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PARABOLIC GEODESICS AS PARALLEL CURVES

IN PARABOLIC GEOMETRIES

MARC HERZLICH

Abstract. We give a simple characterization of the parabolic geodesics
introduced by Čap, Slovák and Žádník for all parabolic geometries. This
goes through the definition of a natural connection on the space of Weyl
structures. We then show that parabolic geodesics can be characterized
as the following data: a curve on the manifold and a Weyl structure along
the curve, so that the curve is a geodesic for its companion Weyl structure
and the Weyl structure is parallel along the curve and in the direction of
the tangent vector of the curve.

Introduction

Parabolic geometries have attracted much interest in the recent years,
providing an efficient framework for tackling problems in various geome-
tries as, e.g., those induced by conformal or Cauchy-Riemann (CR) struc-
tures. There exists curves in parabolic geometries (hereafter called para-
bolic geodesics) that play a similar role as geodesics in Riemannian geom-
etry: for instance, they provide natural local charts adapted to the geometry
at hand, see [16] for applications.

In conformal geometry, conformal geodesics may have been known to
Cartan [8] and their study has been revived in the 80’s by Ferrand [14]. For
CR structures, canonical curves, or chains, were defined by Cartan [9, 10]
in dimension 3, and by Chern and Moser [11] in any dimension. Another
definition was then introduced by Fefferman [13] and more general curves
were studied by Koch [21, 22]. A general definition of distinguished curves
for all parabolic geometries, or parabolic geodesics, was then given by Čap,
Slovák, and Žádník [6, 7].

However, and contrarily to geodesics, parabolic geodesics are not defined
directly as solutions of a natural differential equation on the manifold itself,
but rather as projections of special curves on a natural principal bundle (the
so-called Cartan bundle) over the base manifold. To the knowledge of the
author, natural differential equations for parabolic geodesics have been de-
rived only in the case of conformal or CR geometry [1, 11, 13, 14, 21, 22].
The goal of this short paper is then to provide such a simple definition. To
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2 MARC HERZLICH

achieve this, we shall need to study in some detail a special class of connec-
tions in parabolic geometries: the Weyl structures, introduced by Čap and
Slovák [5] and independently by Calderbank, Diemer and Souček [3]. The
set of Weyl structures forms a bundle, and we shall show that this bundle
admits a natural connection. In a second step, we shall prove the following

Main Theorem. Distinguished curves (parabolic geodesics) on a manifold

endowed with a parabolic geometry are exactly the curves that satisfy the

following requirements:

(i) they are parallel for a Weyl structure ;

(ii) this Weyl structure is itself parallel along the curve and in the di-

rection of the tangent vector of the curve for the natural connection

acting on the bundle of Weyl structures.

The paper is organised as follows. Section 1 recalls the basic facts on
parabolic geometries and their Weyl structures. Sections 2 and 3 yield the
definition of the natural connection on the bundle of Weyl structures. Our
main result is proved in section 4. The paper ends in section 5 with a few
examples of computations, where we shall re-derive from our setting known
equations in the most simple cases.

Acknowledgements. – This note emerged from a series of discussions with
Paul Gauduchon and the author is happy to acknowledge his influence on
this work. He also thanks Olivier Biquard and Charles Francès for their
interest and comments.

1. Parabolic geometries

We recall here a few basic facts on parabolic geometries. Our main ref-
erences in this section are [3, 5, 6]. In all what follows, we shall denote by
M a connected manifold (of dimension n), by G a (real) semi-simple Lie
group, and by P a closed parabolic subgroup of G, whose Lie algebras will
be denoted by g and p. This implies the existence of a filtration of g:

g = g(−k) ⊃ g(−k+1) ⊃ · · · ⊃ g(0) = p ⊃ g(1) ⊃ · · · ⊃ g(k)

for some positive integer k. Here one has g(1) = [p, p] (thus g(1) is the max-
imal nilpotent ideal in p and one has g(1) = p

⊥ with respect to the Killing
form of g), g(2) = [g(1), g(1)], and the subsequent g( j) for j > 0 are the ele-
ments of the descending central series of g(1); for j < 0, the terms of the
filtration are defined by g( j) = (g(− j−1))⊥. The associated graded Lie algebra
gr(g) factors as

gr(g) = g−k ⊕ g−k+1 ⊕ · · · ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk

where g j
= g( j)/g( j+1). Thus, [gi, g j] ⊂ gi+ j for any i and j in {−k, . . . , k}.

Any choice of a Cartan involution in g induces a Lie algebra isomorphism
between g and gr(g). There is no canonical choice of a Cartan involution,
but any two such choices are related by the adjoint action of an element of P.
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For reasons that will be clear below, the choice of such an identification will
be harmless for our purposes, hence we shall assume that such a choice has
been made once and for all. It will also be useful to consider the subalgebras
g+ = g0 ⊕ g1 ⊕ · · · ⊕ gk and g− = g−k ⊕ · · · ⊕ g−1 ⊕ g0 in g. The smaller
subalgebras g>0 and g<0 are defined by removing the 0-th factor in the above
formulas. We shall denote by P0 the closed subgroup of P whose adjoint
action preserves the grading of g into the g0-modules gi (i = −k, . . . , k);
its Lie algebra is of course g0. In the same vein, P>0

= exp(g>0) is the
connected subgroup of P whose Lie algebra is g>0. It is then clear that
P0 = P/P>0 is isomorphic to P0; this is the group known as the Levi factor.

Definition 1.1. A parabolic geometry of type (G, P) on M is given by a
P-principal bundle G → M and a section ω (a Cartan connection) of the
bundle of 1-forms on G with values in g such that

(a) ω is equivariant with respect to the natural action of P, i.e.

(Rp)∗ω = Ad(p−1) ◦ ω for any p ∈ P ;

(b) ω reproduces the Maurer-Cartan form of P on vertical vector fields ;
(c) ωe : TeG → g is an isomorphism at any e in G .

Under a mild cohomological condition on the Lie algebras g and p, the
geometric structure can be entirely described at the bottom level, i.e. on the
manifold M itself, as a filtration of the tangent bundle T M of the form

T M = T(−k)M ⊃ · · · ⊃ T(−1)M ,

induced by the identification of T M with the associated bundle G ×Pg/p, to-
gether with a reduction of the structure group of the associated graded bun-
dle gr(T M) to P0. A fundamental theorem due to Čap-Schichl [4] (see also
[6] for a presentation in book form with a different proof) asserts that un-
der another, similar, algebraic condition on the pair (g, p), any such filtered
structure on T M which satisfies a simple compatibility condition between
the Lie algebraic bracket of g and the bracket of vector fields (this condition
is called regularity) induces a parabolic geometry in the sense given above.
Moreover, the latter is unique up to isomorphism if the Cartan connection
is required to be normal, another algebraic condition on the curvature of
ω. All classical examples of parabolic geometries (e.g. conformal geome-
tries of any signature, CR geometry, etc.) belong to this setting. Another
example is projective geometry (i.e. the geometry induced by a projective
class of torsion-free connections on the tangent bundle), with the special
feature that the first cohomological condition allued to above is not satisfied
in this case, hence the underlying geometric structure does not reduce to a
filtration of the tangent bundle and a reduction of the structure group of the
induced graded bundle; apart from this, it however fits into the parabolic
setting rather nicely, and we shall also discuss this example later.

The last tool for our construction will be a subgroup P− of G whose Lie
algebra is g−. We shall moreover assume that there is such a subgroup so
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that P∩ P− = P0. This is a mild algebraic condition which is satisfied in all
classical cases; note that it is also satisfied when all three groups P, P0, and
P− are connected.

2. Weyl structures

Similarly to the whole family of Levi-Civita connections of al metrics in
a conformal class, very parabolic geometry admits a family of distinguished
connections called Weyl structures. There are different ways to define them,
but the following, due to Čap and Slovák [5], will be the most useful here.

Definition 2.1. A Weyl structure is a reduction G 0 of the P-principal bundle
G to the structure group P0. This can be equivalently described as a P0-
equivariant bundle map σ : G0 → G , where G0 = G /P>0.

Any Weyl structure induces a principal connection on G , whose construc-
tion is done as follows : at any point e = σ(e0) of the image of σ in G , the
tangent bundle TG splits as

TeG = T V
e G ⊕ T H

e G

where T V
e G is the vertical bundle and T H

e G = (ωe)−1(g<0). Since ω is equi-
variant and P0 stabilizes every graded subspace g j in g, this splitting is in-
variant by the right action of P0 on σ(G0) and it can be extended as an
equivariant connection on G by the right action. This of course yields con-
nections on bundles associated to G through a representation of P, such as,
e.g., the tangent or cotangent bundles of the base manifold M. We shall
term it the Weyl connection induced by σ to make it clear that it depends on
the choice of σ.

An equivalent definition of Weyl structures has been given in [3]. Weyl
structures are defined there directly as special P-equivariant splittings of
TeG compatible with the natural filtration of g. It is an easy exercise to
show that any such splitting is necessarily induced by a unique section of G

over G0, thus yielding the equivalence between the two definitions.

From now on, we shall make extensive use of bundles associated with
the Cartan bundle G . We shall need the following notation: for any space X

endowed with a P-action, the bundle G ×P X is the quotient of the product
space G × X by the equivalence relation (e, x) ∼ (ep, p−1x) for all p ∈ P.
We denote by [e, x] the class of (e, x) in G ×P X, and sections of G ×P X are
given by P-equivariant maps from G to X.

It is well known that reductions to P0 of the structure group of a P-
principal bundle are classified by sections of the associated bundle

W = G ×P P/P0.

Indeed, given a reduction σ, one can build a map þ from G to P/P0 which
is P-equivariant as follows: one begins by fixing þ(σ(e0)) = [1]P/P0 at any
point σ(e0) in the image of σ; note that here and henceforth, an element



PARALLEL CURVES IN PARABOLIC GEOMETRIES 5

between brackets will always denote its class in the quotient space indicated
as an index to the right bracket. One then extends þ equivariantly by letting

þ(σ(e0)p) = p−1[1]P/P0 = [p−1]P/P0 .

In other words, σ induces a section τ =
[

σ(e0), [1]P/P0

]

=
[

e, þ(e)
]

of the
bundle W .

Definition 2.2. The bundle W is called the bundle of Weyl structures of the
parabolic geometry.

The space of sections of W admits a natural right action of the space of
sections of the bundle in nilpotent groups G0 ×P0 P>0

= G ×P P>0, where the
action of p in P or in P0 on an element n of P>0 is by inner automorphisms:
n 7−→ Intp(n) = pnp−1. Hence our claim here is that there is a right action
of the space of sections of G ×Int P>0 on W = G ×L P/P0 (where L stands
for the left action). Indeed, a section of G ×Int P>0, seen as an equivariant
map n : G → P>0, acts on the right on

þ : G → P/P0, þ(e) = [p(e)]P/P0

to yield a map

þ ⊙ n : G → P/P0,
(

þ ⊙ n
)

(e) = [n−1(e)p(e)]P/P0

This last section of W corresponds to the Weyl structure σ · n where the
right factor n acts by right multiplication on the map σ : G0 → G . This
description of the action of G ×P P>0 on the bundle of Weyl structures is
equivalent to that given in [3, §2.4–2.5].

The bundle W is associated to the principal bundle G through a P-action
on P/P0 which does not extend to a G-action. Since G does not have a
true connection but only a Cartan connection, it does not induce a natural
connection on W . Of course, any Weyl structure induces a connection on
W , but since there is no natural choice of a Weyl structure this does not help
for our purposes. However, there is a special class of associated bundles that
are naturally endowed with a canonical connection: these are the bundles
induced from a G-action.

3. The natural connection on the space ofWeyl structures

Let X be a manifold endowed with an action of the group G. The bundle
G ×P X is then endowed with a natural connection, which can be defined as
follows: G ×P X is a quotient of the product space G × X and the kernel of
the differential of the projection map π̃ : G × X → G ×P X at (e, x) is the
range of the injective map

p→ T(e,x) (G × X) = TeG × TxX, ξ 7→ (ξ̃e,−ξ̆x)

where ξ̃e and ξ̆x are the natural vectors induced by the actions:

ξ̃e =
d

dt

(

e exp(tξ)
)

|t=0 and ξ̆x =
d

dt

(

exp(tξ) x
)

|t=0 .



6 MARC HERZLICH

Any element ξ of p yields a vector field ξ̃ = ω−1(ξ) on G , which coincides
with the previously defined ξ̃. Thus, the kernel of the projection map is also
identified to the range of the map ξ 7→ (ω−1

e (ξ),−ξ̆x) from p to TeG × TxX.

Definition 3.1. The horizontal space T H (G ×P X) is the projection through
π̃ of T H (G × X) = Range

(

ξ ∈ g 7→ (ω−1
e (ξ),−ξ̆x)

)

.

Thus, the horizontal space T H (G ×P X) is naturally isomorphic to the
quotient space T H (G × X) /Ker π̃∗. Its dimension equals that of g/p hence
that of M, and it projects itself isomorphically to T M through the map

(ω−1
e (ξ),−ξ̆x) 7→ π∗

(

ω−1
e (ξ)
)

tangent to the bundle projection π : G → M. The connection induced
by this choice of horizontal space will be called the canonical (tractor)

connection of the space G ×P X.

We can now apply this construction to the case where X = G/P−. The
tangent space at [g]G/P− to X is the image of the map ξ 7→ ξ̆[g] already
defined above. By analogy with conformal geometry (where G/P− is the
Moebius sphere up to a covering), we shall make the following definition.

Definition 3.2. The bundle S = G ×P G/P− is called the Moebius bundle

of the parabolic geometry.

Proposition 3.3. The bundle of Weyl structures W is naturally embedded

as an open set in the Moebius bundle S .

Proof. – This is clear since one may send any element
[

e, [p]P/P0

]

of W to
[

e, [p]G/P−
]

, which is a well defined map from a P-bundle to another. The
embedding is nothing but the natural embedding of P/P0 in G/P− in each
fiber, whose differential is obviously injective. �

Corollary 3.4. The bundle of Weyl structures admits a natural tractor con-

nection inherited from its embedding as an open set of the Moebius bundle.

We shall now denote by D the tractor connection on Weyl structures.
Choose now a (local) Weyl structure σ (thought as a P0-equivariant section
σ : G0 → G ), and a vector X at a point x in M. Then one may lift X to a
vector X̂0 in G0 at a point e0 in G0, and the tractor derivative DXσ of σ at
x in the direction of X is given by the following element of the cotangent
bundle T ∗M = G ×P g

>0

DXσ =
[

σ(e0) , projg>0 ◦ ωσ(e0)(σ∗(X̂0))
]

.

With this in mind, we can now prove a helpful fact. We begin by recalling
that any choice of Weyl structure σ : G0 → G induces a natural connection
on G obtained by choosing to split the tangent bundle of G at any point in
the image of σ as the direct sum of the vertical subspace ω−1(p) with the
horizontal subspace ω−1(g<0). Thus, it is given by the connection 1-form
ωσ = ω+ = projp ◦ ω where projp denotes the projection onto p in g.
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The Weyl connection is a G0-connection: indeed, by the very definition
of P0, the right P0-action on G preserves the decomposition of TG = ω−1(g)
into its graded components. Hence the connection preserves the P0-bundle
given by the image of σ. Equivalently, the Weyl connection can be pulled
back to G0, and the connection 1-form associated to this connection on G0

is given by the projection ω0
= projg

0
◦ ω onto g0 of ω.

Lemma 3.5. The tractor derivative of a Weyl structure σ : G0 → G mea-

sures the failure of the Weyl structure to lift horizontal vectors in G0 to hor-

izontal vectors in G .

More precisely, for any vector Y in T M and any horizontal lift Ŷ0 in G0

for the G0-Weyl connection induced by σ, the vertical part of σ∗(Ŷ0) for the

G -Weyl connection equals DYσ.

Proof. – Obvious corollary of the remarks above. �

Weyl structures whose tractor-derivative vanishes in every direction were
called normal by Čap and Slovák [6, Definition 5.1.12].

4. Parabolic geodesics as parallel curves for the natural connection

We can now proceed to the main result of this note. Following Čap,
Slovák, and Žádník [6, 7], we recall the definition of parabolic geodesics.

Definition 4.1. For any P0-invariant subset a of g<0, let

U
a
= { ξ ∈ g \ {0} | ∃p ∈ P such that Adp−1(ξ) ∈ a }.

If a = g<0, then we shall simply denote U = U g<0
.

We recall that a constant vector field on G is a section of TG of the form
ξ̃ = ω−1(ξ) where ξ is a fixed element of g.

Definition 4.2. Let a be a P0-invariant subset of g<0. A distinguished curve
in a parabolic geometry or parabolic geodesic of type a is the projection on
M of an integral curve in G of a constant vector field ξ̃ = ω−1(ξ̃), where ξ is
an element of U a (hence it is not zero).

The most natural choice is a = g<0. For simplicity’s sake, we shall only
consider this case here and omit the type in the notation.

This definition provides a very general setting encompassing all examples
of natural curves used in the most studied examples of parabolic geometries
such as, e.g., conformal geodesics of Ferrand [14] in conformal geometries
(of any signature), or chains [9, 10, 13] or horizontal curves of Koch [21, 22]
in CR geometry. For more details, we refer to Čap and Slovák’s book [6].
We can now prove our main result.

Theorem 4.3. Parabolic geodesics of general type are exactly the curves

satisfying the following requirements:

(i) they are parallel for a Weyl structure ;
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(ii) the Weyl structure itself is parallel, among the curve, in the direction

of the tangent vector of the curve for the natural tractor connection

of the bundle of Weyl structures.

Proof. – Let γ be a parabolic geodesic in the sense of Čap and Slovák, and
denote by γ̂ a lift on G that is an integral curve of a constant vector field
ξ̃ = ω−1(ξ), for a fixed ξ in g. This immediately defines a Weyl structure
along γ: indeed, γ̂ projects itself onto a curve γ̂0 in G0, and one may define
a section σ : G0|γ → G|γ as follows: for any e0 in G0|γ(s), there is p0 in P0

such that e0 = γ̂0(s)p0, and one sets σ(e0) = γ̂(s)p0. As an example, we
have σ(γ̂0(s)) = γ̂(s).

One now needs to slightly change the lift: as ξ is not zero and in U ,
one may choose p in P such that Adp−1(ξ) belongs to g<0 \ {0}. Thus γ̂p is
another lift of γ which is an integral curve of Adp−1(ξ). This shows that one
may always suppose that ξ belongs to g<0. We shall now make this choice
and denote by γ̂ a lift of γ satisfying this extra property, and use the Weyl
structure induced by this choice of the lift.

At γ̂(s), the horizontal space in G for the so defined Weyl structure is
ω−1
γ̂(s)(g

<0). Recall now that any vector on M is an element of G ×P g/p:
more precisely, any [e, η̄] in G ×P g/p corresponds to a vector

X = π∗ ◦ ω
−1
e (η),

where η is any lift of η̄ in g. Thus, the vector field γ′(s) may be thought as
[

γ̂(s), [ξ]g/p
]

and its covariant derivative in its own direction with respect to
the previously defined Weyl structure is given by the usual computation

[

γ̂(s), ad(θ(γ̂′(s)))([ξ]g/p
]

,

where θ is the connection 1-form of the Weyl structure. But since ω(γ̂′)
belongs to the space g<0, the curve γ̂ is an horizontal curve in G and this
implies that θ(γ̂′(s)) = 0. Thus the curve γ on M is a geodesic for this
choice of Weyl structure.

We now prove that the Weyl structure itself, seen as a section of W , is
parallel in the direction of γ′ with respect to the tractor connection. Along
γ, the section τ associated to the Weyl structure is given by

τ|γ(γ(s)) =
[

γ̂(s) , [1]P/P0

]

,

or, seen as a section of the Moebius bundle G ×P G/P−,

τ|γ(γ(s)) =
[

γ̂(s) , [1]G/P−
]

.

Lifting this curve to G ×G/P−, we can compute its tangent vector:

(γ̂′(s) , 0) = (ω−1
e (ξ), 0).

Since ξ ∈ g<0,
d

dt

[

exp(tξ)1
]

G/P− = 0

and it follows that τ is a horizontal section along γ.
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Conversely, let γ be a curve on M such that there exists a Weyl structure
for which the curve γ is a geodesic and which is tractor-parallel along γ in
the direction of γ′. Let γ̂0(s) any local horizontal lift of γ(s) to G0. From the
very definition of the Weyl connection on G0 (see above), the fact that γ̂′0(s)

is horizontal in G0 is equivalent to the fact that ω0
(

γ̂′0(s)
)

= 0, and since
γ′(s) is represented in T M = G0 ×P0 g<0

= G0 ×P0 g/p by

γ′(s) = [e0, ω
<0 (γ̂′0(s)

)

+ p],

one deduces that ω<0
(

γ̂′0(s)
)

is constant.

We now define γ̂(s) = σ ◦ γ̂0(s). This is a lift of γ(s) on G , and Lemma
3.5 shows that γ̂′(s) is horizontal for the Weyl connection. Thus, ω+ ((γ̂′(s))
vanishes, and

ω
(

(γ̂′(s)
)

= ω<0 ((γ̂′(s)
)

is a constant element of g. Consequently, γ(s) is a parabolic geodesic. �

5. Examples

We shall consider here three classical examples which historically served
as compelling motivations for the study of general parabolic geometries:
(pseudo-)conformal geometry, projective classes of torsion free connec-
tions, and Cauchy-Riemann structures. Of course the results are already
known in all these cases, but this is precisely the reason why they may be
considered as interesting settings to test the result of this note. Moreover,
one may choose the group G to be a linear group in those three cases, and
this simplifies a lot the task of computing the Cartan connection as one may
use the natural representation to shift from the principal bundle viewpoint
into a vector bundle approach which is easier to cope with.

5.1. Conformal geodesics. These are the oldest known examples of dis-
tiguished curves in a parabolic geometry. They appear in the 1982 paper by
Ferrand [14], but Bailey and Eastwood [1] mention that they might have
been known earlier to Penrose [23, 24]. Some authors moreover claim
that they are not-so-hidden in Cartan’s works on conformal geometry. We
shall here show that our approach gives the usual equations for conformal
geodesics as given by Bailey and Eastwod [1], Ferrand [15], or Gauduchon
[19].

If (M, [g]) is a conformal manifold of signature (p, q) (n = p + q > 3),
one may take G = O(p + 1, q + 1) and P is the isotropy subgroup of an
isotropic ray (half-line) in Rp+q+2. Thus g = g−1 ⊕ g0 ⊕ g1 where g−1 ≃ Rn,
g0 ≃ co(p, q), g1 ≃ (Rn)∗ and the subgroup P0 of P preserving the grading is
P0
= CO(p, q) = R>0 × O(p, q).

The Moebius bundle is more easily identified with the help of the so-
called tractor or Cartan bundle [2, 5, 19], and the existence of such a bundle
motivated our choice of groups, see Graham and Willse [18] for subtleties
in this issue. The tractor bundle is the vector bundle G ×P R

p+q+2. As it is



10 MARC HERZLICH

induced by the (faithful) standard representation of G, the tractor connection
may rather be defined on this vector bundle rather than on G . For this
purpose, we notice that there is a natural filtration

0 ⊂ Λ ⊂ Λ⊥ ⊂ T,

where Λ is an oriented isotropic line bundle and Λ⊥ is its orthogonal sub-
space for the natural pseudo-Riemannian metric of T. Any choice of metric
g in [g] induces a Weyl structure, which turns this filtration into a graduation

T ≃g 1 ⊕ T ∗M ⊕ 1,

where each 1 denotes a trivial line bundle, the first one being nothing but
the already introduced Λ. Under this isomorphism, the tractor connection
on a section u = (λ, α, µ) of T is explicitly computed as

DXu =



















dλ(X) + S g(α♯, X)
D

g

X
α − λ g(X, ·) + µ S g(X, ·)

dµ(X) − α(X)



















,

where S g
=

1
n−2

(

Ricg − Scalg

2(n−1) g
)

is the Schouten tensor (sometimes called the
Rho-tensor) of the metric g and X is any tangent vector. The bundle T is
endowed with a pseudo-Riemannian metric of signature (p+ 1, q+ 1) given
by H(u, u) = g−1(α, α)−2λ µ and the P-bundle G is the the subbundle of the
orthonormal frame bundle of T whose elements are isometries from Rp+q+2

to T sending a fixed isotropic ray R>0e0 in Rp+q+2 to the ray Λ>0.

One may now take P− to be the subgroup of G = O(p+1, q+1) fixing an
isotropic ray R>0e∞, where e∞ is any vector in Rp+q+2 such that 〈e0, e∞〉 = 1.
One has then P∩P− = P0 as requested and one concludes that the Moebius
bundle S = G ×P G/P− is the bundle of isotropic rays in T.

When the signature is Riemannian (q = 0), each fiber of the Moebius
bundle consists in two copies of the Moebius sphere Sn, seen as the set
of isotropic lines in Rn+2 with Lorentzian signature (+ · · · + −). The bun-
dle of Weyl structures W is then identified to S + \ {Λ>0}, where S + is
the connected component of S containing Λ>0. For arbitrary p and q,
each fiber of W is the image of the embedding of T ∗M into S defined
by β 7−→ R (1

2g−1(β, β), β, 1), which reproduces the usual conformal embbe-
ding of the flat pseudo-Riemannian space Rp+q of signature (p, q) into the
set of isotropic rays of the space Rp+q+2 with signature (p + 1, q + 1). This
embedding will also be used below to compute explicitly the tractor deriv-
ative of a Weyl structure, as it indentifies the cotangent bundle T ∗M to the
vertical tangent space G ×P (g/p−) = G ×P g

>0 of the Moebius bundle.

Weyl structures may be retrieved in the following way: a choice of metric
g fixes a P0-subbundle (hence a background Weyl structure) given by the

frames adapted to the splitting T ≃g (1 ⊕ 1)
⊥

⊕ T ∗M where the trivial line
factors are the same as the ones given above. Any other Weyl structure is
induced in this trivialization by the choice of a field of 1-forms α. This
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yields another splitting T ≃ (1 ⊕ Rw)
⊥

⊕ T ∗M where the first 1 is again the
trivial line bundle Λ but the second trivial line is now generated by

w = (1
2g−1(α, α),−α, 1)

where α belongs to T ∗M (the sign in front of the second factor being chosen
here to simplify further computations). The bundle of orthonormal frames
adapted to this decomposition is again a P0-subbundle of G which is the
image in G of a new Weyl structure σ : G0 → G .

To make the picture complete, we note that a field of 1-forms may be
seen as a section of the bundle in nilpotent groups G ×P P>0 : the filtration
of the Lie algebra g has depth 1 in the conformal case, which means that one
has g = g−1 ⊕ g0 ⊕ g1 and g1 is the abelian algebra Rp+q. Hence, G ×P P>0 is
nothing but the bundle in abelian groups T ∗M = G ×P g

1 which we already
know as a vector bundle. As a result, we recover the simply transitive action
of the bundle of nilpotent groups on the bundle of Weyl structures discussed
in section 2. In the conformal case, this action turns W into an bundle in
affine spaces whose associated vector bundle is T ∗M.

It now remains to compute explicitly the Weyl connection on the tangent
bundle, but this is well-known. Starting with a metric g in the conformal
class, the Weyl connection induced by the Weyl structure translated from g

by a 1-form α is

DαXY = D
g

X
Y + α(X)Y + α(Y)X − g(X, Y)α♯

(if α had been chosen above rather than −α in the formula yielding the
embedding of T ∗M into S , then all occurences of α here should be changed
to −α). Thus one may fix a backround Riemannian metric g0 (and its Levi-
Civita connection D0), and using either the fact that the projection into the
g>0-part of the Cartan connection of conformal geomery is the Schouten
tensor or the formulas given above for the tractor connection on T, one
easily deduces from the definition of the tractor connection given above
that the equations for a conformal geodesic are















0 = Dαγ′γ
′
= D0

γ′γ
′
+ 2α(γ′)γ′ − g0(γ′, γ′)α♯ ,

0 = S Dα(γ′, ·) = S g0(γ′, ·) − D0
γ′α −

1
2g−1(α, α)(γ′)♭ + α(γ′)α .

It is easily checked that either g0(γ′, γ′) = 0 at time s = 0 and it remains
so along the solution curve, or g0(γ′, γ′) never vanishes. In the first case,
the first equation is turned into D0

γ′γ
′
+ 2α(γ′)γ′ = 0, which is the (un-

parametrised) geodesic equation for any Weyl structure, and one recovers
the set of null geodesic curves (which forms a conformally invariant set of
curves). In the second case, one may always solve the first equation for α
and get

α =
1

g0(γ′, γ′)















(

D0
γ′γ
′
)♭
− 2

g0(D0
γ′γ
′, γ′)

g0(γ′, γ′)
(γ′)♭














.
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Thus, the parabolic geodesics are exactly the solutions of the following
well-known third-order equation [1, 14, 19]

γ′′′ +
3
2

|γ′′|2g0

|γ′|2g0

γ′ − 3
g0(γ′′, γ′)
|γ′|2g0

γ′′ − |γ′|2g0
S g0(γ′, ·)♯ + S g0(γ′, γ′)γ′ = 0 ,

where we have of course denoted D0
γ′γ
′
= γ′′ and D0

γ′

(

D0
γ′γ
′
)

= γ′′′.

5.2. Great circles in projective geometry. We now consider the geomet-
ric structure given by a projective class of linear connections, i.e. a class of
torsion-free connections on T M sharing the same family of unparametrized
geodesics. Of course, this example is in a sense vacuous for our purposes
as we expect that the family of (unparametrized) parabolic geodesics will
be the same as the common family of geodesics for all connections in the
projective class. It is however interesting to see how they explicitly appear
in the computations.

Following for instance [2] or [6, chapter 4], we may now take the group
G = S L(n + 1,R) and the isotropy subgroup P of a fixed ray (R>0e0, say) in
R

n+1, where n is the dimension of the underlying manifold. The Lie alge-
bra g splits as g = g−1 ⊕ g0 ⊕ g1 where one has g−1 ≃ Rn, g0 ≃ gl(n,R) and
g1 ≃ (Rn)∗. The group P0 preserving the grading is isomorphic to GL+(n,R).
Fixing a basis (e0, . . . , en) of Rn+1, one takes P− to be the subgroup of G

preserving the hyperplane generated by (e1, . . . , en) together with the orien-
tation induced by the n-form induced from the determinant of Rn+1 by the
choice of e0.

There is again a tractor bundle T = G ×P R
n+1, which contains a natural

oriented line bundle Λ ⊂ T, see [2]. Choosing a Weyl structure amounts
to choosing an hyperplane in T transverse to the line Λ, and this induces
a splitting T ≃ Λ ⊕ (T M ⊗ Λ) reproducing the reduction of the structure
group from P to P0. Given such a splitting (i.e. given a backgroud Weyl
structure), choosing another Weyl structure then amounts to choosing a 1-
form u ∈ (Rn)∗ since the induced hyperplane is the kernel of the map:

(λ, ξ) ∈ Λ ⊕ (T M ⊗ Λ) 7−→ ℓ(λ) − ℓ ⊗ u(ξ).

Equivalently, this defines in T∗ ≃ (T ∗M ⊗ Λ∗) ⊕ Λ∗ the ray whose elements
are (−u ⊗ ℓ, ℓ), where ℓ runs through all positive elements in Λ∗.

On the background manifold, the torsion-free connections on T M are
the same as the set of connections induced by Weyl structures: two Weyl
structures differ one from another by a 1-form, and the relation beween the
Weyl connection ∇u induced by the choice of a 1-form u and a background
Weyl connection ∇ is given by

∇u
XY = ∇XY + u(X)Y + u(Y)X, X ∈ T M, Y ∈ Γ(T M).

The tractor connection has been computed for instance in [2]. To state the
result, one defines a background Weyl structure (i.e. a connection ∇ in
the projective class) and one denotes by P its modified Ricci tensor (or
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Schouten tensor) [2, p. 1209]. As explained there, it is always possible to
choose ∇ such that P is symmetric, and we shall indeed do so. It is then a
simple task to check that a curve γ is a parabolic geodesic if it satisfies the
equations















∇γ′γ
′
+ 2u(γ′)γ′ = 0,

∇γ′u − P(γ′, ·) − u(γ′)u = 0.

The first equation shows that any solution is an (a priori non affinely param-
etrized) geodesic for ∇, and it is again easy to check that one may always
choose the parametrization such that the second equation is satisfied. This
substantiate our previous claim that the set of parabolic geodesics here is
exactly the same as the set of great circles, or common geodesics to all
connections in the projective class.

5.3. Parabolic geodesics in strictly pseudo-convex CR geometry. The
situation in the complex case of positive definite signature is very similar to
the conformal case: if n = 2m + 1 is the dimension of the underlying CR
manifold, one may take the semi-simple group G = S U(m+1, 1) (formally,
taking this group amounts to choosing a slightly refined description of CR
geometry as a parabolic geometry, since one also assumes existence of a
(m + 2)-root of the CR-canonical bundle) and P and P− are the isotropy
groups of the complex lines Ce0 and Ce∞ in Cm+2, where we fixed a basis
(e0, e1, . . . , em, e∞) and the hermitian form given by 〈e0, e0〉 = 0, 〈e∞, e∞〉 =
0, 〈e0, e∞〉 = 〈e∞, e0〉 = 1, and 〈ei, e j〉 = δi j (Kronecker symbol) whenever
(i, j) belongs to {0, . . . ,m,∞}2 \ {(0,∞), (∞, 0)} ; as a result, P ∩ P− = P0.

As in the real case, it is easier to work with the tractor vector bundle
T, see [17, 20]. If (M,H, J) is a strictly pseudo-convex CR manifold of
dimension n = 2m + 1, the tractor bundle is a rank (m + 2) complex vector
bundle endowed with a hermitian form of signature (m + 1, 1). There is
again an exact sequence

0 ⊂ Λ ⊂ Λ⊥ ⊂ T,

where Λ is an isotropic complex line. Choosing a contact form on M whose
kernel is the contact distribution H yields a splitting

T ≃g 1 ⊕ (H∗M)1,0 ⊕ 1,

where the symbol 1 now denotes a trivial complex line bundle and (H∗M)1,0

is the space of 1-forms of type (1, 0) on the contact hyperplane H.

The description of Weyl structures is formally very similar to that given
in the conformal case: the Moebius bundle S is the bundle of isotropic
complex lines in T, the bundle of Weyl structures is S \ {Λ}, and much
of the considerations given above also apply here mutatis mutandis. For
instance, once a reference contact form θ has been fixed, one may describe
W as the image of the embedding α = α|H + α0θ 7→ (1

2 |α
1,0
|H
|2 + iα0, α

1,0
|H
, 1)

of T ∗M in S . This reproduces the standard embedding of the Heisenberg
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algebra in G/P− also gives an identification between the cotangent bundle
and the vertical bundle of the Moebius bundle.

Explicit equations for a curve γ to be a parabolic geodesic are much
longer to obtain in this case than in the previous ones, so we shall skip
leave the detailed computations to the reader. Let us just indicate that ex-
plicit forms of the tractor connection can be found in [17, formula (3.3)]
or in [20, formula (5.11)] (both with respect to the Tanaka-Webster con-
nection), thus leading with some effort to the equations asserting that the
Weyl structure associated to a choice of 1-form α is tractor parallel along
the curve γ. To get the full system of equations for a parabolic geodesic,
one must complement by the equation ensuring that γ is the geodesic for
the Weyl structure defined by the 1-form α, and this can be calculated by
using for instance [3, §4] which easily leads to explicit formulas for Weyl
covariant derivative on the tangent bundle.
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