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A PATCH-BASED APPROACH FOR REMOVING IMPULSE OR MIXED
GAUSSIAN-IMPULSE NOISE ∗

JULIE DELON † AND AGNÈS DESOLNEUX ‡

Abstract. In this paper, we address the problem of the restoration of images which have been affected by impulse
noise or by a mixture of Gaussian and impulse noise. We rely on a patch-based approach, which requires careful
choices for both the distance between patches and for the statistical estimator of the original patch. Experiments are
led in the case of pure impulse noise and in the case of a mixture. The method proves to be particularly powerful,
especially for the restoration of textured regions, and compares favorably to recent restoration methods.

Key words. restoration, denoising, Gaussian noise, impulse noise, non local methods, image patch, maximum
likelihood estimator, order statistics.

1. Introduction. Impulse noise in images is generally due to data loss happening during the
acquisition stage (for instance in the presence of faulty pixels), storage (due to defective memory
locations) or image transmission. This loss usually occurs after, or possibly at the same time
as the first stages of image acquisition. During these stages, other sources of noise affect images:
mainly, the photon shot noise, which is Poisson distributed, and the readout noise, which is Gaussian
distributed [1]. When no data is lost, variance stabilization techniques [24] can efficiently transform
Poisson-Gaussian noise mixtures into an additive white Gaussian noise, which explains the huge
literature solely dedicated to Gaussian denoising. In practice, a user may have to deal with an
image that is damaged by a mixture of Poissonian, Gaussian and impulse noise. Removing this
kind of mixture while preserving image details and textures is of great importance before most
image analysis tasks (edge detection, segmentation, etc). In this paper, we study a simplified
version of this noise model, and concentrate on the mixture of Gaussian and impulse noise.

Two models of impulse noise are generally used in the literature. In the first one, called salt-
and-pepper noise, each gray level is replaced with a given probability by 0 or M , where [0,M ]
is the range of the original image (M = 255, in general). In this paper, we will focus on the
second model of impulse noise, called random-valued impulse noise, where each gray level value is
replaced with probability p, called noise ratio, by a random value in the set {0, 1, . . . ,M}. Observe
that detecting and removing random-valued impulse noise is much more difficult in practice than
removing salt-and-pepper noise.

There is a broad literature on pure impulse noise, but the mixture of Gaussian and impulse
noise is generally less studied, despite the fact that it is a more realistic noise model. The traditional
approaches for impulse noise removal act locally and non linearly on images. Among them, let us
mention the median and its extensions [36, 30]. These approaches modify all pixels indifferently,
while impulse noise affects only a portion of the pixels. In order to avoid this shortcoming, the
trend for nearly twenty years has been to propose different impulse noise detectors and to restrict
the restoration to pixels detected as corrupted. For instance, this idea underlies the switching me-
dian filter [38], the adaptive center weighted median filter (ACWMF) [11] or the pixel-wise median
absolute deviation [12]. Unfortunately, median-based methods tend to destroy details and textures
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in images when the noise ratio is large. A successful alternative consists in combining a well chosen
impulse detector, generally relying on local order statistics of gray level differences, with a global or
at least semi-local restoration approach. This is the case of [25], which combines the Rank Order
Absolute Differences (ROAD) for detection with a trilateral filter for restoration. Moreover, this
method is used in both cases: pure impulse noise removal or mixture of Gaussian and impulse
noise removal. This detection/restoration scheme is also followed by the authors of [8, 21], who
rely on ACWMF, or ROLD (Rank Ordered Logarithmic Difference) for detection, before applying
a variational approach to restore corrupted pixels.
Other approaches for removing a mixture of Gaussian and impulse noise generally start by estimat-
ing or detecting the impulse noise and then adapt (by reducing the influence of the pixels affected
by impulse noise) a Gaussian noise removal method. This is for instance the case of [41], where
outliers are first detected by a median type filter and then a K-SVD dictionary learning is per-
formed on impulse-free pixels to finally solve a l1 − l0 minimization problem. This is also the case
of [7, 6, 28, 33] where a median type filter (ACWMF in general) is used to detect the impulse noise
and then a variational framework (TV norm, or l1 norm of framelet coefficients for instance) is used
to restore the whole image. Let us mention that some of these papers (namely [7, 6, 33]) tackle
at the same time the problem of blur in images. The framework is thus a bit different, being at
the same time more difficult (there is an additional deterioration of the image because of the blur),
and an easier one (impulse noise is more efficiently detected on a blurry and therefore smoother
image). Detecting the impulse noise is also the first step of [26] where an impulse noise estimator
is used to modify an anisotropic diffusion model, or of [42] where impulse noise is first removed
by an adaptive cascade of median filters before removing Gaussian noise using BM3D [13]. The
method of [34] takes advantage of the full probabilistic mixture model: an external method is used
to predict original pixel values, followed by an EM algorithm which permits to learn the full noise
model, and finally some kernel regression to get the restored image. The authors of [32] use the
ROAD detector of [25] to obtain a modified (“impulse controlled”) distance between image patches
that they use to compute the weights in the denoising scheme of Non Local means (NL-means) [5].
The approach presented in this paper for removing mixed Gaussian-impulse noise will also be patch-
based, which means that it will rely on the patch redundancy inside images. In the last fifteen years,
a great deal of image processing techniques have been developed in order to take advantage of self-
similarities of images [23, 2, 5, 19]. Since the introduction of the NL-means by Buades et al. [5] to
tackle Gaussian noise, the idea of relying on patch redundancy to reduce noise variance has proved
to be particularly powerful. The NL-means have since been extended with success to other noise
models [27, 15]. The idea of these restoration methods is both simple and nice, since it relies on
the assumption that in a natural image, a given patch can be found almost identically in different
places. The patch can then be restored in two steps : first, by finding all of its corresponding
patches in the image, and second by estimating the real underlying patch behind these different
damaged versions. The mathematical framework adapted to deal with this redundancy is the one
of statistical estimation, as underlined in the recent contributions [29, 39, 37, 22]. The goal of this
paper is to model properly the two steps of this estimation scheme in the case of images suffering
from a mixture of impulse and Gaussian noise.

The paper is organized as follows. We start in Section 2 by giving some details about the
important steps of patch-based approaches for denoising. In Section 3, we compare different mea-
sures of similarity between patches, designed to be robust to impulse and Gaussian noise. The
estimation step is then tackled in Section 4, in which we also analyse the statistical properties
of several possible estimators. In Section 5 we present in details our full denoising scheme. For
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practical reasons, this scheme is named PARIGI 1 in the paper. Experiments and comparisons with
recent approaches are displayed in Section 6. For the sake of completeness, let us mention that a
conference proceeding version of this work has appeared in [20].

2. Patch-based approaches for denoising.

2.1. Noise model. In the rest of the paper, the discrete damaged image is denoted by u and
the original image is denoted by u0. These images are defined on a discrete domain Ω, assumed to
be a bounded rectangle of Z2. We consider in this paper that the damaged image u is a realization
of a random image U which can be written

U = (1− T ).(u0 +W ) + T.V, (2.1)

where T , V and W are independent random images such that

• the values T (x), x ∈ Ω are i.i.d. random variables with a Bernoulli distribution of parameter
p (in the sense that P[T (x) = 1] = p); p is called the noise ratio;
• the values V (x), x ∈ Ω are i.i.d. random variables with a discrete uniform distribution on

the range [0,M ];
• the values W (x), x ∈ Ω are independent centered Gaussian random variables with variance
σ2: W (x) ∼ N (0, σ2).

In other words, the value u0(x) of a pixel x is first modified by adding a centered Gaussian noise
and then, with probability p, replaced by a uniform value on [0,M ]. Pure impulse noise can be
considered as a particular case of the previous model, obtained when σ = 0.

2.2. The fundamentals of patch-based denoising. The idea of patch-based approaches is
to take advantage of the redundancy of patches (also sometimes called the self-similarity) in images.
The central hypothesis of these approaches is that for each patch P1 in u, there exist other patches
P2, . . . ,Pn in u such that all the Pi are realizations of the same random patch, obtained from an
underlying non-noisy patch P0 of the original image u0. The first step of the whole restoration
process consists in finding, for each patch P1, this set of corresponding replicas. In a second step,
a denoised version of P1 can be obtained by relying on any estimator P̂ of P0, computed from its
different damaged versions P1, . . . ,Pn.

The first step generally boils down to the choice of a similarity measure between patches. This
measure should constitute a good trade-off between discriminative power and robustness to noise,
as presented in Section 3. In the classical version of NL-means [5], the similarity between patches
relies on the Euclidean distance, chosen in particular for its robustness to Gaussian noise. This
distance is used to compute dissimilarity weights, and these weights then balance the influence of
the different patches in the final estimator P̂. Alternatively, the authors of [35] propose to threshold
the similarity measure in such a way that “a patch and one of its replicas have a probability of 0.99
to be considered as similar”. The estimator P̂ keeps only patches whose distance to P1 is below
this threshold. Other valid solutions only retain the n-nearest neighbors of P1 [3], or make use
of clustering [4, 9] or of PCA [18] strategies in order to determine the set of replicas for P1. For
the sake of simplicity, the denoising scheme PARIGI described in this paper relies on the n-nearest
neighbors solution, the main difficulty to be tackled being the design of a robust similarity measure
in presence of impulse noise.

The second step of the restoration amounts to a very classical estimation problem : given
U1, . . . , Un n i.i.d. random vectors following a distribution P(θ) with θ a vector parameter, find a

1PARIGI stands for Patch based Approach for the Restoration of Images affected by Gaussian and Impulse noise.
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good estimator θ̂ of θ. When the noise is purely Gaussian, P(θ) = N (θ, σ2), with σ known, the best
estimator in terms of Mean Squared Error (or quadratic risk) is the mean, which explains the usual
averaging formulation of the NL-means [5]. Recently, many authors have adopted the point of view
of quadratic risk minimization as a way to optimize the parameters of the NL-means [29, 39, 22] or
to propose further improvements [37]. In Section 4.2, we will also make use of the quadratic risk in
order to compare the efficiency of different estimators in presence of impulse and Gaussian noise.

These two steps permit to restore any patch in the noisy image. Now, since a given pixel
x belongs to several patches, multiple choices are possible to obtain a restored value û(x) at x.
This last step, called reprojection in the work of Salmon and Strozecki [37], corresponds to the
general framework of estimators aggregation in statistics. Let us denote by Px a patch centered
at x. In this paper, we assume for the sake of simplicity that patches are (2f + 1) × (2f + 1)
squares (but more general shapes could be considered, as proposed in [17]), and we will denote by
Ωf = [−f, f ] × [−f, f ] the domain of definition of the patches. A patch Px in an image u is then
an image defined on Ωf by: ∀δ ∈ Ωf , Px(δ) = u(x + δ). Moreover we define the support of Px

as the set x + Ωf . As a consequence, a pixel x belongs to the support of all the patches Px+δ,

δ ∈ Ωf . In order to restore the value u0(x), we can thus rely on all the values P̂x+δ(−δ), δ ∈ Ωf .

A common choice for the estimator of u0(x) is to take only into account the value P̂x(0) of the
restored patch centered at x, as proposed in the original NL-means [5]. Another natural choice,
studied for instance in [37] is to take the mean∑

δ∈Ωf
P̂x+δ(−δ)

(2f + 1)2
. (2.2)

The interest of this simple aggregation is that it divides the variance of the estimator of u0(x) by

(2f + 1)2 if the different estimations P̂x+δ(−δ), δ ∈ Ωf , are i.i.d. This assumption is not true
in practice since the patches are overlapping, but the quality of the results is nevertheless visibly
improved by this procedure, at least in the case of Gaussian noise. In this paper, we propose to
merge this aggregation step with the estimation of the denoised patches. More precisely, the final

estimator û(x) of u0(x), described in Section 5, will rely on all the values u(y) for which there exists
δ ∈ Ωf such that Px+δ and Py+δ are similar.

3. Robust distance between patches. This section focuses on the search of similar patches
in an image affected by a mixture of impulse and Gaussian noise. As underlined before, the success
of any patch-based denoising procedure depends greatly on the ability to find the replicas of a patch
in the noisy image u. More precisely, for a given patch P in u, we aim at discovering all patches Q
such that the unknown original patches P0 and Q0 in u0 are equal or at least similar. In presence
of impulse noise, the Euclidean (`2) distance between P and Q contains outliers and cannot be
trusted. In the following, we compare several alternative measures designed to be robust to this
kind of noise.

3.1. Generalized likelihood ratio. A first possibility, suggested by the recent work [16], is
to make use of the generalized maximum likelihood ratio

GLR(P,Q) =
supT P[P,Q|P0 = Q0 = T]

supT P[P|P0 = T] supT P[Q|Q0 = T]
. (3.1)

In the case of pure random-valued impulse noise, this ratio becomes

GLR(P,Q) =

(
1 +

(M + 1)(1− p)
p

)2(nsim−|P|)
, (3.2)
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where nsim is the number of pixels in Ωf that have exactly the same grey level value in P and Q,
and |P| = (2f + 1)2 is the size of the definition domain of P. Obviously, this measure is too rigid
to be used in practice. Indeed, two patches can be very similar and at the same time be such that
nsim = 0.
In the mixed Gaussian-impulse case, the ratio becomes (with fθ the Gaussian distribution with
mean θ and variance σ2):

GLR(P,Q) =

sup
T

∏
x∈Ωf

(
p

M + 1
+ (1− p)fT(x)(P(x))

)(
p

M + 1
+ (1− p)fT(x)(Q(x))

)
∏
x∈Ωf

(
p

M + 1
+ (1− p)fP(x)(P(x))

)(
p

M + 1
+ (1− p)fQ(x)(Q(x))

) . (3.3)

The denominator of this formula can be simplified into the constant ( p
M+1 + 1−p

σ
√

2π
)2|P|, independent

of P and Q. The numerator is more complex. It consists of a product of different terms num(x)
when x ∈ Ωf : num(x) equals ( p

M+1 + 1−p
σ
√

2π
e−(P(x)−Q(x))2/8σ2

)2 when (P(x)−Q(x))2/σ2 is small

(because its value is a sup that is achieved for T(x) = (P(x)+Q(x))/2) and num(x) approximately
equals ( p

M+1 + 1−p
σ
√

2π
)( p
M+1 + 1−p

σ
√

2π
e−(P(x)−Q(x))2/2σ2

) when (P(x)−Q(x))2/σ2 is large (it is achieved

for T(x) ' P(x) or T(x) ' Q(x)). As a consequence, the log of GLR(P,Q) is a sum over x of
a function of (P(x) −Q(x))2, the function depending on whether (P(x) −Q(x))2/2σ2 is small or
not. The main difficulty when using this generalized likelihood ratio (GLR) is that we do not know
σ in practice, but its main advantage is that it automatically adapts to large or small values of
(P(x) −Q(x))2. It is thus related to robust similarity measures, that we explain in the following
section.

3.2. Weighted Euclidean distances. A second possibility is to rely on a robust similarity
measure, inspired by order statistics [14]. It is known that, for non-noisy patches, the `2 distance is
a good distance to measure the similarity between the patches. But when impulse noise is present,
many large values of (P −Q)2

i , 1 ≤ i ≤ n, are observed that are due to the noise and the `2 distance
then contains many outliers. Our distance is built to be similar to the Euclidean distance but
robust to large values created by the noise. Let |P −Q|(1) ≤ |P −Q|(2) ≤ · · · ≤ |P −Q|(2f+1)2 be
the values obtained by ordering the (2f + 1)2 values of the differences |P(y)−Q(y)|. We propose
to rely on a distance of the form

D(P,Q) =

(2f+1)2∑
k=1

wk|P −Q|2(k), (3.4)

where w1, . . . , wn are positive weights. There is a wide choice for the weights wk. For instance, if
they are all equal, we find again the `2 distance. If we set wk = 1 for k below a number T and
wk equal to 0 above, we obtain a trimmed sum of order statistics : the distance relies only on the
smallest distances between gray levels in the support of the patch. We denote this distance Dtrimmed

and we choose for T the value T = sup{k;B((2f + 1)2, k, (1 − p)2) > 0.99}, where B denotes the
tail of the binomial distribution 2. This choice comes from the following property: if P and Q
are two independent random patches such that P0 = Q0, the probability that the kth difference
|P − Q|(k) stems from two untouched pixels is B((2f + 1)2, k, (1 − p)2) (with the approximation
that the smallest distances correspond to untouched pixels).

2B(n, k, q) =
∑n
i=k

(
n
i

)
qi(1− q)n−i.
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In cases of low signal-to-noise ratio, this trimmed distance becomes difficult to use, since the number
T of pixels taken into account rapidly tends toward zero. In order to avoid this problem, we propose
to keep all the weight wk positive and equal to the probability that the value |P −Q|(k) stems from
untouched pixels. We denote this distance Dweighted:

Dweighted(P,Q) =

(2f+1)2∑
k=1

B((2f + 1)2, k, (1− p)2)|P −Q|2(k). (3.5)

Notice that when there is no impulse noise (p = 0), then the two distances Dweighted and
Dtrimmed are both the usual `2 distance between patches.

The choice of the distance Dweighted is reinforced by modeling the problem the following simple
way: assume the two patches P0 and Q0 are both constant patches, and denote by a and b their
respective constant gray level value. Then, when the two patches are damaged independently by
some impulse noise of intensity p, the random variables (P−Q)2

i , 1 ≤ i ≤ n, are i.i.d. following a
distribution of the form (1−p)2δ(b−a)2+(1−(1−p)2)dF , where δ(b−a)2 denotes the Dirac distribution
at (b − a)2 and dF is a probability distribution on R+ (that we don’t need to compute). In this
framework, we have the following theorem that shows that choosing wk = B((2f+1)2, k, (1−p)2) for
the weighted distance in (3.4) is, in some sense, optimal to discriminate the two constant patches.

Theorem 3.1. Let dF be a probability distribution on R+ and let X
(α)
1 , . . . , X

(α)
n be n i.i.d.

random variables, distributed according to the mixture distribution qδα+(1−q)dF , where q ∈ [0, 1],
and δα denotes the Dirac distribution at α ∈ [0,+∞). Let w = (w1, . . . , wn) be a vector of weights
in [0,+∞), and let

Dw(α) = E

(
n∑
k=1

wkX
(α)
(k)

)
,

where X
(α)
(k) denotes the k-th order statistic of X

(α)
1 , . . . , X

(α)
n . Assume that the probability distri-

bution dF satisfies pα := P(Y ≤ α) → 0 when α → 0 where Y is a random variable distributed
following the law dF . Then when α is small, we have

Dw(α) = Dw(0) + α
n∑
k=1

wkB(n, k, q) + o(α),

and notice that this first-order Taylor expansion is independent of the probability distribution dF .

Now, a direct consequence of this theorem is that among all the distances such that
∑
w2
k is

fixed, the one that is the most able to discriminate, on the average, two constant equal patches
(this corresponds to α = 0) from two constant but non-equal patches (α > 0), is the one such that∑n

k=1wkB(n, k, q) is as large as possible. This is achieved when wk is proportional to B(n, k, q)
where q = (1− p)2. We recognize the weighted distance defined in (3.5).

Proof. Let us first introduce some notations. We will denote m+
k,l(α) and m−k,l(α) the following

expected values:

m+
k,l(α) = E(Y(k) |Y1 ≥ α, . . . , Yl ≥ α) and m−k,l(α) = E(Y(k) |Y1 ≤ α, . . . , Yl ≤ α),

where Y1, . . . , Yl are i.i.d. random variables following the law dF . Let also Nα be the random

variables that counts the number of X
(α)
i , 1 ≤ i ≤ n, that are equal to α. Then Nα follows the
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binomial distribution of parameters n and q, and we will denote, for 0 ≤ k ≤ n, bk = P(Nα = k) =
b(n, k, q) =

(
n
k

)
qk(1− q)n−k. Now for α ≥ 0 we can write

Dw(α) =
n∑

k0=0

n∑
k=1

wkE
(
X

(α)
(k) |Nα = k0

)
P(Nα = k0)

=

n∑
k0=0

bk0

n−k0∑
l=0

b(n− k0, l, pα)

(
l∑

k=1

wkm
−
k,l(α) + (wl+1 + . . .+ wl+k0)α

+

n∑
k=l+k0+1

wkm
+
k−l−k0,n−l−k0(α)

 .

But notice that we also have, for any α ≥ 0,

Dw(0) =

n∑
k0=0

bk0

n−k0∑
l=0

b(n− k0, l, pα)

 l∑
k=1

wk+k0m
−
k,l(α) +

n∑
k=l+k0+1

wkm
+
k−l−k0,n−l−k0(α)

 .

Consequently, we get

Dw(α) = Dw(0) +
n∑

k0=0

bk0

n−k0∑
l=0

b(n−k0, l, pα)

(
l∑

k=1

(wk − wk+k0)m−k,l(α) + (wl+1 + . . .+ wl+k0)α

)
.

Finally, since 0 ≤ m−k,l(α) ≤ α, and pα goes to 0 when α goes to 0, we have that the first-order
Taylor expansion is given by the term l = 0 in the sum above. More precisely, we get

Dw(α) = Dw(0) +
n∑

k0=0

bk0(w1 + . . .+ wk0)α+ o(α)

= Dw(0) + α
n∑
k=1

wkB(n, k, q) + o(α),

which is the announced result.

3.3. Comparison of the different distances. When an image is not affected by noise, the `2

distance is a good way to measure the similarity between patches. A nice way to compare different
robust distances in presence of noise is to measure their ability to find similar patches at the same
locations as those found by the `2 distance in the non-noisy image. A robust distance should be
able to preserve as much as possible the ordering of the patches provided by the `2 distance in the
non-noisy image. The comparison procedure works as follows. Given an original patch P0 in an
original image u0, and a neighborhood V (that is a square window of half-size t centered at the
center of the patch), we will denote by P0

x the patch of u0 centered at x ∈ V . Let the previous
patches in the noisy image u be respectively denoted by P and Px. For a distance D between
patches, and for n ≥ 1 integer, let x1, . . . , xn denote the centers of the patches that achieve the n
smallest values of the distance D to the noisy patch P:

0 = D(P,Px1) ≤ D(P,Px2) ≤ . . . D(P,Pxn).
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Fig. 3.1. Comparison of different distances on noisy patches. From top to bottom: an edge patch and a T-junction
patch. From left to right: the original patch (marked by a white window of size 7×7 pixels and its neighborhood V ), a
noisy version of the image (p = 0.2 and σ = 10), and the mean number of selected patches for the different distances
when σ = 10, p = 0.2 (third column) and p = 0.5 (fourth column). The `2 distance corresponds to blue curves, the
trimmed distance Dtrimmed to green curves, the weighted distance Dweighted to red curves and the “impulse-controlled”
(IC) distance used by [32] to indigo curves. See the text for some comments on these graphics.

Now, we count how many of these patches would have been also chosen among the n-nearest patches
for the `2 distance in the original image. More precisely, if we denote by x0

1, . . . , x
0
n the centers of

the patches that achieve the n smallest `2 distances to the patch P0 in u0, we then compute

ND(n) = #{1 ≤ i ≤ n such that xi ∈ {x0
1, . . . , x

0
n}}.

We make n vary from 1 to 40 and we plot the number ND(n) of “well-selected” patches as a function
of n. We ran this experiment for four different distances between patches: the `2 distance (blue
curves), the trimmed distance Dtrimmed (green curves), the weighted distance Dweighted defined in
Equation (3.5) (red curves) and the “impulse-controlled” (IC) distance used by [32] (indigo curves).
This last distance is also a weighted `2 distance but where the weights are now pixel-dependent and
related to the noise detector ROAD [25] (see Section 5.1 for a more detailed description of ROAD).
The results are shown on Figures 3.1 and 3.2, for different patches: an edge patch (its boundary
is marked by the white window in the top left image), a T-junction patch, and three different
texture patches; and for different noise parameters: σ = 10 and p = 0.2; or σ = 10 and p = 0.5.
The obtained curves are averaged from 200 noise samples for each set of parameters. The black
diagonal (that recalls the value of n) is the value that ND(n) should try to reach in order to be a
“good” distance between the noisy patches. As a consequence, the higher the curve n 7→ ND(n) is,
the better the distance is.

From these experiments we can make the following remarks:
- The `2 distance (blue curves) between the noisy patches always achieve the worst performances.
- The trimmed distance (green curves) becomes unable to correctly select the patches when the
impulse noise is too important (the parameter T used to trimmed the distance is too small - for
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Fig. 3.2. Comparison of different distances on noisy texture patches. From top to bottom: three different texture
patches (the scarf of Barbara, the tablecloth in Barbara, the fur of the baboon). From left to right: the original patch
(marked by a white window of size 7 × 7 pixels and its neighborhood V ), a noisy version of the image (p = 0.2 and
σ = 10), and the mean number of selected patches for the different distances when σ = 10, p = 0.2 (third column) and
p = 0.5 (fourth column). The `2 distance corresponds to blue curves, the trimmed distance Dtrimmed to green curves,
the weighted distance Dweighted to red curves and the “impulse-controlled” (IC) distance used by [32] to indigo curves.
See the text for some comments on these graphics.

instance its value is only T = 6 when p = 0.5 for patches of size 7× 7 pixels).
- The IC distance (indigo curves) and the weighted distance (red curves) have similar performances
on the edge patch and on the second and third texture patches.
- On the T-junction patch, the IC distance performs better, while on the first texture patch (a part
of the scarf of Barbara), the weighted distance seems to be a more relevant choice.
- On the third texture, all distances have bad performances (and even very bad ones when p = 0.5).
This can be explained by the fact that this texture looks like “noise”, and in that case, the nearest
patches selected by the distance are quite randomly chosen.

Our conclusion of these experiments is the following: since the only case where the IC distance
performs clearly better than the weighted distance is on the T-junction patch and since such a
patch is rather usually a “rare” patch in images, we decide in all the following to use the weighted
distance between noisy patches. Indeed, the IC distance of [32] is rather empirically defined, and
relies on several parameters whose influence is not easy to interpret in practice. Conversely, the

9



weighted distance has a simple definition and only relies on the value of p. We will see in Section
5.1 how the noise ratio p can be efficiently estimated.

4. Choice of the estimator P̂. In this section, we aim at defining a good estimator P̂ of the
underlying patch P0 behind different damaged versions P1,... Pn. For the sake of simplicity, we
assume that these patches are independent realizations of the same random patch, following the
noise model (2.1).

Let δ ∈ Ωf be a fixed point in the domain of definition of the patches (for instance δ = 0
corresponds to the center of the patches) and let us denote by X1, . . . , Xn the random variables
corresponding to the realizations P1(δ), . . . ,Pn(δ). The Xi are then real-valued random variables
that are i.i.d. and follow the mixture distribution

Xi ∼ (1− p)N (µ, σ2) + pU[0,M ], (4.1)

where U[0,M ] denotes the uniform law on the discrete set [0, . . . ,M ] and N (µ, σ2) denotes the
Gaussian distribution of mean µ and variance σ2. We wish to estimate µ (and possibly σ). Let
us start with the simpler problem of pure impulse noise : in this case, the Gaussian part of the
mixture degenerates into a Dirac distribution at µ.

4.1. Pure impulse noise. In this pure impulse noise case, the mean and variance of the Xi’s
can be written

E[Xi] = (1− p)µ+ p
M

2
and (4.2)

Var[Xi] = µp(1− p)(µ−M) + p
2M2 +M

6
− p2

(
M

2

)2

. (4.3)

In the following, we study the relevance of different estimators of µ.

4.1.1. Mean. The mean Xn = 1
n

∑n
i=1Xi is known to be the maximum likelihood estimator

(MLE) of µ for additive Gaussian noise. For pure impulse noise, the mean of Xn equals

E[Xn] = E[Xi] = µ+ p

(
M

2
− µ

)
, (4.4)

We can thus derive a first unbiased estimator of µ, as X̃n = 1
1−p

(
Xn − pM2

)
. The quadratic risk

(i.e the mean squared error or MSE) of this unbiased estimator equals

R[X̃n] = E[|X̃n − µ|2] = Var[X̃n] =

(
1

1− p

)2 Var[Xi]

n
. (4.5)

As a consequence, this risk makes the estimator useless for practical purposes. Indeed, for example,

when M = 255, p = 0.5 and µ = 100, then

√
Var[X̃n] ' 108√

n
, which means that we need more than

468 samples to make the square root of the risk go below 5 gray levels.

4.1.2. Median. The spatial median filter is one of the most famous filters used to remove
impulse noise. Let us study its properties as an estimator of µ. Assume, for the sake of simplicity,
that n is odd: the median of X1, . . . Xn is X(n+1

2 ), where X(k) is the kth order statistic (or kth

smallest value) of X1, . . . Xn. The distribution function of the median can thus be easily computed
as:

P[X(n+1
2 ) ≤ k] = B

(
n,
n+ 1

2
, F (k)

)
:=

n∑
j≥n+1

2

(
n

j

)
F (k)j(1− F (k))n−j , (4.6)
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where F (k) := P[Xi ≤ k] = p k+1
M+1 +(1−p)1k≥µ is the distribution function of the Xi’s. After some

computations, it follows that

E[X(n+1
2 )] = M −

M−1∑
k=0

B
(
n,
n+ 1

2
, F (k)

)
. (4.7)

Numerically, this bias is negligible as long as p ≤ 0.4. Nonetheless, it increases dangerously when p
becomes larger than 0.5. The variance of the estimator can be computed in the same way. At the
end, the quadratic risk of the estimator equals:

R[X(n+1
2 )] = (M − µ)2 −

M−1∑
k=0

(2(k − µ) + 1)B
(
n,
n+ 1

2
, F (k)

)
. (4.8)

Figure 4.1 shows the values of
√
R[X(n+1

2 )] for different values of p and n, with M = 255 and

µ = 20 or µ = 100. For p = 0.5 and µ = 100, n = 18 samples are necessary to make the square
root of the MSE decrease below 5, which is quite reasonable. However, for µ = 20, this number
of necessary samples becomes larger than 100, as can be observed on the left part of Figure 4.1.
This huge difference in behavior is due to the bias of the median estimator which attains very large
values as soon as p ≥ 0.5 and for gray levels µ far from the middle of [0,M ]. As a conclusion, the
median estimator is clearly more interesting than the one built upon the mean, but in practice, its
quadratic risk is not controlled, except for small values of p.

Fig. 4.1. Square root of the risk (or MSE)
√
R[X(n+1

2 )] as a function of p (between 0.1 and 0.8 on the vertical

axis) and n (between 1 and 100 on the horizontal axis), with M = 255, µ = 20 on the left and µ = 100 on the right.

4.1.3. Maximum likelihood. Now, let us study the statistical properties of the maximum
likelihood estimator (MLE) of µ. The MLE corresponds to the most represented value among the
samples: if we compute the empirical histogram h of {X1, . . . , Xn} on [0,M ], the MLE is the place
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where the histogram attains its maximum. Indeed,

X̂n = arg max
µ′

logP[X1, . . . , Xn|µ′] = arg max
µ′

n∑
i=1

logP[Xi|µ′]

= arg max
µ′

n∑
i=1

log

(
(1− p)δXi=µ′ +

p

M + 1

)
= arg max (h).

If the histogram has several maxima, one of them is chosen randomly, with equal probabilities.
Consequently, if we denote by X̂n the random variable corresponding to this MLE, the law of X̂n

is given by
X̂n ∼ (1− qn,p) δµ + qn,p U[0,M ], (4.9)

where qn,p ∈ [0, 1] is a probability that depends on p, n (and M). The probability for the estimator

to estimate correctly µ is then P[X̂n = µ] = 1− qn,p +
qn,p
M+1 . The mean and the variance of X̂n are

easily obtained by replacing p by qn,p in Equations (4.3) and (4.2). It follows that the quadratic

risk of X̂n as an estimator of µ can be written

R[X̂n] = E[|X̂n − µ|2] = (Bias[X̂n])2 + Var(X̂n) = qn,p

(
µ(µ−M) +

2M2 +M

6

)
. (4.10)

and is proportional to qn,p. In order to keep

√
R[X̂n] smaller than 5 gray levels for M = 255 and

any value of µ in [0,M ], the probability qn,p must be smaller than 10−3. Now, it can be shown that
the value of qn,p is quickly decreasing when n increases. Indeed, let K := #{i, Xi = µ} be the
random variable corresponding to the number of samples equal to µ. Among the n−K remaining
samples with values different from µ, let CK be the number of K-uples with equal values. Observe
that the event X̂n = µ is realized when CK = 0. Of course, CK = 0 whenever K ≥ n+1

2 . As a
consequence, if we assume for sake of simplicity that n is odd, we get

1− qn,p +
qn,p
M + 1

= P[X̂n = µ] ≥ P[K ≥ n+ 1

2
] + P[2 ≤ K ≤ n− 1

2
and CK = 0]

=
n∑

k=n+1
2

(
n

k

)
p̂n−k(1− p̂)k +

n−1
2∑

k=2

(
n

k

)
p̂n−k(1− p̂)k(1− αk),

where p̂ = P[X1 6= µ] = p − p
(M+1) and where αk := P[Ck ≥ 1] ≤ E[Ck] =

(
n−k
k

)
1

Mk−1 . It follows
that

1− qn,p +
qn,p
M + 1

= P[X̂n = µ] ≥ B(n,
n+ 1

2
, 1− p̂) +

n−1
2∑

k=2

(
n

k

)
p̂n−k(1− p̂)k

(
1−

(
n− k
k

)
1

Mk−1

)

= 1− p̂n − n(1− p̂)p̂n−1 −

n−1
2∑

k=2

(
n

k

)(
n− k
k

)
1

Mk−1
(1− p̂)kp̂n−k.

For reasonable values of p and n (p ≤ 0.8 and n ≤ 50), we checked empirically that the inequality
in the above equation is in fact almost an equality, and that the last sum can be approximated by
its first term (k = 2), which is broadly dominant. This allows us to estimate the parameter qn,p
of the distribution (4.9) very easily in function of p. The left part of Figure 4.2 shows the values
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Fig. 4.2. Left: parameter qn,p of the distribution (4.9) in function of p (vertical axis) and n (horizontal axis).
The white curve corresponds to the level line qn,p = 10−3. This line yields the number n of samples necessary to
keep the square root of the risk always below 5 gray levels (whatever the value of µ). Right: Square root of the risk√

E[|X̂n − µ|2] as a function of p (vertical axis) and n (horizontal axis), for µ = 100.

of qn,p as a function of p and n, when M = 255. The white line on the figure corresponds to the
level line qn,p = 10−3. This line yields the number n of samples necessary to keep the square root
of the risk always below 5 gray levels (whatever the value of µ), as a function of p. This number
of samples remains quite reasonable in comparison to previous estimators. Moreover, the risk is
controlled for all values of µ, unlike the median estimator. The risk of X̂n as a function of p and n
is illustrated on the right part of Figure 4.2, for µ = 100.

4.2. Mixture case. The previous study tends to prove that in the case of pure impulse noise,
the Maximum Likelihood Estimator is preferable to the median estimator for denoising.

In the full mixture case, we would like to estimate both the mean µ and the variance σ2 of
the Gaussian part. Observe that in practice, this full mixture case is a realistic model for the
estimation problem even in presence of pure impulse noise. Indeed, similar patches in an image
are never exactly equal and it is a sound hypothesis to assume that their inner variability can be
modeled with a standard deviation σ (that is pixel-dependent).

The expectation of the Xi’s is unchanged (see Equation (4.2)) and their variance becomes

Var[Xi] = µp(1− p)(µ−M) + p
2M2 +M

6
− p2

(
M

2

)2

+ (1− p)σ2. (4.11)

The only difference with the pure impulse case consists in the additional term +(1− p)σ2.

4.2.1. Mean and Median. The properties of the mean and median as estimators of µ are
quite similar to the pure impulse case. The variance of the unbiased estimator X̃n is still obtained
from Equation (4.5). The law of the median is easily computed by replacing the distribution function
F in Equation (4.6) by F (k) = p k+1

M+1 + (1 − p)Gµ,σ(k), where Gµ,σ is the distribution function

of the N (µ, σ2) distribution. Formulas (4.7) and (4.8) for the bias and risk of this estimator are
generalized in the same way. Again, the risk of this estimator is uncontrolled as soon as p increases.
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4.2.2. Maximum likelihood. In the mixture case, the Maximum Likelihood Estimator (MLE)

of (µ, σ), that we will denote by (X̂n, σ̂), is defined as

(X̂n, σ̂) = arg max
µ′,σ′

logP[X1, . . . , Xn|µ′, σ′]

= arg max
µ′,σ′

n∑
i=1

log

(
p

M + 1
+ (1− p)gµ′,σ′(Xi)

)
,

where gµ′,σ′ is the Gaussian probability density of mean µ′ and variance σ′2. This can be rewritten
by using the empirical distribution h of the values {X1, . . . , Xn} on [0,M ], which yields

(X̂n, σ̂) = arg max
µ′,σ′

h ∗ fσ′(µ′)

where fσ′ : m 7→ log

(
p

M+1 + 1−p
σ′
√

2π
e−

m2

σ′

)
. Observe that the MLE of pure impulse noise can be

recovered from this formula by taking σ = 0. In the same way, the MLE in the case of pure
Gaussian noise is obtained by taking p = 0 in the previous formula.

The study of the bias and variance of this maximum likelihood estimator is far more complex
than in the pure impulse case. In particular, there is no obvious close formula for the distribution
of X̂n. In order to evaluate the quality of this estimator, we replace this study by an empirical
estimation of the quadratic risk R[X̂n] = E[(X̂n − µ)2] as a function of p and n for different values
of σ and for µ = 100 (as observed in the pure impulse case, this MSE does not depend too much

on the value of µ). Figure 4.3 shows the empirical values of R[X̂n] for p ∈ {0.1, . . . , 0.8} and
n ∈ {5, . . . , 100}. The four subfigures correspond respectively to σ = 5, 10, 15 and 20. For each σ
and for each value of p, we draw a white cross at the minimum number n that should be chosen in
order to ensure that the square root of the risk or MSE is smaller than 5. This number obviously
increases with σ and p. It remains nevertheless reasonable for p ≤ 0.5 and σ ≤ 15.

Choosing n in practice. The idea behind the previous empirical computation is to evaluate
the appropriate number n of patches necessary to compute X̂n with a controlled risk. Assuming
that we have an accurate estimation of p and σ, this number of trusted patches can be computed
empirically and used to estimate µ in a reliable way.

Now, recall that X1, . . . , Xn correspond in practice to realizations P1(δ), . . . ,Pn(δ) for a set
of similar patches P1, . . . ,Pn. In natural images, even the most similar patches are seldom equal,
and present some differences. This situation has two consequences. First, the value of σ in the
model (4.1) should account both for the Gaussian part of the noise and for the inner variability
between patches. Even in the case of pure impulse noise, choosing σ > 0 in order to estimate
the right number of trusted patches n might improve the results. Second, the number of trusted
patches n should always result from a compromise between the control of the theoretical risk and the
redundancy of the image to be denoised. Indeed, the inner variability between patches considered
as similar might increase with n, depending on the image regularity.

In practice, we observed that choosing σ = 10 to estimate n in the case of images suffering from
pure impulse noise usually yields a good compromise between image redundancy, patch variability
and risk control. Once p is estimated, the values of n used in all our experiments on pure impulse
noise (see Section 6) correspond to the white crosses of Figure 4.3 (b). In the case of mixture noise,
the situation is more complex, since the values of σ are unknown in practice. In order to reduce
the number of parameters, we resolved to choose the values of n obtained for σ = 15 in all our
experiments involving a mixed noise (white crosses of Figure 4.3 (c)). For the sake of completeness,
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(a) σ = 5 (b) σ = 10

(c) σ = 15 (d) σ = 20

Fig. 4.3. Square root of the risk

√
R[X̂n] for the MLE in the mixture case, as a function of p (vertical axis) and

n (horizontal axis), for µ = 100. White crosses correspond to the minimum values of n ensuring that the square root
of the risk is smaller than 5.

these values are given in Tables 4.1 and 4.2. Let us notice at this point that these tabulated values
of n are used once for all in our experiments without actually fixing σ in the algorithm: the standard
deviation for each set of patches is estimated by the maximum likelihood step.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n 8 10 14 18 22 34 47 91
Table 4.1

Number n of patches used in the maximum-likelihood estimation for each value of p in the case of pure impulse
noise.

5. Denoising scheme. We are now in a position to fully describe PARIGI, a denoising scheme
built upon the maximum likelihood estimator presented in Section 4.2.2 and the weighted distance
between patches introduced in Section 3. This denoising scheme requires to estimate the noise ratio
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p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n 13 17 20 27 37 56 86 101
Table 4.2

Number n of patches used in the maximum-likelihood estimation for each value of p in the case of a mixture noise.

p beforehand. We describe in Section 5.1 different approaches devoted to estimate p globally on the
damaged image. Section 5.2 then details the successive steps of our patch-based denoising scheme.

5.1. Estimation of p. Different methods are possible to estimate p globally on the damaged
image. In this paper, we propose to rely on impulse noise detectors.

Many impulse noise detectors are proposed in the literature, such as the detectors ROAD [25],
ACWMF [11], ROLD [21] or the pixel-wise MAD [12], to cite only a few. The goal of these schemes
is to yield a map of noisy (impulse affected) pixels in an image damaged by impulse noise, or by
a mixture of impulse and Gaussian noise. An estimation of p can naturally be derived from this
estimation by computing the ratio between the number of noisy pixels and the image size. For the
sake of simplicity, we restrict ourselves in this paper to the detectors ROAD and ACWMF, which
are quite complementary.

The detector ROAD (for “Rank Ordered Absolute Differences”), proposed in [25], can be de-
scribed as follows: for each pixel x, the absolute differences between u(x) and u(y) are computed
for all y 6= x in a centered 3×3 patch around x. These differences are ordered. The value ROAD(x)
is obtained by computing the sum of the 4 smallest differences. This value measures how close u(x)
is from its neighbors. When ROAD(x) is above a given threshold τ , set as 70 in our experiments,
x is considered as noisy.

The detector ACWMF [11] works as follows. For a given pixel x, a weighted median of order k
is defined as

medk(x) = median

{u(y), y ∈ Vx} ∪ {u(x), . . . , u(x)︸ ︷︷ ︸
2k times

}

 , (5.1)

where Vx is a square window centered at x. This weighted median boils down to the usual median
filter when k = 0 and to the identity when k is large enough. Now, let dk = |medk(x)− u(x)| and
let tk be a decreasing sequence of well chosen thresholds. The pixel x is presumed to be noisy if
there exists one k such that dk is above the threshold tk. In practice, the authors of [11] recommend
to use 3× 3 patches and to compute the four thresholds tk, k = 1, . . . , 4 as

tk = s.median
(
{|u(y)−med0(x)|, y ∈ Vx}

)
+ δk, (5.2)

with [δ0, δ1, δ2, δ3] = [40, 25, 10, 5] and 0 ≤ s ≤ 0.6.

Figures 5.1 (a,b) show the quality of both estimators for different values of p on the 512× 512
image Lena in the case of pure impulse noise (on the left) and in the case of a mixture of impulse
noise and Gaussian noise with σ = 10 (on the right). For each value of p between 0.1 and 0.9
with a step of 0.1, we show the boxplot of the estimation of p for 100 different noise samples. The
ROAD-based estimation of p, shown on Figure 5.1 (a), is quite accurate in both cases and fast to
compute. As already underlined in [11], the detector ACWMF is efficient when the noise ratio is
not too high, typically p ≤ 0.25. Above this value, the number of pixels considered as touched by
noise is highly underestimated and the estimation of p is not usable in practice. As a consequence,
we decided in all our experiments to use the estimation of p based on the detector ROAD.
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(a) ROAD estimation of p when σ = 0 (on the left) and σ = 10 (on the right).

(b) ACWMF estimation of p when σ = 0 (on the left) and σ = 10 (on the right)

Fig. 5.1. Left: statistical results of the estimation of the impulse noise parameter p on the Lena image when
there is no Gaussian noise. The results p are shown as boxplot graphics, where the horizontal axis represents the
tested values of p: from 0.1 to 0.9. Boxes are the statistics obtained from 100 samples for each value of p. On the
right, same experiment made on the Lena image in the case of a mixed noise: impulse and Gaussian with σ = 10.

5.2. Implementation details. The estimation of p is the first step of PARIGI. The second
step consists in estimating n, the number of nearest neighbors taken into account in the space of
patches to compute the estimator P̂ . Assuming that the estimation of p is accurate, this number
of trusted patches is computed empirically as explained in Section 4.2.2.

The algorithm continues as follows. For each point x in Ω, we seek the n nearest neighbors Py

of Px for the distance Dweighted introduced in Section 3. We restrict this investigation to the points
y spanning a (2t+ 1)× (2t+ 1) square Vx centered at x (see Figure 5.2)

Vx = {x+ δ; δ ∈ [−t, t]× [−t, t]}. (5.3)

This permits to define Vnx , the subset of Vx corresponding to the n nearest neighbors of Px. The

MLE (û(x), σ̂(x)) is then computed at each x from the n-tuple (u(y), y ∈ Vnx ). The image û
constitutes a first denoised version of u. In practice, this restored image is sometimes a little bit
too smooth. At the same time, some impulse pixels can remain. In order to recover the grain of the
original image and to eliminate these last impulses, we take into account the estimated standard
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x

xP

Vx

Fig. 5.2. Neighborhood Vx and possible corresponding patches.

deviation σ̂(x) at each point x for defining a map of noisy pixels:

M = {x ∈ Ω; |û(x)− u(x)| > σ̂(x)}.

We then compute the mixture of û and u: u2(x) = û(x).1x∈M + u(x).(1− 1x∈M), and eventually
apply the previous denoising steps to u2 in order to obtain û2. These steps can be repeated a
few times to improve the final result. The interest of these iterations is shown on the last line of
Figure 6.7. In the rest of the experiments, we repeat this step twice and the output of the algorithm
is given by u3. In all our experiments, the half-size of the research neighborhood Vx is set to t = 7.
The half-size of the patches is set to f = 3 for pure impulse noise and to f = 8 in the case of a
mixture of Gaussian and impulse noise.

A refined version of the algorithm can be obtained by following the approach introduced in [37].
Notice that a point x belongs to all patches Px+δ, δ ∈ Ωf . The idea of the refinement is to take
into account in the estimation all the information from these patches. In this version, the MLE is
computed at each x from the set of values{

u(y − δ); δ ∈ Ωf and y ∈ Vnx+δ

}
.

This refined version is the one used in the experimental section. The whole refined algorithm is
described in Algorithm 1.

6. Experiments and discussion. This section is devoted to the experimental analysis of the
denoising scheme introduced in the previous section. We confront PARIGI with the recent state
of the art approaches [25, 21] on pure impulse noise and with [25, 41] on the mixture of impulse
and Gaussian noise. Comparison results are provided both under the form of PSNR tables and
of visual experiments. In the case of pure impulse noise, we also show MAE (Maximum Absolute
Error) and SSIM (Structural SIMilarity index) tables. The last part of the section is devoted to a
short discussion on the link between image regularity models and denoising approaches.

6.1. Pure impulse noise. In this paragraph, we present some experiments on pure impulse
noise. Tables 6.1, 6.2 and 6.3 give the PSNR, MAE and SSIM obtained with the three methods
([25, 21] and our approach) on the 512 × 512 classical images Lena, Bridge, Baboon, Barbara,
Cameraman, Boat, Peppers and Goldhill. Let us mention at this point that most of these test
images are available in more than one version on the internet, the main differences concerning their
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Algorithm 1: Denoising algorithm PARIGI

input : Image u, half patch size f , half size of the research zone t, number of iterations Nit

(Nit = 2 by default)
output: Denoised image uNit+1

Initialize u1 = u;
for i from 1 to Nit do

Estimate p on ui; // See Section 5.1

Compute n = NumberNearestNeighbors(p); // see Tables 4.1 and 4.2 in

Section 4.2.2.

for each pixel x do
Lx = ∅;

end
for each pixel x do

Find Vnx , the subset of Vx corresponding to the n nearest neighbors of Px for
Dweighted in ui;
for each δ ∈ Ωf do
Lx+δ = Lx+δ ∪ {ui(y + δ), y ∈ Vnx };

end

end
for each pixel x do

Obtain (û(x), σ̂(x)) as the MLE from the set Lx; // see Section 4.2.2.

end
Compute

ui+1 = û.1M + u.(1− 1M)

where
M = {x ∈ Ω; |û(x)− u(x)| > σ̂(x)}.

end
Return uNit+1

size, contrast, compression level and the way they are cropped 3. In consequence, it is sometimes
difficult to compare performance results provided by different papers, which may have used different
image versions: on two different 512× 512 versions of Lena, we observed PSNR differences of more
than 3dB for the same algorithm. In this paper, we always run the different algorithms on the
same images and noise samples (when the code is available), instead of using the performance
results provided in the literature. We also provide the different images used in the paper on our
website http://perso.telecom-paristech.fr/~delon/Demos/Impulse/.

Let us recall that the PSNR is a common way to measure the quality of a restored image v in
comparison to the undamaged one u0. It is given by the formula

PSNR(u0, v) = 10 log10

2552|Ω|∑
x∈Ω(u0(x)− v(x))2

,

where |Ω| is the size of the support of u0. An alternative to this quality measure is given by the

3See for instance http://www.ece.rice.edu/~wakin/images/ for a discussion on the standard gray level version
of Lena. This standard version is the one used in all our experiments.
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Structural Similarity, an index (SSIM) measuring the similarity between images [40], designed to
be more consistent with human perception than the usual measures PSNR or MSE. The code used
here to compute SSIM is the one kindly provided by the authors of [40] on http://www.cns.nyu.

edu/~lcv/ssim/, with the default parameters. For the sake of completeness, we also provide the
Mean Absolute Error for all results:

MAE(u0, v) =

∑
x∈Ω |u0(x)− v(x)|

|Ω|
,

The results of Tables 6.1, 6.2 and 6.3 are all obtained on the same noise samples, using the codes
kindly provided by the authors of the papers, both for the trilateral filter 4 and for ROLD-EPR.
The results for ROAD-trilateral [25] are obtained with the parameters set as recommended by the
authors, i.e. σs = 1, σI = 40, σJ = 30 and 4 iterations of the algorithm. We observed that the
parameter σR of the trilateral filter, which controls its radiometric influence, has a great impact on
the performances of the code and that its optimal value strongly depends on the noise level. For
this reason, we keep for each experiment the parameter σR which yields the best PSNR (the same
value of σR is used for the MAE and SSIM tables). For ROLD-EPR, we iterate the algorithm 7
times and keep all parameters as proposed in [21]. In the PSNR table, we also put into brackets
the best PSNR of the algorithm along the iterations.

Table 6.1 shows quite similar performances between PARIGI and ROLD-EPR on most images
(the SSIM results are particularly close), with a slight advantage of the patch-based approach for
small noise ratios, and the opposite for large noise ratios. This proves that a patch-based approach
is well founded for random-valued impulse noise removal. Much larger differences in PSNR, MAE
and SSIM can be observed on the image Barbara. As we will see in the following, these remarkable
differences in performance can be mostly explained by the way the three denoising approaches are
handling regular textures in images. Let us insist on the fact that the parameters of our approach
(patch size, research neighborhood size, number of iterations, ROAD threshold, number of trusted
patches in function of p) are fixed for all these experiments, as explained in Section 5.2. Better
results can be obtained by optimizing these values for each image.

In order to evaluate the precision of the PSNR results, for each value of p and each method,
we compute the PSNR for 10 different noise realizations. In practice, the standard deviation of the
PSNR for all methods is always close to 0.1: for instance, for the scheme PARIGI on the image Lena
and p = 0.4, the empirical standard deviation is 0.096. This means that if we observe, between two
methods, PSNR differences smaller than 0.2, these differences can be considered as meaningless in
practice.

Figures 6.1, 6.3, 6.2 and 6.4 provide a visual comparison of the different approaches on the
different images when p = 20% and p = 40% (images should be seen at full resolution on the
electronic version of the paper). When the impulse noise ratio is low, all methods are efficient and
results are visually quite similar in smooth regions. Now, fine geometrical structures (for instance
the ropes on the Boat image) are clearly better handled by our patch-based scheme. Conversely,
ROLD-EPR seems to preserve better the image grain than other methods.

When the noise ratio increases, one can observe that the result of PARIGI is clearly smoother
than the ones of ROLD-EPR [21] and ROAD-Trilateral [25], in which some clues of impulse noise
remain. On Barbara, while all schemes yield reasonable results on constant regions, our approach
is the only one to handle properly the regular stripes of the clothes, while the trilateral filter and
ROLD-EPR replace them by mottled textures.

4The authors of [25] provide their code on their webpage www.ssc.wisc.edu/~thuegeri.
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ROAD-Trilateral [25] ROLD-EPR [21] PARIGI

p = 20% 33.83 33.52 (33.52) 35.45
Lena p = 40% 30.38 30.84 (30.92) 31.75

p = 60% 24.80 28.10 (28.10) 27.38

p = 20% 27.23 26.74 (27.40) 27.68
Bridge p = 40% 24.32 24.37 (24.87) 24.80

p = 60% 21.15 22.60 (22.71) 22.03

p = 20% 23.85 23.32 (24.56) 24.17
Baboon p = 40% 21.96 21.62 (22.04) 22.02

p = 60% 19.87 20.59 (20.59) 20.13

p = 20% 24.98 24.80 (26.38) 33.91
Barbara p = 40% 22.97 23.45 (23.61)) 29.92

p = 60% 20.87 22.49 (22.55) 24.93

p = 20% 31.82 31.79 (32.47) 35.1
Cameraman p = 40% 28.88 27.95 (29.38) 29.73

p = 60% 23.29 25.91 (26.36) 24.36

p = 20% 30.04 29.31 (29.68) 31.21
Boat p = 40% 26.94 26.41 (26.97) 27.56

p = 60% 23.14 24.68 (24.83) 23.68

p = 20% 33.59 33.62 (33.63) 34.75
Peppers p = 40% 30.70 30.97 (31.23) 31.63

p = 60% 24.72 28.57 (28.61) 27.58

p = 20% 32.07 32.13 (32.25) 32.74
Goldhill p = 40% 28.73 29.44 (29.63) 30.06

p = 60% 24.30 27.25 (27.26) 26.65
Table 6.1

PSNR results of different restoration filters for the 512×512 images Lena, Bridge, Baboon, Barbara, Cameraman,
Boat, Peppers and Goldhill for pure impulse noise. For the results of the trilateral filter, the parameter σR is optimized
between 10 and 50 for each experiment. As for ROLD-EPR, we show into brackets the best possible PSNR obtained
along the iterations of the algorithm. Other parameters are set as explained in the text.

6.2. Gaussian and impulse noise mixture. We now investigate the performance of PARIGI
for the denoising of images suffering from a mixture of Gaussian and impulse noise, by confronting
it with the recent approaches [25, 41]. To the best of our knowledge, the paper of Xiao et al. [41]
on Gaussian-impulse noise can be considered as the state of the art on the subject, and [25] is
one of the first paper proposing to handle such a noise mixture. To be completely fair, we do
not include the results of ROLD-EPR in the comparison, mainly because it was not developed to
handle such a noise mixture and does not work well as soon as the Gaussian standard deviation
increases. Nevertheless, we think that a similar variational approach could be adapted to this form
of degradation.

Table 6.4 shows the PSNR results of the three methods for different combinations of Gaussian
and impulse noise. The results for the l1 − l0 minimization approach of Xiao et al. are taken from
Tables 8 and 9 in [41], and thus come from different noise samples. The results of the trilateral filter
are computed on the same noise samples as our approach. Again, for the trilateral filter, we choose
for each mixture experiment the parameter σR between 10 and 50 which yields the best PSNR,
the optimal σR begin strongly dependent on the noise ratio. Again, the PSNR standard deviation
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ROAD-Trilateral [25] ROLD-EPR [21] PARIGI

p = 20% 2.60 1.45 1.71
Lena p = 40% 4.10 2.80 2.75

p = 60% 7.33 4.87 4.62

p = 20% 5.90 4.36 4.95
Bridge p = 40% 9.31 7.95 7.81

p = 60% 13.70 11.20 11.88

p = 20% 8.83 7.43 7.48
Baboon p = 40% 11.81 11.70 11.39

p = 60% 16.75 14.76 15.49

p = 20% 6.37 5.36 1.97
Barbara p = 40% 9.21 7.98 3.52

p = 60% 12.87 10.16 6.88

p = 20% 2.13 1.41 1.26
Cameraman p = 40% 3.52 2.91 2.51

p = 60% 7.41 4.92 4.97

p = 20% 3.93 2.61 2.82
Boat p = 40% 5.92 5.02 4.59

p = 60% 9.51 7.38 7.74

p = 20% 2.88 1.50 1.96
Peppers p = 40% 4.02 2.85 2.92

p = 60% 7.24 4.63 4.53

p = 20% 3.51 1.92 2.67
Goldhill p = 40% 5.32 3.82 4.03

p = 60% 8.76 6.02 6.32
Table 6.2

MAE results of different restoration filters for the 512×512 images Lena, Bridge, Baboon, Barbara, Cameraman,
Boat, Peppers and Goldhill for pure impulse noise. For the results of the trilateral filter, the parameter σR is optimized
between 10 and 50 for each experiment. Other parameters are set as explained in the text.

for one experiment is generally around 0.1, which means that PSNR differences of this order of
magnitude should not be considered as meaningful. The performances of the different schemes are
quite similar, with the notable exception of Barbara. As is the case for the pure impulse noise
experiments, the performance differences on this image can be explained by the presence of several
regular textures, better preserved by our patch-based approach. These results are also illustrated
on Figures 6.5 and6.6.

6.3. Discussion. It is remarkable that the patch-based method presented in this paper pro-
vides such good performances on Barbara, when compared to state of the art approaches. Such
a difference cannot be observed on other images. The visual experiments suggest that this differ-
ence is mostly due to the way the different methods are handling the regular stripes on Barbara’s
clothes. This is confirmed by the experiments shown on Figure 6.7. In this example, we compare
several denoising procedures on a synthetic 256 × 256 image composed of perfect vertical stripes
and suffering from pure impulse noise, with p = 50%. Thanks to the huge patch redundancy of
this particular image, PARIGI is able to recover the vertical stripes almost perfectly after a few
iterations, providing a result very close the original image (because of the image regularity, the
result is even better by choosing larger patches). The variational approach of [21] and the trilateral
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ROAD-Trilateral [25] ROLD-EPR [21] PARIGI

p = 20% 0.93 0.94 0.94
Lena p = 40% 0.87 0.89 0.91

p = 60% 0.70 0.80 0.83

p = 20% 0.85 0.86 0.88
Bridge p = 40% 0.71 0.74 0.76

p = 60% 0.55 0.61 0.55

p = 20% 0.77 0.78 0.78
Baboon p = 40% 0.65 0.62 0.63

p = 60% 0.47 0.50 0.46

p = 20% 0.84 0.84 0.96
Barbara p = 40% 0.72 0.75 0.92

p = 60% 0.57 0.66 0.82

p = 20% 0.96 0.95 0.97
Cameraman p = 40% 0.91 0.92 0.93

p = 60% 0.70 0.84 0.86

p = 20% 0.88 0.90 0.90
Boat p = 40% 0.79 0.82 0.83

p = 60% 0.63 0.72 0.70

p = 20% 0.90 0.93 0.92
Peppers p = 40% 0.85 0.88 0.88

p = 60% 0.67 0.80 0.82

p = 20% 0.89 0.92 0.90
Goldhill p = 40% 0.79 0.84 0.84

p = 60% 0.63 0.74 0.73
Table 6.3

SSIM results of different restoration filters for the 512×512 images Lena, Bridge, Baboon, Barbara, Cameraman,
Boat, Peppers and Goldhill for pure impulse noise.

filter [25] do not fully take advantage of this redundancy, and this explains their quite poor results
on this kind of image. On the contrary, we can observe on Figure 6.1 that the edge preserving
regularization of [21] seems to preserve the fur of the mandrill image slightly better than our patch-
based approach. An interesting direction of research, which is beyond the scope of this paper,
would consist in identifying the image classes (or, at least, the texture classes) optimally restored
by each kind of denoising approach.

7. Conclusion. In this paper, it is shown that a patch-based approach can be an efficient tool
to remove mixtures of Gaussian and impulse noises. This result was known (and has been widely
studied) in the particular case of Gaussian noise, but its extension to impulse degradations necessi-
tates a careful choice of both the similarity measure between patches and the statistical estimator of
the original patches. It is shown on several experiments that this patch-based approach permits to
attain state of the art denoising performances on classical images. An important performance gain
is demonstrated on geometrically regular textures. This work opens several perspectives. First, as
explained in the previous section, we intend to explore the connections between image or texture
regularity models and the denoising performances of different kinds approaches (local filters, varia-
tional methods, patch-based approaches). In particular, it would be of great interest to determine
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ROAD-Trilateral [25] Xiao [41] PARIGI

p = 10% σ = 5 34.49 34.98 34.72
p = 30% σ = 5 31.12 32.04 32.57

Lena p = 10% σ = 15 30.20 30.85 30.31
p = 30% σ = 15 28.48 29.11 29.22

p = 10% σ = 5 28.05 – 26.96
p = 30% σ = 5 25.57 – 25.45

Bridge p = 10% σ = 15 25.59 – 25.34
p = 30% σ = 15 24.14 – 23.38

p = 10% σ = 5 24.62 – 24.81
p = 30% σ = 5 22.74 – 23.05

Baboon p = 10% σ = 15 23.12 – 23.63
p = 30% σ = 15 21.84 – 21.81

p = 10% σ = 5 25.62 30.48 31.55
p = 30% σ = 5 23.75 25.92 29.28

Barbara p = 10% σ = 15 23.91 27.31 28.8
p = 30% σ = 15 22.85 24.55 27.33

p = 10% σ = 5 32.25 – 34.98
p = 30% σ = 5 30.18 – 31.40

Cameraman p = 10% σ = 15 29.60 – 30.33
p = 30% σ = 15 28.22 – 28.59

p = 10% σ = 5 30.51 – 31.41
p = 30% σ = 5 28.16 – 28.81

Boat p = 10% σ = 15 27.48 – 28.21
p = 30% σ = 15 26.16 – 26.57

p = 10% σ = 5 34.57 – 33.90
p = 30% σ = 5 31.65 – 32.38

Peppers p = 10% σ = 15 30.50 – 30.28
p = 30% σ = 15 28.96 – 29.39

p = 10% σ = 5 32.52 – 32.60
p = 30% σ = 5 29.65 – 30.64

Goldhill p = 10% σ = 15 28.70 – 29.08
p = 30% σ = 15 27.45 – 27.99

Table 6.4
PSNR results of different restoration filters for the 512×512 images Lena, Bridge, Baboon, Barbara, Cameraman,

Boat, Peppers and Goldhill, and different mixtures of Gaussian and impulse noise. For the trilateral filter, we take
the best PSNR obtained for all values of σR between 10 and 50.

which image class is optimal for each denoising method. Another possible extension of this work
includes the collaboration of different denoising approaches, depending on the image local regular-
ity and redundancy. Finally, we intend to study the theoretical bounds of impulse noise removal,
as pioneered by [10] and [31] in the case of Gaussian noise.
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Fig. 6.1. Comparative results on Lena,Bridge,Baboon and Barbara with p = 20% of random-valued impulse
noise. For each column, from top to bottom: original image, noisy image, ROAD+trilateral [25], ROLD+EPR [21],
PARIGI. Images should be seen at full resolution on the electronic version of the paper.
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Fig. 6.2. Comparative results on Lena,Bridge,Baboon and Barbara with p = 40% of random-valued impulse
noise. For each column, from top to bottom: original image, noisy image, ROAD+trilateral [25], ROLD+EPR [21],
PARIGI. Images should be seen at full resolution on the electronic version of the paper.
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Fig. 6.3. Comparative results on Cameraman,Boat,Peppers and Goldhill with p = 20% of random-valued impulse
noise. For each column, from top to bottom: original image, noisy image, ROAD+trilateral [25], ROLD+EPR [21],
PARIGI. Images should be seen at full resolution on the electronic version of the paper.
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Fig. 6.4. Comparative results on Cameraman,Boat,Peppers and Goldhill with p = 40% of random-valued impulse
noise. For each column, from top to bottom: original image, noisy image, ROAD+trilateral [25], ROLD+EPR [21],
PARIGI. Images should be seen at full resolution on the electronic version of the paper.
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(a) p = 0.1, σ = 5

(b) p = 0.3, σ = 15

(c) p = 0.1, σ = 5

(d) p = 0.3, σ = 15

Fig. 6.5. Comparative results on Lena and Barbara with p ∈ {10%, 30%} of random-valued impulse noise and
σ ∈ {5, 15}. For each subfigure, from left to right: noisy image, result of the trilateral filter [25], PARIGI.
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(a) p = 0.1, σ = 5

(b) p = 0.3, σ = 15

(c) p = 0.1, σ = 5

(d) p = 0.3, σ = 15

Fig. 6.6. Comparative results on Cameraman and Boat with p ∈ {10%, 30%} of random-valued impulse noise
and σ ∈ {5, 15}. For each subfigure, from left to right: noisy image, result of the trilateral filter [25], PARIGI.
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(a) Original image (b) Noisy image, impulse noise, p = 50%

(c) Trilateral filter [25], PSNR = 19.77 (d) ROLD-EPR [21], PSNR = 26.63

(e) PARIGI. On the left, Nit = 1, PSNR = 30.43. On the right, Nit = 4, PSNR =
36.74

Fig. 6.7. Comparison of different denoising approaches on the image Stripes, with p = 50%.
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