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A PATCH-BASED APPROACH FOR REMOVING MIXED
GAUSSIAN-IMPULSE NOISE ∗

JULIE DELON † AND AGNÈS DESOLNEUX ‡

Abstract. In this paper, we address the problem of the restoration of images which have been affected by a
mixture of Gaussian and impulse noise. We rely on a patch-based approach, which requires careful choices for both
the distance between patches and for the statistical estimator of the original patch. Experiments are led in the case
of pure impulse noise and in the case of a mixture. The method proves to be particularly powerful, especially for the
restoration of textured regions, and compares favorably to recent restoration methods.

Key words. restoration, denoising, Gaussian noise, impulse noise, non local methods, image patch, maximum
likelihood estimator, order statistics.

1. Introduction. Gaussian noise and impulse noise generally appear during the acquisition
or the transmission of images. It is not always possible to separate them, and the user has thus
to deal with an image that is damaged by a mixture of Gaussian and impulse noise (it means that
the image is first affected by Gaussian noise, and then by impulse noise). Removing this kind of
noise while preserving image details and textures is of great importance before most image analysis
tasks (edge detection, segmentation, etc). The Gaussian noise is an additive noise, and it is very
different in nature from the impulse noise. Two models of impulse noise are generally used in the
literature. In the first one, called salt-and-pepper noise, each gray level is replaced with a given
probability by 0 or M , where [0,M ] designs the range of the original image (M = 255, in general).
In this paper, we will focus on the second model of impulse noise, called random-valued impulse
noise, where each gray level value is replaced with probability p, called noise ratio, by a random
value in the set {0, 1, . . . ,M}. Observe that detecting and removing random-valued impulse noise
is much more difficult in practice than removing salt-and-pepper noise.

There is a broad literature on the pure impulse noise case, but the mixture of Gaussian and
impulse noise is generally less studied, despite the fact that it is a more realistic noise model. The
traditional approaches for impulse noise removal act locally and non linearly on images. Among
them, let us mention the median and its extensions [29, 24]. These approaches modify all pixels
indifferently, while impulse noise affects only a portion of the pixels. In order to avoid this short-
coming, the trend for nearly twenty years has been to propose different impulse noise detectors
and to restrict the restoration to pixels detected as corrupted. For instance, this idea underlies
the switching median filter [31], the adaptive center weighted median filter (ACWMF) [8] or the
pixel-wise median absolute deviation [9]. Unfortunately, median-based methods tend to destroy
details and textures in images when the noise ratio is large. A successful alternative consists in
combining a well chosen impulse detector, generally relying on local order statistics of gray level
differences, with a global or at least semi-local restoration approach. This is the case of [20], which
combines the Rank Order Absolute Differences (ROAD) for detection with a trilateral filter for
restoration. Moreover, this method is used in both cases: pure impulse noise removal or mixture
of Gaussian and impulse noise removal. This detection/restoration scheme is also followed by the
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authors of [5, 17], who rely on ACWMF, or ROLD (Rank Ordered Logarithmic Difference) for
detection, before applying a variational approach to restore corrupted pixels.
Other approaches for removing a mixture of Gaussian and impulse noise generally start by estimat-
ing or detecting the impulse noise and then adapt (by reducing the influence of impulse affected
pixels) a Gaussian noise removal method. This is for instance the case of [33], where outliers are first
detected by a median type filter and then a K-SVD dictionary learning is performed on impulse-free
pixels to finally solve a l1− l0 minimization problem. This is also the case of [21] where an impulse
noise estimator is used to modify an anisotropic diffusion model, or the case of [34] where impulse
noise is first removed by an adaptive cascade of median filters and then, in a second stage, Gaussian
noise is removed (using a BM3D filter). The method of [27] takes advantage of the full probabilistic
mixture model: it first executes an external method to have a first prediction of original pixel
values, then it uses EM to learn the full noise model, and finally it performs some kernel regression
to get the restored image. The authors of [26] use the ROAD detector of [20] to obtain a modified
(“impulse controlled”) distance between image patches that they use to compute the weights in the
denoising scheme of Non Local means (NL-means) [4].
The approach presented in this paper for removing mixed Gaussian-impulse noise will also be patch-
based, which means that it will rely on the patch redundancy inside images. In the last fifteen years,
a great deal of image processing techniques have been developed in order to take advantage of self-
similarities of images [19, 1, 4, 15]. Since the introduction of the NL-means by Buades et al [4] to
tackle Gaussian noise, the idea of relying on patch redundancy to reduce noise variance has proved
to be particularly powerful. The NL-means have since been extended with success to other noise
models [22, 11]. The idea of these restoration methods is both simple and nice, since it relies on
the assumption that in a natural image, a given patch can be found almost identically in different
places. The patch can then be restored in two steps : first, by finding all of its corresponding
patches in the image, and second by estimating the real underlying patch behind these different
damaged versions. The mathematical framework adapted to deal with this redundancy is the one
of statistical estimation, as underlined in the recent contributions [23, 32, 30, 18]. The goal of this
paper is to model properly the two steps of this estimation scheme in the case of images suffering
from a mixture of impulse and Gaussian noise.

The paper is organized as follows. We start in Section 2 by giving some details about the im-
portant steps of patch-based approaches for denoising. In Section 3, we compare different measures
of similarity between patches, designed to be robust to impulse and Gaussian noise. The estima-
tion step is then tackled in Section 4, in which we also analyse the statistical properties of several
possible estimators. In Section 5 we present in details our full denoising scheme. For practical
reasons, this scheme is named PARIGI 1 in the paper. Experiments and comparisons with recent
approaches are displayed in Section 6. A conference proceeding version of this work has appeared
in [16].

2. Patch-based approaches for denoising.

2.1. Noise model. In the rest of the paper, the discrete damaged image is denoted by u and
the original image is denoted by u0. These images are defined on a discrete domain Ω, assumed to
be a bounded rectangle of Z2. We consider in this paper that the damaged image u is a realization
of a random image U which can be written

U = (1− T ).V + T.W, (2.1)

1PARIGI stands for Patch based Approach for the Restoration of Images affected by Gaussian and Impulse noise.
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where T , V and W are independent random images such that

• the values T (x), x ∈ Ω are i.i.d. random variables with a Bernoulli distribution of parameter
p (in the sense that P[T (x) = 1] = p); p is called the noise ratio;
• the values W (x), x ∈ Ω are i.i.d. random variables with a discrete uniform distribution on

the range [0,M ];
• the values V (x), x ∈ Ω are independent random variables and V (x) ∼ N (u0(x), σ2).

In other words, the value u0(x) of a pixel x is either replaced (with probability p) by a uniform
value on [0,M ] or modified (with probability 1− p) by adding a centered Gaussian noise. Impulse
noise can be considered as a particular case of the previous model, obtained when σ = 0 (in this
case, the Gaussian distribution degenerates at each point x into a Dirac centered at u0(x)).

2.2. The fundamentals of patch-based denoising. The idea of patch-based approaches
is to take advantage of the redundancy of geometry in images. The central hypothesis of these
approaches is that for each patch P1 in u, there exist other patches P2, . . . ,Pn in u such that all
the Pi are realizations of the same random patch, obtained from an underlying non-noisy patch
P0 of the original image u0. The first step of the whole restoration process consists in finding, for
each patch P1, this set of corresponding replicas. In a second step, a denoised version of P1 can
be obtained by relying on any estimator P̂ of P0, computed from its different damaged versions
P1, . . . ,Pn.

The first step generally boils down to the choice of a similarity measure between patches. This
measure should constitute a good trade-off between discriminative power and robustness to noise,
as presented in Section 3. In the classical version of NL-means [4], the similarity between patches
relies on the euclidean distance, chosen in particular for its robustness to Gaussian noise. This
distance is used to compute dissimilarity weights, which permit to balance the influence of the
different patches in the final estimator P̂. Alternatively, the authors of [28] propose to threshold
the similarity measure in such a way that “a patch and one of its replicas have a probability of 0.99
to be considered as similar”. The estimator P̂ keeps only patches whose distance to P1 is below
this threshold. Other valid solutions only retain the n-nearest neighbors of P1 [2], or make use
of clustering [3, 6] or of PCA [14] strategies in order to determine the set of replicas for P1. For
the sake of simplicity, the denoising scheme PARIGI described in this paper relies on the n-nearest
neighbors solution for this first step, the main difficulty to be tackled being the design of a robust
similarity measure in presence of impulse noise.

The second step of the restoration amounts to a very classical estimation problem : given
U1, . . . , Un n i.i.d. random vectors following a distribution P(θ) with θ a vector parameter, find a
good estimator θ̂ of θ. When the noise is purely Gaussian, P(θ) = N (θ, σ2), with σ known, the best
estimator in terms of Mean Squared Error (or quadratic risk) is the mean, which explains the usual
averaging formulation of the NL-means [4]. Recently, many authors have adopted the point of view
of quadratic risk minimization as a way to optimize the parameters of the NL-means [23, 32, 18] or
to propose further improvements [30]. In Section 4.2, we will also make use of the quadratic risk in
order to compare the efficiency of different estimators in presence of impulse and Gaussian noise.

These two steps permit to restore any patch in the noisy image. Now, since a given pixel x
belongs to several patches, multiple choices are possible to obtain a restored value û(x) at x. This
last step, called reprojection in the work of Salmon and Strozecki [30], corresponds to the general
framework of estimators aggregation in statistics. Let us denote by Px a patch centered at x (in
this paper, we assume for the sake of simplicity that patches are (2f + 1)× (2f + 1) squares, but
more general shapes could be considered, as proposed in [13]). The pixel x belongs to the support
of all the patches Px+δ, δ ∈ [−f, f ]× [−f, f ]. In order to restore the value u0(x), we can thus rely
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on all the values P̂x+δ(−δ), δ ∈ [−f, f ] × [−f, f ]. A common choice for the estimator of u0(x) is

to take only into account the value P̂x(0) of the restored patch centered at x, as proposed in the
original NL-means [4]. Another natural choice, studied for instance in [30] is to take the mean∑

δ∈[−f,f ]2 P̂x+δ(−δ)
(2f + 1)2

. (2.2)

The interest of this simple aggregation is that it divides the variance of the estimator of u0(x) by

(2f + 1)2 if the different estimations P̂x+δ(−δ), δ ∈ [−f, f ]2, are i.i.d. This assumption is not true
in practice since the patches are overlapping, but the quality of the results is nevertheless visibly
improved by this procedure, at least in the case of Gaussian noise. In this paper, we propose to
merge this aggregation step with the estimation of the denoised patches. More precisely, the final

estimator û(x) of u0(x), described in Section 5, will rely on all the values u(y) for which there exists
δ ∈ [−f, f ]2 such that Px+δ and Py+δ are similar.

3. Robust distance between patches. This section focuses on the quest for similar patches
in an image affected by a mixture of impulse and Gaussian noise. As underlined before, the success
of any patch-based denoising procedure depends greatly on the ability to find the replicas of a patch
in the noisy image u. More precisely, for a given patch P in u, we aim at discovering all patches Q
such that the unknown original patches P0 and Q0 in u0 are equal or at least similar. In presence
of impulse noise, the Euclidean (L2) distance between P and Q contains outliers and cannot be
trusted. In the following, we compare several alternative measures designed to be robust to this
kind of noise.

3.1. Generalized likelihood ratio. A first possibility, suggested by the recent work [12], is
to make use of the generalized maximum likelihood ratio

GLR(P,Q) =
supT P[P,Q|P0 = Q0 = T]

supT P[P|P0 = T] supT P[Q|Q0 = T]
. (3.1)

In the case of pure impulse noise, this ratio becomes

GLR(P,Q) =

(
1 +

(M + 1)(1− p)
p

)2(nsim−|P|)
, (3.2)

where nsim is the number of pixels that have the same value in P and Q, and |P| = (2f + 1)2 is
the size of P. Obviously, this measure is too rigid in practice to be used even if the noise is purely
impulsive. Indeed, two patches can be very similar and at the same time be such that nsim = 0.
In the mixed Gaussian-impulse case, the ratio becomes (with fθ the Gaussian distribution with
mean θ and variance σ2):

GLR(P,Q) =

sup
T

∏
x∈P

(
p

M + 1
+ (1− p)fT(x)(P(x))

)(
p

M + 1
+ (1− p)fT(x)(Q(x))

)
∏
x∈P

(
p

M + 1
+ (1− p)fP(x)(P(x))

)(
p

M + 1
+ (1− p)fQ(x)(Q(x))

) . (3.3)

The denominator of this formula can be simplified into the constant ( p
M+1 + 1−p

σ
√

2π
)2|P|, independent

of P and Q. The numerator is more complex. It consists of a product of different terms num(x)
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when x spans P: num(x) equals ( p
M+1 + 1−p

σ
√

2π
e−(P(x)−Q(x))2/8σ2

)2 when (P(x) − Q(x))2/σ2 is

small and ( p
M+1 + 1−p

σ
√

2π
)( p
M+1 + 1−p

σ
√

2π
e−(P(x)−Q(x))2/2σ2

) when (P(x) −Q(x))2/σ2 is large. As a

consequence, the log of GLR(P,Q) is a sum over x of a function of (P(x) −Q(x))2, the function
depending on whether (P(x) − Q(x))2/2σ2 is small or not. The main difficulty when using this
generalized likelihood ratio (GLR) is that we do not know σ in practice, but its main advantage is
that it automatically adapts to large or small values of (P(x)−Q(x))2. It is thus related to robust
similarity measures, that we explain in the following section.

3.2. Weighted euclidean distances. A second possibility is to rely on a robust similarity
measure, inspired by order statistics [10]. It is known that, for non-noisy patches, the L2 distance is
a good distance to measure the similarity between the patches. But when impulse noise is present,
many large values of (P −Q)2

i , 1 ≤ i ≤ n, are observed that are due to the noise and the L2 distance
then contains many outliers. Our distance is built to be similar to the euclidean distance but robust
to large values created by the noise. Let |P − Q|(1) ≤ |P − Q|(2) ≤ · · · ≤ |P − Q|(2f+1)2 be the
values obtained by ordering the (2f + 1)2 values of the differences |P(y) −Q(y)|. We propose to
rely on a distance of the form

D(P,Q) =

(2f+1)2∑
k=1

wk|P −Q|2(k), (3.4)

where w1, . . . , wn are positive weights. There is a wide choice for the weights wk. For instance, if
they are all equal, we find again the L2 distance. If we set wk = 1 for k below a number T and
wk equal to 0 above, we obtain a trimmed sum of order statistics : the distance relies only on the
smallest distances between gray levels in the support of the patch. We denote this distance Dtrimmed

and we choose for T the value T = sup{k;B((2f + 1)2, k, (1 − p)2) > 0.99}, where B denotes the
tail of the binomial distribution 2. This choice comes from the following property: If P and Q
are two independent random patches such that P0 = Q0, the probability that the kth difference
|P − Q|(k) stems from two untouched pixels is B((2f + 1)2, k, (1 − p)2) (with the approximation
that the smallest distances correspond to untouched pixels).
In cases of low Signal to Noise Ratio, this trimmed distance becomes difficult to use, since the
number T of pixels taken into account rapidly tends toward zero. In order to avoid this problem,
we propose to keep all the weight wk positive and equal to the probability that the value |P −Q|(k)

stems from untouched pixels. We denote this distance Dweighted:

Dweighted(P,Q) =

(2f+1)2∑
k=1

B((2f + 1)2, k, (1− p)2)|P −Q|2(k). (3.5)

Notice that when there is no impulse noise (p = 0), then the two distances Dweighted and
Dtrimmed are both the usual L2 distance between patches.

The choice of the distance Dweighted is reinforced by modeling the problem the following simple
way: assume the two patches P0 and Q0 are both constant patches, and denote by a and b their
respective constant gray level value. Then, when the two patches are damaged independently by
some impulse noise of intensity p, the random variables (P−Q)2

i , 1 ≤ i ≤ n, are i.i.d. following a
distribution of the form (1 − p)2δ(b−a)2 + (1 − (1 − p)2)dF , where dF is a probability distribution
on R+ (that we don’t need to compute). In this framework, we have the following theorem.

2B(n, k, q) =
∑n
i=k

(
n
i

)
qi(1− q)n−i.
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Theorem 3.1. Let dF be a probability distribution on R+ and let X
(α)
1 , . . . , X

(α)
n be n i.i.d.

random variables, distributed according to the mixture distribution qδα+(1−q)dF , where q ∈ [0, 1],
and δα denotes the Dirac distribution at α ∈ [0,+∞). Let w = (w1, . . . , wn) be a vector of weights
in [0,+∞), and let

Dw(α) = E

(
n∑
k=1

wkX
(α)
(k)

)
,

where X
(α)
(k) denotes the k-th order statistic of X

(α)
1 , . . . , X

(α)
n . Assume that the probability distri-

bution dF satisfies pα := P(Y ≤ α) → 0 when α → 0 where Y is a random variable distributed
following the law dF . Then when α is small, we have

Dw(α) = Dw(0) + α
n∑
k=1

wkB(n, k, q) + o(α),

and notice that this first-order Taylor expansion is independent of the probability distribution dF .

Proof. Let us first introduce some notations. We will denote m+
k,l(α) and m−k,l(α) the following

expected values:

m+
k,l(α) = E(Y(k) |Y1 ≥ α, . . . , Yl ≥ α) and m−k,l(α) = E(Y(k) |Y1 ≤ α, . . . , Yl ≤ α),

where Y1, . . . , Yl are i.i.d. random variables following the law dF . Let also Nα be the random

variables that counts the number of X
(α)
i , 1 ≤ i ≤ n, that are equal to α. Then Nα follows the

binomial distribution of parameters n and q, and we will denote, for 0 ≤ k ≤ n, bk = P(Nα = k) =
b(n, k, q) =

(
n
k

)
qk(1− q)n−k. Now for α ≥ 0 we can write

Dw(α) =

n∑
k0=0

n∑
k=1

wkE
(
X

(α)
(k) |Nα = k0

)
P(Nα = k0)

=
n∑

k0=0

bk0

n−k0∑
l=0

b(n− k0, l, pα)

(
l∑

k=1

wkm
−
k,l(α) + (wl+1 + . . .+ wl+k0)α

+

n∑
k=l+k0+1

wkm
+
k−l−k0,n−l−k0(α)

 .

But notice that we also have, for any α ≥ 0,

Dw(0) =

n∑
k0=0

bk0

n−k0∑
l=0

b(n− k0, l, pα)

 l∑
k=1

wk+k0m
−
k,l(α) +

n∑
k=l+k0+1

wkm
+
k−l−k0,n−l−k0(α)

 .

Consequently, we get

Dw(α) = Dw(0) +
n∑

k0=0

bk0

n−k0∑
l=0

b(n−k0, l, pα)

(
l∑

k=1

(wk − wk+k0)m−k,l(α) + (wl+1 + . . .+ wl+k0)α

)
.
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Finally, since 0 ≤ m−k,l(α) ≤ α, and pα goes to 0 when α goes to 0, we have that the first-order
Taylor expansion is given by the term l = 0 in the sum above. More precisely, we get

Dw(α) = Dw(0) +
n∑

k0=0

bk0(w1 + . . .+ wk0)α+ o(α)

= Dw(0) + α
n∑
k=1

wkB(n, k, q) + o(α),

which is the announced result.
Now, among all the distances such that

∑
w2
k is fixed, the one that is the most able to discrim-

inate, on the average, two constant equal patches from two constant but non-equal patches is the
one such that

∑n
k=1wkB(n, k, q) is as large as possible, and this is achieved when wk is proportional

to B(n, k, q) where q = (1− p)2. We recognize the weighted distance defined in (3.5).

Fig. 3.1. Comparison of different distances between an edge patch and similar patches. On the first raw, we show
the original patch (white window) of size 7× 7 pixels and its neighborhood V ; a noisy version of the image (p = 0.2
and σ = 10); and the mean distances obtained in that case. On the second raw, we show the curves obtain for other
noise parameters: respectively p = 0.2 and σ = 0, p = 0.5 and σ = 0, p = 0.5 and σ = 10. See the text for some
comments on these graphics.

3.3. Comparison of the different distances. When an image is not affected by noise, the
L2 distance is a good way to measure the similarity between patches. A nice way to compare
different robust distances in presence of noise is to measure their ability to find similar patches at
the same locations as those found by the L2 distance in the non-noisy image. A robust distance
should be able to preserve as much as possible the ordering of the patches provided by the L2

distance in the non-noisy image. The comparison procedure works as follows. Given an original
patch P0 in an original image u0, and a neighborhood V (that is a square window of half-size t
centered at the center of the patch), we will denote by P0

x the patch of u0 centered at x ∈ V . Let
the previous patches in the noisy image u be respectively denoted by P and Px. For a distance
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Fig. 3.2. Comparison of different distances between a texture patch and similar patches. On the first raw, we
show the original patch (white window) of size 7 × 7 pixels and its neighborhood V ; a noisy version of the image
(p = 0.2 and σ = 10); and the mean distances obtained in that case. On the second raw, we show the curves obtain
for other noise parameters: respectively p = 0.2 and σ = 0, p = 0.5 and σ = 0, p = 0.5 and σ = 10. See the text for
some comments on these graphics.

D between patches, and for n ≥ 1 integer, let x1, . . . , xn denote the centers of the patches that
achieve the n smallest values of the distance D to the noisy patch P:

0 = D(P,Px1) ≤ D(P,Px2) ≤ . . . D(P,Pxn).

Now, consider the mean of the L2-distances of these patches in the original image: 1
n(‖ P0−P0

x1 ‖2
+ . . .+ ‖ P0 −P0

xn ‖2). We want this mean distance to be as close as possible to the mean of the
n smallest L2-distances in the original image (called the “mean L2 true distance” in Figure 3.2),
given by 1

n(‖ P0 − P0
x01
‖2 + . . .+ ‖ P0 − P0

x0n
‖2), where x0

1, . . . , x
0
n are the centers of the patches

that achieve the n smallest L2 distances to the patch P0 in u0. We make n vary from 1 to 60 and
we plot the mean distances as a function of n.

We made this for four different distances between patches: the L2 distance, the trimmed distance
Dtrimmed, the weighted distance Dweighted (defined in Equation (3.5)) and the “impulse-controlled”
(IC) distance used by [26]. This last distance is also a weighted L2 distance but where the weights
are now pixel-dependent and related to the noise detector ROAD [20] (see Section 5.1 for a more
detailed description of ROAD). The results are shown on Figures 3.1 and 3.2 for two different
patches: an edge patch (its boundary is marked by the white window in Figure 3.1), and a texture
patch (also marked by a white window, in Figure 3.2); and for different noise parameters: p = 0.2
or p = 0.5 and σ = 0 or σ = 10. The obtained curves are averaged from 50 noise samples for each
set of parameters. The “mean L2 true distance” is the purple lowest curve and the “best” distance
between noisy patches should be the one that is as close as possible to this purple curve.

From these experiments we can draw the following conclusions: the L2 distance between noisy
patches always achieve the worst performances and the trimmed distance becomes unable to find
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the right ordering of patches when the impulse noise is too important (the parameter T used to
trimmed the distance is too small - for instance its value is only T = 6 when p = 0.5 for patches
of size 7× 7 pixels). On the edge patch, the IC distance and the weighted distance provide similar
results, except for p = 0.5 and σ = 10 where the IC distance is more efficient. On the texture patch,
the situation is different, the weighted distance always yields the best result and the IC distance
sometimes fails completely (for instance in the case of pure impulse noise: p = 0.5 and σ = 0).
The conclusion of this experiment goes in the direction of Theorem 3.1. In the rest of the paper,
we choose to use the distance Dweighted between noisy patches for its ability to deal properly with
different patch geometries.

4. Choice of the estimator P̂. In this section, we aim at defining a good estimator P̂ of the
underlying patch P0 behind different damaged versions P1,... Pn. For the sake of simplicity, we
assume that these patches are independent realizations of the same random patch, following the
noise model (2.1).

Let x be a pixel in the support of P0 and let us denote by X1, . . . , Xn the random variables
corresponding to the realizations P1(x), . . . ,Pn(x). The Xi are i.i.d. and follow the mixture
distribution

Xi ∼ (1− p).N (µ, σ2) + p.U[0,M ], (4.1)

where U[0,M ] denotes the uniform law on the discrete set [0, . . . ,M ] and N (µ, σ2) denotes the
Gaussian distribution of mean µ and variance σ2. We wish to estimate µ (and possibly σ). Let
us start with the simpler problem of pure impulse noise : in this case, the Gaussian part of the
mixture degenerates into a Dirac distribution at µ.

4.1. Pure impulse noise. In this pure impulse noise case, the mean and variance of the Xi’s
can be written

E[Xi] = (1− p).µ+ p.
M

2
and (4.2)

Var[Xi] = µ.p(1− p)(µ−M) + p
2M2 +M

6
− p2

(
M

2

)2

. (4.3)

In the following, we study the relevance of different estimators of µ.

4.1.1. Mean. The mean Xn = 1
n

∑n
i=1Xi is known to be the maximum likelihood estimator

(MLE) of µ for additive Gaussian noise. For pure impulse noise, the mean of Xn equals

E[Xn] = E[Xi] = µ+ p

(
M

2
− µ

)
, (4.4)

We can thus derive a first unbiased estimator of µ, as X̃n = 1
1−p

(
Xn − pM2

)
. The quadratic risk

(i.e the mean squared error or MSE) of this unbiased estimator equals

R[X̃n] = E[|X̃n − µ|2] = Var[X̃n] =

(
1

1− p

)2 Var[Xi]

n
. (4.5)

As a consequence, this risk makes the estimator useless for practical purposes. Indeed, for example,

when M = 255, p = 0.5 and µ = 100, then

√
Var[X̃n] ' 108√

n
, which means that we need more than

468 samples to make the square root of the risk go below 5 gray levels.
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4.1.2. Median. The spatial median filter is one of the most famous filters used to remove
impulse noise. Let us study its properties as an estimator of µ. Assume, for the sake of simplicity,
that n is odd: the median of X1, . . . Xn is X(n+1

2 ), where X(k) is the kth order statistic (or kth

smallest value) of X1, . . . Xn. The distribution function of the median can thus be easily computed
as:

P[X(n+1
2 ) ≤ k] = B

(
n,
n+ 1

2
, F (k)

)
:=

n∑
j≥n+1

2

(
n

j

)
F (k)j(1− F (k))n−j , (4.6)

where F (k) := P[Xi ≤ k] = p k+1
M+1 +(1−p)1k≥µ is the distribution function of the Xi’s. After some

computations, it follows that

E[X(n+1
2 )] = M −

M−1∑
k=0

B
(
n,
n+ 1

2
, F (k)

)
. (4.7)

Numerically, this bias is negligible as long as p ≤ 0.4. Nonetheless, it increases dangerously when p
becomes larger than 0.5. The variance of the estimator can be computed in the same way. At the
end, the quadratic risk of the estimator equals:

R[X(n+1
2 )] = (M − µ)2 −

M−1∑
k=0

(2(k − µ) + 1)B
(
n,
n+ 1

2
, F (k)

)
. (4.8)

Figure 4.1 shows the values of
√
R[X(n+1

2 )] for different values of p and n, with M = 255 and

µ = 20 or µ = 100. For p = 0.5 and µ = 100, n = 18 samples are necessary to make the square
root of the MSE decrease below 5, which is quite reasonable. However, for µ = 20, this number
of necessary samples becomes larger than 100, as can be observed on the left part of Figure 4.1.
This huge difference in behavior is due to the bias of the median estimator which attains very large
values as soon as p ≥ 0.5 and for gray levels µ far from the middle of [0,M ]. As a conclusion, the
median estimator is clearly more interesting than the one built upon the mean, but in practice, its
quadratic risk is not controlled, except for small values of p.

4.1.3. Maximum likelihood. Now, let us study the statistical properties of the maximum
likelihood estimator (MLE) of µ. The MLE corresponds to the most represented value among the
samples: if we compute the empirical histogram h of {X1, . . . , Xn} on [0,M ], the MLE is the place
where the histogram attains its maximum. Indeed,

X̂n = arg max
µ′

logP[X1, . . . , Xn|µ′] = arg max
µ′

n∑
i=1

logP[Xi|µ′]

= arg max
µ′

n∑
i=1

log

(
(1− p)δXi=µ′ +

p

M + 1

)
= arg max (h).

If the histogram has several maxima, one of them is chosen randomly, with equal probabilities.
Consequently, if we denote by X̂n the random variable corresponding to this MLE, the law of X̂n

is given by
X̂n ∼ (1− qn,p).δµ + qn,p.U[0,M ], (4.9)

where qn,p ∈ [0, 1] is a probability that depends on p, n (and M). The probability for the estimator

to estimate correctly µ is then P[X̂n = µ] = 1− qn,p +
qn,p
M+1 . The mean and the variance of X̂n are
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Fig. 4.1. Square root of the risk (or MSE)
√
R[X(n+1

2 )] as a function of p (between 0.1 and 0.8 on the vertical

axis) and n (between 1 and 100 on the horizontal axis), with M = 255, µ = 20 on the left and µ = 100 on the right.

easily obtained by replacing p by qn,p in Equations (4.3) and (4.2). It follows that the quadratic

risk of X̂n as an estimator of µ can be written

R[X̂n] = E[|X̂n − µ|2] = (Bias[X̂n])2 + Var(X̂n) = qn,p

(
µ(µ−M) +

2M2 +M

6

)
. (4.10)

and is proportional to qn,p. In order to keep

√
R[X̂n] smaller than 5 gray levels for M = 255 and

any value of µ in [0,M ], the probability qn,p must be smaller than 10−3. Now, it can be shown that
the value of qn,p is quickly decreasing when n increases. Indeed, let K := #{i, Xi = µ} be the
random variable corresponding to the number of samples equal to µ. Among the n−K remaining
samples with values different from µ, let CK be the number of K-uples with equal values. Observe
that the event X̂n = µ is realized when CK = 0. Of course, CK = 0 whenever K ≥ n+1

2 . As a
consequence, if we assume for sake of simplicity that n is odd, we get

1− qn,p +
qn,p
M + 1

= P[X̂n = µ] ≥ P[K ≥ n+ 1

2
] + P[2 ≤ K ≤ n− 1

2
and CK = 0]

=

n∑
k=n+1

2

(
n

k

)
p̂n−k(1− p̂)k +

n−1
2∑

k=2

(
n

k

)
p̂n−k(1− p̂)k(1− αk),

where p̂ = P[X1 6= µ] = p − p
(M+1) and where αk := P[Ck ≥ 1] ≤ E[Ck] =

(
n−k
k

)
1

Mk−1 . It follows
that

1− qn,p +
qn,p
M + 1

= P[X̂n = µ] ≥ B(n,
n+ 1

2
, 1− p̂) +

n−1
2∑

k=2

(
n

k

)
p̂n−k(1− p̂)k

(
1−

(
n− k
k

)
1

Mk−1

)

= 1− p̂n − n(1− p̂)p̂n−1 −

n−1
2∑

k=2

(
n

k

)(
n− k
k

)
1

Mk−1
(1− p̂)kp̂n−k.
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Fig. 4.2. Left: parameter qn,p of the distribution (4.9) in function of p (vertical axis) and n (horizontal axis).
The white curve corresponds to the level line qn,p = 10−3. This line yields the number n of samples necessary to
keep the square root of the risk always below 5 gray levels (whatever the value of µ). Right: Square root of the risk√

E[|X̂n − µ|2] as a function of p (vertical axis) and n (horizontal axis), for µ = 100.

For reasonable values of p and n (p ≤ 0.8 and n ≤ 50), we checked empirically that the inequality
in the above equation is in fact almost an equality, and that the last sum can be approximated by
its first term (k = 2), which is broadly dominant. This allows us to estimate the parameter qn,p
of the distribution (4.9) very easily in function of p. The left part of Figure 4.2 shows the values
of qn,p as a function of p and n, when M = 255. The white line on the figure corresponds to the
level line qn,p = 10−3. This line yields the number n of samples necessary to keep the square root
of the risk always below 5 gray levels (whatever the value of µ), as a function of p. This number
of samples remains quite reasonable in comparison to previous estimators. Moreover, the risk is
controlled for all values of µ, unlike the median estimator. The risk of X̂n as a function of p and n
is illustrated on the right part of Figure 4.2, for µ = 100.

4.2. Mixture case. The previous study tends to prove that in the case of pure impulse noise,
the Maximum Likelihood Estimator is preferable to the median estimator for denoising.

In the full mixture case, we would like to estimate both the mean µ and the variance σ2 of
the Gaussian part. Observe that in practice, this full mixture case is a realistic model for the
estimation problem even in presence of pure impulse noise. Indeed, similar patches in an image
are never exactly equal and it is a sound hypothesis to assume that their inner variability can be
modeled with a standard deviation σ (that is pixel-dependent).

The expectation of the Xi’s is unchanged (see Equation (4.2)) and their variance becomes

Var[Xi] = µ.p(1− p)(µ−M) + p
2M2 +M

6
− p2

(
M

2

)2

+ (1− p)σ2. (4.11)

The only difference with the pure impulse case consists in the additional term +(1− p)σ2.

4.2.1. Mean and Median. The properties of the mean and median as estimators of µ are
quite similar to the pure impulse case. The variance of the unbiased estimator X̃n is still obtained
from Equation (4.5). The law of the median is easily computed by replacing the distribution function
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F in Equation (4.6) by F (k) = p k+1
M+1 + (1 − p)Gµ,σ(k), where Gµ,σ is the distribution function

of the N (µ, σ2) distribution. Formulas (4.7) and (4.8) for the bias and risk of this estimator are
generalized in the same way. Again, the risk of this estimator is uncontrolled as soon as p increases.

4.2.2. Maximum likelihood. In the mixture case, the Maximum Likelihood Estimator (MLE)

of (µ, σ), that we will denote by (X̂n, σ̂), is defined as

(X̂n, σ̂) = arg max
µ′,σ′

logP[X1, . . . , Xn|µ′, σ′]

= arg max
µ′,σ′

n∑
i=1

log

(
p

M + 1
+ (1− p)gµ′,σ′(Xi)

)
,

where gµ′,σ′ is the Gaussian probability density of mean µ′ and variance σ′2. This can be rewritten
by using the empirical distribution h of the values {X1, . . . , Xn} on [0,M ], which yields

(X̂n, σ̂) = arg max
µ′,σ′

h ∗ fσ′(µ′)

where fσ′ : m 7→ log

(
p

M+1 + 1−p
σ′
√

2π
e−

m2

σ′

)
. Observe that the MLE of pure impulse noise can be

recovered from this formula by taking σ = 0. In the same way, the MLE in the case of pure
Gaussian noise is obtained by taking p = 0 in the previous formula.

The study of the bias and variance of this maximum likelihood estimator is far more complex
than in the pure impulse case. In particular, there is no obvious close formula for the distribution
of X̂n. In order to evaluate the quality of this estimator, we replace this study by an empirical
estimation of the quadratic risk R[X̂n] = E[(X̂n − µ)2] as a function of p and n for different values
of σ and for µ = 100 (as observed in the pure impulse case, this MSE does not depend too much

on the value of µ). Figure 4.3 shows the empirical values of R[X̂n] for p ∈ {0.1, . . . , 0.8} and
n ∈ {5, . . . , 100}. The four subfigures correspond respectively to σ = 5, 10, 15 and 20. For each σ
and for each value of p, we draw a white cross at the minimum number n that should be chosen in
order to ensure that the square root of the risk or MSE is smaller than 5. This number obviously
increases with σ and p. It remains nevertheless reasonable for p ≤ 0.5 and σ ≤ 15.

Choosing n in practice. The idea behind the previous empirical computation is to evaluate
the appropriate number n of patches necessary to compute X̂n with a controlled risk. Assuming
that we have an accurate estimation of p and σ, this number of trusted patches can be computed
empirically and used to estimate µ in a reliable way.

Now, recall that X1, . . . , Xn correspond in practice to realizations P1(x), . . . ,Pn(x) for a set
of similar patches P1, . . . ,Pn. In natural images, even the most similar patches are seldom equal,
and present some differences. This situation has two consequences. First, the value of σ in the
model (4.1) should account both for the Gaussian part of the noise and for the inner variability
between patches. Even in the case of pure impulse noise, choosing σ > 0 in order to estimate
the right number of trusted patches n might improve the results. Second, the number of trusted
patches n should always result from a compromise between the control of the theoretical risk and the
redundancy of the image to be denoised. Indeed, the inner variability between patches considered
as similar might increase with n, depending on the image regularity.

In practice, we observed that choosing σ = 10 to estimate n in the case of images suffering from
pure impulse noise usually yields a good compromise between image redundancy, patch variability
and risk control. Once p is estimated, the values of n used in all our experiments on pure impulse
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(a) σ = 5 (b) σ = 10

(c) σ = 15 (d) σ = 20

Fig. 4.3. Square root of the risk

√
R[X̂n] for the MLE in the mixture case, as a function of p (vertical axis) and

n (horizontal axis), for µ = 100. White crosses correspond to the minimum values of n ensuring that the square root
of the risk is smaller than 5.

noise (see Section 6) correspond to the white crosses of Figure 4.3 (b). In the case of mixture noise,
the situation is more complex, since the values of σ are unknown in practice. In order to reduce
the number of parameters, we resolved to choose the values of n obtained for σ = 15 in all our
experiments involving a mixed noise (white crosses of Figure 4.3 (c)). For the sake of completeness,
these values are given in Tables 4.1 and 4.2.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n 8 10 14 18 22 34 47 91
Table 4.1

Number n of patches used in the maximum-likelihood estimation for each value of p in the case of pure impulse
noise.
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p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n 13 17 20 27 37 56 86 101
Table 4.2

Number n of patches used in the maximum-likelihood estimation for each value of p in the case of a mixture noise.

5. Denoising scheme. We are now in a position to fully describe PARIGI, a denoising scheme
built upon the maximum likelihood estimator presented in Section 4.2.2 and the weighted distance
between patches introduced in Section 3. This denoising scheme requires to estimate the noise ratio
p beforehand. We describe in Section 5.1 different approaches devoted to estimate p globally on the
damaged image. Section 5.2 then details the successive steps of our patch-based denoising scheme.

5.1. Estimation of p. Different methods are possible to estimate p globally on the damaged
image. In this paper, we propose to rely on impulse noise detectors.

Many impulse noise detectors are proposed in the literature, such as the detectors ROAD [20],
ACWMF [8], ROLD [17] or the pixel-wise MAD [9], to cite only a few. The goal of these schemes
is to yield a map of noisy (impulse affected) pixels in an image damaged by impulse noise, or by
a mixture of impulse and Gaussian noise. An estimation of p can naturally be derived from this
estimation by computing the ratio between the number of noisy pixels and the image size. For the
sake of simplicity, we restrict ourselves in this paper to the detectors ROAD and ACWMF, which
are quite complementary.

The detector ROAD (for “Rank Ordered Absolute Differences”), proposed in [20], can be de-
scribed as follows: for each pixel x, the absolute differences between u(x) and u(y) are computed
for all y 6= x in a centered 3×3 patch around x. These differences are ordered. The value ROAD(x)
is obtained by computing the sum of the 4 smallest differences. This value measures how close u(x)
is from its neighbors. When ROAD(x) is above a given threshold τ , set as 70 in our experiments,
x is considered as noisy.

The detector ACWMF [8] works as follows. For a given pixel x, a weighted median of order k
is defined as

medk(x) = median

{u(y), y ∈ Px} ∪ {u(x), . . . , u(x)︸ ︷︷ ︸
2k times

}

 , (5.1)

where Px is a squared patch centered at x. This weighted median boils down to the usual median
filter when k = 0 and to the identity when k is large enough. Now, let dk = |medk(x)− u(x)| and
let tk be a decreasing sequence of well chosen thresholds. The pixel x is presumed to be noisy if
there exists one k such that dk is above the threshold tk. In practice, the authors of [8] recommend
to use 3× 3 patches and to compute the four thresholds tk, k = 1, . . . , 4 as

tk = s.median
(
{|u(y)−med0(x)|, y ∈ Px}

)
+ δk, (5.2)

with [δ0, δ1, δ2, δ3] = [40, 25, 10, 5] and 0 ≤ s ≤ 0.6.
Figures 5.1 (a,b) show the quality of both estimators for different values of p on the 512× 512

image Lena in the case of pure impulse noise (on the left) and in the case of a mixture of impulse
noise and Gaussian noise with σ = 10 (on the right). For each value of p between 0.1 and 0.9
with a step of 0.1, we show the boxplot of the estimation of p for 100 different noise samples. The
ROAD-based estimation of p, shown on Figure 5.1 (a), is quite accurate in both cases and fast to
compute. As already underlined in [8], the detector ACWMF is efficient when the noise ratio is
not too high, typically p ≤ 0.25. Above this value, the number of pixels considered as touched by
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noise is highly underestimated and the estimation of p is not usable in practice. As a consequence,
we decided in all our experiments to use the estimation of p based on the detector ROAD.

(a) ROAD estimation of p when σ = 0 (on the left) and σ = 10 (on the right).

(b) ACWMF estimation of p when σ = 0 (on the left) and σ = 10 (on the right)

Fig. 5.1. Left: statistical results of the estimation of the impulse noise parameter p on the Lena image when
there is no Gaussian noise. The results p are shown as boxplot graphics, where the horizontal axis represents the
tested values of p: from 0.1 to 0.9. Boxes are the statistics obtained from 100 samples for each value of p. On the
right, same experiment made on the Lena image in the case of a mixed noise: impulse and Gaussian with σ = 10.

5.2. Implementation details. The estimation of p is the first step of PARIGI. The second
step consists in estimating n, the number of nearest neighbors taken into account in the space of
patches to compute the estimator P̂ . Assuming that the estimation of p is accurate, this number
of trusted patches is computed empirically as explained in Section 4.2.2.

The algorithm continues as follows. For each point x in Ω, we seek the n nearest neighbors Py

of Px for the distance Dweighted introduced in Section 3. We restrict this investigation to the points
y spanning a (2t+ 1)× (2t+ 1) square Vx centered at x (see Figure 5.2)

Vx = {x+ δ; δ ∈ [−t, t]× [−t, t]}. (5.3)

This permits to define Vnx , the subset of Vx corresponding to the n nearest neighbors of Px. The

MLE (û(x), σ̂(x)) is then computed at each x from the n-tuple (u(y), y ∈ Vnx ). The image û
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x

xP

Vx

Fig. 5.2. Neighborhood Vx and possible corresponding patches.

constitutes a first denoised version of u. In practice, this restored image is sometimes a little bit
too smooth. At the same time, some impulse pixels can remain. In order to recover the grain of the
original image and to eliminate these last impulses, we take into account the estimated standard
deviation σ̂(x) at each point x for defining a map of noisy pixels:

M = {x ∈ Ω; |û(x)− u(x)| > σ̂(x)}.

We then compute the mixture of û and u: u2(x) = û(x).1x∈M + u(x).(1− 1x∈M), and eventually
apply the previous denoising steps to u2 in order to obtain û2. These steps can be repeated a
few times to improve the final result. The interest of these iterations is shown on the last line of
Figure 6.5. In the rest of the experiments, we repeat this step twice and the output of the algorithm
is given by u3. In all our experiments, the half-size of the research neighborhood Vx is set to t = 7.
The half-size of the patches is set to f = 3 for pure impulse noise and to f = 8 in the case of a
mixture of Gaussian and impulse noise.

A refined version of the algorithm can be obtained by following the approach introduced in [30].
Notice that a point x belongs to all patches Px+δ, δ ∈ [−f, f ]× [−f, f ]. The idea of the refinement
is to take into account in the estimation all the information from these patches. In this version,
the MLE is computed at each x from the set of values{

u(y − δ); δ ∈ [−f, f ]× [−f, f ] and y ∈ Vnx+δ

}
.

This refined version is the one used in the experimental section. The whole refined algorithm is
described in Algorithm 1.

6. Experiments and discussion. This section is devoted to the experimental analysis of the
denoising scheme introduced in the previous section. We confront PARIGI with the recent state
of the art approaches [20, 17] on pure impulse noise and with [20, 33] on the mixture of impulse
and Gaussian noise. Comparison results are provided both under the form of PSNR tables and of
visual experiments. The last part of the section is devoted to a short discussion on the link between
image regularity models and denoising approaches.

6.1. Pure impulse noise. In this paragraph, we present some experiments on pure impulse
noise. Table 6.1 describes the PSNR obtained with the three methods ([20, 17] and our approach)
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Algorithm 1: Denoising algorithm PARIGI

input : Image u, half patch size f , half size of the research zone t, number of iterations Nit

(Nit = 2 by default)
output: Denoised image uNit+1

Initialize u1 = u;
for i from 1 to Nit do

Estimate p on ui; // See Section 5.1

Compute n = NumberNearestNeighbors(p); // see Tables 4.1 and 4.2 in

Section 4.2.2.

for each pixel x do
Lx = ∅;

end
for each pixel x do

Find Vnx , the subset of Vx corresponding to the n nearest neighbors of Px for
Dweighted in ui;
for each δ ∈ [−f, f ]× [−f, f ] do
Lx+δ = Lx+δ ∪ {ui(y + δ), y ∈ Vnx };

end

end
for each pixel x do

Obtain (û(x), σ̂(x)) as the MLE from the set Lx; // see Section 4.2.2.

end
Compute

ui+1 = û.1M + u.(1− 1M)

where
M = {x ∈ Ω; |û(x)− u(x)| > σ̂(x)}.

end
Return uNit+1

on the 512×512 classical images Lena, Bridge, Baboon and Barbara 3. Let us recall that the PSNR
is a common way to measure the quality of a restored image v in comparison to the undamaged
one u0. It is given by the formula

PSNR(u0, v) = 10 log10

2552|Ω|∑
x∈Ω(u0(x)− v(x))2

,

where |Ω| is the size of the support of u0. For Lena, Bridge and Baboon, the PSNR results
of [20, 17] are taken from Table 1 in [17]. Our result on these images are thus obtained with the
same noise ratios, but different noise samples. The results on Barbara are all obtained on the same
noise samples, using the codes kindly provided by the authors, both for the trilateral filter 4 and
for ROLD-EPR. Table 6.1 shows very similar performances between PARIGI and ROLD-EPR,
at least for the first three images. This proves that a patch-based approach is well founded for

3The first three images are those available on the website www.math.cuhk.edu.hk/~rchan/paper/dcx. The Bar-
bara image is available for instance at http://www.irisa.fr/vista/Themes/Demos/Debruitage/images/.

4The authors of [20] provide their code on their webpage www.ssc.wisc.edu/~thuegeri.
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random-valued impulse noise removal. Much larger differences in PSNR can be observed on the
image Barbara. As we will see in the following, these remarkable differences in performance can be
mostly explained by the way the three denoising approaches are handling geometrical textures in
images.

In order to evaluate the precision of the PSNR results, for each value of p and each method,
we compute the PSNR for 10 different noise realizations. In practice, the standard deviation of
the PSNR for all methods is always very close to 0.1: for instance, for the scheme PARIGI on
the image Lena and p = 0.4, the empirical average PSNR is 34.19 and the corresponding standard
deviation is 0.096. This means that if we observe, between two methods, PSNR differences smaller
than

√
2× 0.1 ' 0.14, these differences can be considered as meaningless.

Figure 6.1 provides a visual comparison of the different approaches on the four images when
p = 20%. In this simple case, all methods are efficient and results are visually quite similar,
although the result of our scheme might be slightly smoother. Figures 6.2 and 6.3 correspond to a
more complex denoising situation, with a noise ratio of 40% on Lena and 50% on Barbara. On Lena,
the result of PARIGI is smoother than the ones of ROLD-EPR [17] and ROAD-Trilateral [20], in
which some clues of impulse noise remain. On Barbara, while all schemes yield reasonable results
on constant regions, our approach is the only one to handle properly the regular stripes of the
clothes, while the trilateral filter and ROLD-EPR replace them by mottled textures.

ROAD-Trilateral [20] ROLD-EPR [17] PARIGI

Lena 512× 512, p = 20% 36.70 37.45 38.33
Lena 512× 512, p = 40% 31.12 32.76 34.18
Lena 512× 512, p = 60% 26.08 29.03 29.96

Bridge 512× 512, p = 20% 27.60 27.86 27.68
Bridge 512× 512, p = 40% 24.01 24.79 24.80
Bridge 512× 512, p = 60% 20.84 22.59 22.03

Baboon 512× 512, p = 20% 24.18 24.49 24.17
Baboon 512× 512, p = 40% 21.60 21.92 22.02
Baboon 512× 512, p = 60% 19.52 20.38 20.13

Barbara 512× 512, p = 20% 24.17 26.16 33.91
Barbara 512× 512, p = 40% 23.11 23.72 29.92
Barbara 512× 512, p = 60% 21.71 22.65 24.93

Table 6.1
PSNR results of different restoration filters for the 512× 512 images Lena, Bridge, Baboon and Barbara for pure

impulse noise.

6.2. Gaussian and impulse noise mixture. In this paragraph, we investigate the perfor-
mance of PARIGI for the denoising of images suffering from a mixture of Gaussian and impulse
noise, by confronting it with the recent approaches [20, 33]. Table 6.2 shows the PSNR results of
the three methods for different combinations of Gaussian and impulse noise, on Lena and Barbara.
The results for the l1 − l0 minimization approach of Xiao et al. are taken from Tables 8 and 9
in [33]. The results of the trilateral filter are computed on the same noise samples as our approach.
We observed that the parameter σR of the trilateral filter, which controls its radiometric influence,
has a great impact on the performances of the code. For this reason, we choose for each mixture
experiment the parameter σR which yields the best PSNR. Other parameters are chosen as pro-
posed by default in the code provided by the authors. For both images and for each mixture of
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Gaussian and impulse noise, our scheme yields the highest PSNR. Observe that the ROLD-EPR
approach has not been developed for such mixed noises, but still provides very reasonable results
in this case. Again, the performance improvements observed on Barbara with the scheme PARIGI
are higher than those observed on Lena, especially when p and σ become larger. These results are
also illustrated on Figure 6.4.

ROAD-Trilateral [20] Xiao [33] PARIGI

Lena 512× 512, p = 10% σ = 5, 33.23 34.98 36.03
Lena 512× 512, p = 30% σ = 5 29.90 32.04 33.88
Lena 512× 512, p = 10% σ = 10, 31.45 32.75 33.40
Lena 512× 512, p = 30% σ = 10 29.28 30.42 31.97
Lena 512× 512, p = 10% σ = 15 29.96 30.85 31.37
Lena 512× 512, p = 30% σ = 15 28.37 29.11 30.18

Barbara 512× 512, p = 10% σ = 5, 27.66 30.48 31.55
Barbara 512× 512, p = 30% σ = 5 24.44 25.92 29.28
Barbara 512× 512, p = 10% σ = 10, 25.74 28.42 30.12
Barbara 512× 512, p = 30% σ = 10 23.94 25.34 28.19
Barbara 512× 512, p = 10% σ = 15 24.55 27.31 28.8
Barbara 512× 512, p = 30% σ = 15 23.39 24.55 27.33

Table 6.2
PSNR results of different restoration filters for the 512 × 512 images Lena and Barbara, and different mixtures

of Gaussian and impulse noise.

6.3. Discussion. It is remarkable that the patch-based method presented in this paper pro-
vides such good performances on Barbara, when compared to state of the art approaches. Such a
difference cannot be observed on Bridge, Baboon or Lena. The visual experiments of Figures 6.3
and 6.4 suggest that this difference is mostly due to the way the different methods are handling the
regular stripes on Barbara’s clothes. This is confirmed by the experiments shown on Figure 6.5. In
this example, we compare several denoising procedures on a synthetic 256×256 image composed of
perfect vertical stripes and suffering from pure impulse noise, with p = 50%. Thanks to the huge
patch redundancy of this particular image, PARIGI is able to recover the vertical stripes almost
perfectly after a few iterations, providing a result very close the original image. The variational
approach of [17] and the trilateral filter [20] do not fully take advantage of this redundancy, and
this explains their quite poor results on this kind of image. On the contrary, we can observe on
Figure 6.1 that the edge preserving regularization of [17] seems to preserve the fur of the mandrill
image slightly better than our patch-based approach. An interesting direction of research, which
is beyond the scope of this paper, would consist in identifying the image classes (or, at least, the
texture classes) optimally restored by each kind of denoising approach.

7. Conclusion. In this paper, it is shown that a patch-based approach can be an efficient tool
to remove mixtures of Gaussian and impulse noises. This result was known (and has been widely
studied) in the particular case of Gaussian noise, but its extension to impulse degradations necessi-
tates a careful choice of both the similarity measure between patches and the statistical estimator of
the original patches. It is shown on several experiments that this patch-based approach permits to
attain state of the art denoising performances on classical images. An important performance gain
is demonstrated on geometrically regular textures. This work opens several perspectives. First, as
explained in the previous section, we intend to explore the connections between image or texture
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regularity models and the denoising performances of different kinds approaches (local filters, varia-
tional methods, patch-based approaches). In particular, it would be of great interest to determine
which image class is optimal for each denoising method. Another possible extension of this work
includes the collaboration of different denoising approaches, depending on the image local regular-
ity and redundancy. Finally, we intend to study the theoretical bounds of impulse noise removal,
as pioneered by [7] and [25] in the case of Gaussian noise.
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Fig. 6.1. Comparative results on Lena,Bridge,Baboon and Barbara with p = 20% of uniform impulse noise. For
each column, from top to bottom: original image, noisy image, ROAD+trilateral [20], ROLD+EPR [17], PARIGI.
Images should be seen at full resolution on the electronic version of the paper.
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(a) Noisy, p = 40% (b) Trilateral filter [20]

(c) ROLD+EPR [17] (d) PARIGI

Fig. 6.2. Comparative results on Lena in the case of pure impulse noise, p = 40%.
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(a) Noisy, p = 50% (b) Trilateral filter [20]

(c) ROLD+EPR [17] (d) PARIGI

Fig. 6.3. Comparative results on Barbara in the case of pure impulse noise, p = 50%.

25



(a) p = 0.1, σ = 5

(b) p = 0.3, σ = 15

(c) p = 0.1, σ = 5

(d) p = 0.3, σ = 15

Fig. 6.4. Comparative results on Lena and Barbara with p ∈ {10%, 30%} of uniform impulse noise and σ ∈
{5, 15}. For each subfigure, from left to right: noisy image, result of the trilateral filter [20], PARIGI.
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(a) Original image (b) Noisy image, impulse noise, p = 50%

(c) Trilateral filter [20], PSNR = 19.77 (d) ROLD-EPR [17], PSNR = 26.63

(e) PARIGI. On the left, Nit = 1, PSNR = 30.43. On the right, Nit = 4, PSNR = 36.74

Fig. 6.5. Comparison of different denoising approaches on the image Stripes, with p = 50%.27


