from that of the next
station, hpn+1(i), by the run time along sectioa=(m,m+ JPlus the stop time am+ ,1
altogether denoted dg(i) :

h,. (1) = h, (i) +,() . (2.1)
Note that we also have:
N, =h,({)-h_@).
So that from vehicle - 10 vehiclei, the headways at service stations satisfy:
Nm() =Nm-1(i) +Ta(i), (2.2)
whereint,(i) =ta(i) —ta(i —2) is the difference in travel time alorayand m.

Paper submitted to EWGT XV, 2012, Paris 3/14



Leurent, Benezech, Combes Stochastic model of transit line

Service operations and exogenous influences magtatiie distribution oft; and, in turn,
that of ny,. The influences on the mean and variance areucfarinterest. By the linearity of
expectation:

E[Nm] = E[Nm-1] +E[ta], (2.3)
whereas, by the bi-linearity of covariance,
V[Nm] =V[Nm-1]+V[Ta] + 2COV[1m-1,Ta) - (2.4)

Formula (2.2) and its consequences (2.3-4) staegtbpagation of vehicle headways from
station to station.

2.3 On the conservation of headway rank

Of course, the conservation of schedule order ssirasd along the line, under a First In —
First Out discipline. Let us focus on the rank aicle run in the “local” distribution of
headway, characterized by the fractite, =Hn(nm). In this study, the postulate of

conservation of headway rank is made:
i, Om# n,am(i) =an() =a() . (2.5)
This states that if a vehicle run is associated telatively low (resp. large) headway at a

given station, it is associated to relatively lawsp. large) headways at all the stations of the
line. However, local magnitudes may differ, onlg tlank remains stable.

The postulate is realistic enough in various instan

- when the operations are regular along the line,hébedway at the initial station is
maintained from station to station.

- If most of traffic disruptions occur on a given sec a, then the main source of
variation pertains ta, and the rank in its distribution may be assumeapaly on the
rest of the line as well.

The most noteworthy consequence is the functioepéddency between the headways along
the line:

Om =Hm(Nm) =a =0m-1 =Hm-1(Nm-1) , hence (2.6)
Nm = Hiplo Hm-1(Nm-1) - (2.7)
Thus 13 =Nm —Nm-1 also is a function ofjy-1 .

Assuming further that the dependency is linear, tg=Anm-1+ for some parameters
A =0 andy, then it would hold that

COV(Nm-1,Ta) = O[Nm-1].0[Ta] . (2.8)

This relationship notably holds for random variabtg,-1 and 15 that are distributed along a
similar pattern, i.e. when

Ta —E[1a] ~Nm-1- E[Nm-1]
o[ Ta] o[Nm-1l]
This holds notably for perfectly correlated normadriables: in this case a valuable

complementary property is thagt, is normal, too, yielding normal variables for heag and
section time variation along the line.

Paper submitted to EWGT XV, 2012, Paris 4/14
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2.4 Vehicle journey time with respect to schedule order

Let us turn to the journey time of each vehicle with respect to its order in the schedule of
operations, denoted hy. Let r denote a reference station amdr a subsequent station in
the selected direction of traffid,(i) be the journey time of vehicle run between the

instants of departure from andm, hy(i) andh (i) respectively. It holds that
tim (1) = hm(i) —h (i), so
trm (i) =trm (i =2) +Nm(i) —n (i) and
tim (@) = tim (0) + X o4 (Nm (1) =1 (1)), (2.9)

Wherein vehicle run #0 is an ideal vehicle run ofnnal performance which immediately
precedes the reference period. By the lineariggxpiectation, it then follows that

E[Trm(1)] =Trm 0) +i(E[Nm] —E[Nnr]) . (2.10)
Given the fact that thei(i) are assumed i.i.d., the runs are mutually ieseent, which
implies that:
V[Tm()]=i.V[Nm—nr], (2.11)
Under the conservation of headway rank and the ngston of normality,
Nm =Nr +Za[[r,m]Ta satisfies thab[nm] =o[n:] +Za|:[r,m] o[1a], which entails that

O[rlm]_c[rlr]=Za|:[r,m]0[ra]=0{r]m‘rlr]- (2.12)
Combining (2.12) and (2.11), we get that
ol Trm(i)] =i o[Nm=nr]. (2.13)

Of course the assumption of conservation of headway and the run independence are
likely to interfere in practice. However, eqns @.-and (2.13) give some insight into the
progressive deterioration of the vehicle journeyetiwith respect to the order of the run in the
schedule of operations, when submitted to irregyland random disruptions.

3. Vehicle loading

So far, two sources of variability have been madadieit: headway rank, denoted as, and
the order in the schedule, denotediadn this section, two other sources are introdyuced
namely the level of passenger transport demanaytdeérasf, and the train capacity, denoted
as k. Sourcesn andf jointly influence the vehicle load in passeng&surcesa, 3 andk
jointly influence the ratio of load to capacity bghicle run.

This section establishes some analytical propedii¢ee passenger load and load ratio along

a transit line, by taking into account the demapalssenger flow) between stations of entry
and exit.

3.1 Assumptions about passenger demand

A reference period of given duration is considei@dine operations. In fact it refers in some

average way to a population of periods, for instatiee morning peak hour throughout a

series of working days. To depict the variabilifyperiods, let us associate to each period its
level B of passenger demand, with CIBFin the population of periods.
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Within a given period, passenger flow is modeledaastationary random process, with
macroscopic properties as follows: between any pairs of stations along the line, the
passenger flow arriving at and destined tcs during time interval[h,h’ Jamounts to

Bars(h'=h). Thus the set ofq,s :r <s] describes the spatial structure of passenger diéman
per unit of time.

Across the population of periods, we could deffheso as to satisfy thaE[f] = ; however
we shall keeE[B Jn the formulae for the sake of traceability.

3.2 Vehicle loading conditional onp

Assuming that passenger demand is not restrainechigle capacity, at each stationof
entry a given vehicle run will attract incoming pasgers in proportion to its local headway,
nr. On sectiona, the vehicle load denoted by, consists in those passengers having entered

at stationr <a (with obvious notation fog and= for position along the line):
Yap =B <asaOrshr - (3.1)
Then, on average:

E[yapl = Bera,SZaqrs E[nr]. (3.2)

Keeping to the postulate of conservation of headraak, the vehicle run is characterized by
its fractile a so thatn, = H$_1) (a). Then

Yap (@) = BY ca salis H (@) - (3.3)
Denote byY, g the CDF ofy, conditional onf3. Then:
Ya—,%% =BYr<asalrs Hrt. (3.4)

Furthermore, as in the previous section the sutotafly dependent random variables sharing
a Gaussian pattern satisfies that

o[ Yapl = Bera,SZaqrso[nr] - (3.5)

3.3 Vehicle loading, overall distribution
Let us now aggregate the analysis with respecp toDenoting £a =3, , &a0isNr the
random variable of reference link flow and Ky, its CDF, it holds generally that:

Ya(2) = PHBEa < 2 = [ Xa(z/B)dB@). (3.6)

In reality, demand leve3 may influence vehicle operations — for instanceabse the

number of boarding and alighting passengers magrid@te the dwelling time. However, for
simplicity, independence is assumed in this mogdelding that:

E[yal =E[B] .21 cq sadrs EINr]- (3.7)
V[ya] = V[B] .E[Ea]? + E[B?].V[£a] due to ?), hence

* var[XY] = E[X?Y?] -E[XY]* =E[X?]E[Y?]-E[X]PE[Y] = E[X?]V[Y] +E[Y]?V[X]

Paper submitted to EWGT XV, 2012, Paris 6/14
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VI Yal = VB (2 ca ssa s EN1) 2+ EB2L. (S, <o wars0Ine1)2. (3.8)

To gain further insight into the structure of irdhces, let us add to the assumption of
Gaussian headways the approximation of the reguftow, &5, by a log-normal variable

with same mean and standard deviatidf{a] and o[{s]. Denote by m, and s;,
respectively, the mean and standard deviatiom@f. From the classical properties of log-
normal distributions, these are related to the mumef ¢, by:

E[€a] = exp(ma +5 53)
0%[8a] = (exp6s) —1).E[€a]?

Assuming lastly tha = LN(mg, sz ,)then the link loa3&a = LN(mg +mg, sg +3).

3.4 Vehicle loading ratio

Vehicle capacity, denoted as, pertains to the number of seats plus a referenceber of
positions for passenger standing with sufficientnfart (e.g. 4 persons per square meter).
Heterogeneous vehicles may be used to operateahsgittline, leading to the variability of
capacity hence of the ratio of passenger load paaty.

Let us denote that ratio as
Za =YalK=B&alK. (3.9)

While it is quite natural to assume the independef@ and K, it would be a wise policy of

line operations to assign vehicle types accordimghe planned headways, by associated
larger capacity to larger headways so as to baldreckad ratio across the runs. Under such a
balancing policy, the load ratio could be analyzedthe same way as vehicle load by

replacingn; (a) with n,(a)/Kqy. On the contrary, a negligent policy may be modiddased
on the assumption of independence betweesnd a as well ag3 . Then the load ratio would
have mean and variance as follows:

E[za] = E[B] -E[K™].X co s EINr ] (3.10)

V[za] = E[K?]V[ ya] + V[K 1E[ya]?. (3.11)

4. Passenger exposition to physical time

Let us come to the perspective of the user atawel lof the individual trip, as opposed to the
operator’s one at the level of the vehicle run.

4.1 User's exposure

Let us recall some basic properties of renewal rih€e.g. Kleinrock, 1975, pp. 1689).
Denote byH? the CDF of headway duration, and byH? its PDF, with superscripp to

mark the operator’s perspective. A user willingoteard atr arrives on platform at a random
instant, which will belong to a headway intervaldofrationn with a probability proportional

to n: in the user’s perspective, marked by supersaript

HE(n) OnHP(n). (4.1)
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By integration, the factor of proportionality amasiio 1/E[nP ]. The moments ofjf stem
from those ofnf at the next order:

E[(n#)*] = E[(n?)**1/EnP]. (4.2)
Consider now the size of the passenger group tichides the individual user, to board in a

vehicle run at statiom, n¢'. Its probability density stems from the density(3,n of) pair

(B,n), which is related to the PDP° (3,n in the following way:

f4(B,n) OBn f°(B.n), (4.3)

where f is the PDF of passenger group sizes from the petise of the operator. Assuming
independence betweeff and n, then fo(B,n) =B°(B).H?(n): thus independence is
maintained in the user’s perspective, since

fU(B.,n) OBn B°(B).HP(n)
=BY(B)-HF'(n)
In which BY(B) = BB°(B)/E[B° ] and H} (n) = nHP(n) /E[n? ]

(4.4)

As nf =3, its CDF is
NF(x) =PHBn < =[N (x)dBY(B) = [HF (x/B)dB"(B) . (4.5)

The independence property enables us to estalilesitmean and variance of group size as
follows:

EIB°)?] El9)?] @6
E[E°]  EIN?]
VIn¢] = EIB*2]VIn#] + VIBI(EMMF])?

_ EI@°)] (E[(n?)S] _ E[(n?)zlz) +(E[(n9)21) 2(E[(B°)3] _ E[(BO)Z]ZJ- 4.7)
EB°] \ EMPI  EMMPI E[nf] E[B°]  EIB°I

Elne'] = E[B"]E[nr'] =

4.2 Vehicle load by link as experienced by the user

Depending on his entry statiom, the user travelling along linla>e experiences there a
vehicle passenger load as follows, whengiir depends on the entry station:

yg,e = Bnga’szaql’Sr‘Il’J,e ’ (48)

Given the valuen of ng, headway rank isx =H2(n :)the conservation postulate in the
operator’s perspective is maintained in the ugggitspective. Then, conditionally tp:

yg,e,n,B =B <assalrs H(r)(_l)o H&(n) . (4.9)
From the equation above stems the unconditionébiaryj . Its CDF is given by:
Y&e(2) =PHYie <2 =[Py onp =2 fUBn)dndB. (4.10)

By successive transformations:
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yg,eyﬂ,B SZ - Zrsa,szaqrs H(r)(_l)(ar]) <z/f
= X3 (ay) < z/B
= oy £X(z/P)
= n=HMoX2(z/P)

Thus P{yS o5 < 2 = HE o HE™PoX(2/P) , and:

Y8e(2) = [Py 5 < 2 FUB)B = [HY o HX Do X 3(2/PB) dBU(B). (4.11)

To gain insight into the consequences, let us apmiate the distribution of headways in the
operator’'s perspective by a log-normal distributisith parametersm? and s2. Then, by
standard properties of the log-normal distributigl,= LN(m2 +s32,s2) . Denoting by® the

reduced Gaussian CDF, thet2(™D (t) = expm@ + 2 (- (1)) and HY(x) = (D(%— 9),

50 thatHYe HY D t) = qa(”‘g*SS“’;” -8 _ 50y = (D (t) - Q).

Further on, let us approxima® = LN(my,ss : then X3(t) = q)(m%) . Combining, we get
that HYo H2™ o X3 (1) =¢(%—s§), which shows thag¥ = LN(ma +Sas2,Sa .) S0, in
this case,

Yid(2) = [ _ ) 4BY(B) = [P{EY B < 2 dBYB) = P{INEYe+INBY <InZ .

Under the last assumption thaft = LN(mg, s3) , it comes out that
IN(2)~Ma ~SaS3—M3 - 5§
o

Which shows thatyie = LN(My + 5,58 +mp +7,/s2 +3).

From this stems the average volume experienced lnydividual user,

Elye] =exp(ma +Sas8 +mp + 5 +3 (S5 +5)) = E[BU]E[X8] exp(Gas?) -

The ratio to the average vehicle load in the opesiperspective amounts to

Ely4e] _ EIB°)?]
E[ys]  E[B°)?

= (1+y3) explyIn(i-+y2)In(1+y3)] (4.13)
= (1+ yé)(1+ YaYe) for not too largerelativedispersios

Yale(2) = ®( ) (4.12)

expsast] = expls; + sas]

4.3 Run time

In section 2.3 some statistical properties of ruimethave been established for vehicles:
schedule order determines the mean and variance of run filgé) . Any user that arrives

at stationr at a given instant will board a vehicle of order which is random due to
irregularity, so he will get a random run time. Tpecise definition ofi(h )as a random

Paper submitted to EWGT XV, 2012, Paris 9/14
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variable is difficult except for Markovian vehicleuns which would yield a Poisson
distribution but at the price of assuming a largeant of variability. For simplicity, let us
assume here thati(h )has a wuniform discrete distribution derived from

i =1+int[(h—-ho)/E[n,]] on the reference periofhy,hy]. Let | =i(ly) and 1/1 be the
elemental probability of 0{1,..I }

The average run time is
Elty] =1 Elt ()] =t,, @) + El7] -El7, D 1>, i
=t,, (0) + 5t AE by setting AE = E[r7,] - E[77,]

(4.14)

By the law of total variance, the variance of tha time is made of an interclass part plus an
intra-class part in the following way:

V[trs] = 12 (E[trs(l)] E[trs]) T z o [trs(l)]
=1AE? Z:l(u —L41)2 + —z_ i(Ao)? by settingAo = an, -n,] (4.15)
= 0B 132+ (A0)* 13 = 12 (AE* 12+ (A0)°)

4.4 Wait time

The user wait time on the station platformy, amounts to the residual span (or lifetime) of
the on-going headway interval. From survival theds/PDF is

oo _1=HR(X)
We(X) =—————. 4.16
¥ Eme) (@19
This leads to the following relationships betwelea tnoments of the two variables:
et =S8 epuyi e (4.17)
S (k+DEME] |
So it holds that
_E[(n&)~] )2] _ 11U
V[we] = E[(ne)z]_lE[n 12= lv[ne]"' E[(ne)z] (4.19)

Furthermore,ng is correlated towe and so are the headway rank and all derived Vasgab
such asyg¥ . For instanceE[weng] =2 E[(n¥)?] so coviwe,nd] =3V[nd].

45 Travel time

The travel time of a user between stationand s is composed by the wait time at w; ,
plus the run time between the two statiois,

s =w +td. (4.20)
By the linearity of expectation,
E[t$] = E[w ] +E[t4]. (4.21)
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There may be some correlation between the two caemge. However independence may be
assumed as a crude approximation, yielding:

V8] = Viw ] +V[tH]. (4.22)

4.6 Platform crowding

A related issue pertains to the number of passengeaiting on platform at a given station

At any instant, this number is proportional to teeel of the incoming flow,8.> . s,
times the time elapsed since the departure of dse Pehicle. From survival theory (e.g.
Kleinrock, op cif), the latter is the random variablg}' —w; . Thus the passenger stock
amounts to

S =B .(Lssr trs)(NF — W) (4.23)

Independence df andn, implies thatn} —w; is independent o8, yielding
E[S]=ZENFIER] (X ars) (4.25)
VIS 1= (S, Ors)?EIB?I VINH] + VIBL ElFIZ]. (4.26)

The perspective of either the operator or the usast be specified by setting the adequate
distribution of 3.

5. On passenger generalized time

To a trip-maker, the “generalized time” of travela comprehensive disutility to capture both
the physical travel time and the quality of servik&ing the trip. Each physical state (e.g.
sitting in-vehicle) or transition (e.g. vehicle egs) within the trip sequence, is associated
with a specific penalty factor: from 1 for sittimgrvehicle to 2 for standing in-vehicle under
dense crowding or more for waiting in crowd with tmaffic information. The physical time
spent in a given state is multiplied by its penddtgtor to yield the generalized time of that
state. This is aggregated along the trip sequengeeld the generalized time of the trip. It is
used in discrete choice models of network routgarsportation mode. It is also the basis to
evaluate the benefits and costs of a transporttpléme community.

5.1 The formation of generalized time

The notion of generalized time involves penaltytdeg that vary across the individual trip-

makers. Small persons resent standing in a crowme ri@n tall ones do. In general, old

persons move and walk more slowly than younger.dhesple are more or less sensitive to
fatigue. Lete denote the particular sensitivity of a given indual.

Wait time w; and link timet, are transformed into generalized times, denotedygasand
B¢ , respectively. The generalized travel time amotmts

Arse = Wre + 2y o Oae - (5.1)

To model the dependency af and 6 on the crowding density, assume that
Wre =W Yre(S), (5.2)
Bac =ta dae (V4. K). (5.3)
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Formulae (5.1-3) provide a basis to analyze théuémice of passenger flow on travel
disutility. Taking wait time and link time as randovariables, then so areye, 8 andA(s ¢

conditionally toe . From the previous sectiom;y and S, are correlated. Link loadgy along
successive links are correlated, too. Furthermptatform variables and link loads are

correlated due to headway rank. As all the cornaiatare positive, the generalized travel
time conditionally toe is subject to large relative dispersion.
5.2 In-vehicle discomfort

Let us focus on in-vehicle time and the influenéerowding density on its specific penalty
factor. A well-known model is the so-called BPRdtian (e.g. Spiess and Florian, 1989):

dar(ys,K) =1+Ca (%) ba (5.4)

in which exponenb, takes positive values such as 1 or 4, whereaerfagt takes positive
values between 0 and 3 typically. Formulae (5.4) én3) state that crowding discomfort

inflicts a specific additional cost ofy ca (ya/K) P2 to the physical link time. In the operator’s
perspective (resp. the user’s one), the averagé@d cost is evaluated as

SCOM = E[t§" ca (y§™/ ) P2] =ca E[t“]E[(y§"/ k) Pa]. (5.5)
Assuming that capacity is homogeneous, the twanstdiffer by a ratio of
SC' _E[y4 "]

S ENR™] >0
Using the log-normal approximatiory, = LN(bmy,bs,) so
SC =expbs; +bsas? +2b(b-1)(sf +5)]. (5.7)
SCo 2
Assuming further thas, = s, it comes out that
2?: =p°®*) whereinp = expf (s3 + )1 (5.8)

5.3 Numerical instance
To fix ideas, let us assume that = 03 andyg = 0.2 yielding sa = 03 ands3 = 0.2 Then
p =1.13 and the ratio varies from 1.13 to 3.5bags changed from 1 to 4. Fig. 1 depicts the

variation of the disutility factops; with respect to the apparent occupancy raEpyS /K . ]

For a given apparent ratio, the experienced crogvdansity is equal to the disutility factor at
b=1 and c= 1 minus one: it differs from the apparent ratioairsignificant yet not major
amount.

Irregularity also affects the base travel tinkgt;]. Between stations and s, from (4.14)
the related additional cost amounts $d':%(| +1)(E[ns] —E[nr]) . Denoting by f, the
service frequency delivered at stationduring a reference period of length, |1 = f, and
E[nr]=H/f while E[ns]=H/fs. Then, ST:%H.(fr / fs-1). For instance, along the
line A of the regional railways in the Paris arafthe morning peak hour westwards, the
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service frequency is reduced fromy =30/hour upstream of the centre, tés =27/hour

downstream. The resulting additional time is ab®uper trip. The train capacity is about
2,000 passengers and the apparent occupancy f&8R%® upstream. The additional cost per
trip, from nominal quality of service oy =15 tb personal experience, amounts to

(To +ST).(L+c(E[y§]/k)P)-To =21.7’if b=2 andc = 1,
Whereas a naive evaluation by the operator woultlyi
To(@+c(E[y3]/K)P) —To =10.3’ only.

The discrepancy between the two evaluations woeldmoich larger for larger values of

exponentb. This demonstrates the need for accurate estingatd penalty functions and a

consistent, user-oriented evaluation of vehiclemdiog in the cost-benefit assessment of
transport plans.
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Figure 1. Generalized time versus Occupancy raozording to variability parameter.

6. Conclusion

A model of traffic along a transit line has beevpded at both levels of traffic unit, the
vehicle versus the passenger. The perspectivedieofoperator and the user have been
identified. Based on a powerful postulate, the eovetion of headway rank, it has been
shown that service irregularity and demand vanetj@s well as other factors such as vehicle
order in schedule, vehicle size and passenger tsgysio quality of service, affect the
passenger conditions of travel significantly. Cravgddensity above a ratio of say 80% exerts
major influence on generalized travel time. Theraf perspective is plagued with bias that
must be corrected to represent passenger conddlgastively.

The model captures a set of variability sourcesalical formulae have been established to
assess their respective effects. The main postisatbe conservation of headway rank.
Gaussian or log-normal approximations have beeren@agield convenient approximations;

in the authors’ opinion their effect is innocuous.

The established properties will be useful in moaédlgaffic assignment to a transit network,
as they pertain to travel conditions hence to ggeduality of service, which determines the
passenger travel choice of a network route.
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Further work is required to analyze transit linesviced by a set of routes: vehicle type and
load will depend on the route and the joint operati On the passenger side, between some
station pairs a subset of routes will be useddingl reduced waiting time but more diverse
in-vehicle conditions. Another research topic peddo the feedback of vehicle load on the
operating conditions, as in the assignment modekafentet al (2011).
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