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October 29th, 2012

UNLOCKING THE STANDARD MODEL

II . 1 GENERATION OF QUARKS . MASSES AND COUPLINGS

B. Machet 1 2

Abstract: We continue investigating the Standard Model for one generation of fermions and two parity-

transformed Higgs doublets K and H advocated for in a previous work [1], using the one-to-one correspon-

dence, demonstrated there, between their components and bilinear quark operators. We show that all masses

and couplings, in particular those of the two Higgs bosons ς and ξ, are determined by low energy considerations.

The mass of the “quasi-standard” Higgs boson, ξ, is mξ ≈ mπ; it is coupled to u and d quarks with identical

strengths. The mass of the lightest one, ς , is mς ≈ mπ
fπ

2
√
2mW /g

≈ 34KeV ; it is very weakly coupled to

matter except hadronic matter. The ratio of the two Higgs masses is that of the two scales involved in the prob-

lem, the weak scale σ = 2
√
2mW

g and the chiral scale v = fπ, which are also the respective vacuum expectation

values of the two Higgs bosons. They can freely coexist and be accounted for. The dependence of mς and mξ

on mπ, that is, on quark masses, suggests their evolution when more generations are added. Fermions get their

masses from both Higgs multiplets. The theory definitely stays in the perturbative regime.

PACS: 11.15.Ex 11.30.Rd 11.30.Hv 12.60.Fr 02.20.Qs

1 Introduction

The extension of the Standard Model [2] for one generation of fermions advocated for in [1] is endowed with

two Higgs doublets, a “chiral” doublet

K =




p1 − ip2

−(s0 + p3)



 , < s0 >=
v√
2
, (1)

and a “weak” doublet

H =




s1 − is2

−(p0 + s3)



 , < s3 >=
σ√
2
, (2)

both isomorphic to the Higgs doublet of the Standard Model [2]. s0 and s3 have non-vanishing vacuum ex-

pectation values (VEV’s) as written in (2). In there, the symbols “s” and “p” stand respectively for “scalar”
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and “pseudoscalar”, such that H and K are parity transformed of each other. Their components that we call

generically h0, h1, h2, h3 transform respectively by SU(2)L and SU(2)R according to

T i
L . h

j = − 1
2

(
i ǫijkh

k + δij h
0
)
,

T i
L . h

0 = − 1
2 h

i,
(3)

and

T i
R . h

j = − 1
2

(
i ǫijkh

k − δij h
0
)
,

T i
R . h

0 = + 1
2 h

i.
(4)

The main steps of this works are the following. In section 2 we give the general formula for the mass of the ~W

gauge bosons in terms of the two VEV’s < s0 > and < s3 >. In section 3 we introduce Yukawa couplings of

quarks to both Higgs doubletsK andH . It could have looked more natural to first introduce the scalar potential,

but it turns out that the latter gets strongly constrained by the former. After giving their general expression, from

which we extract the u and d quark masses in terms of < s0 > and< s3 >, we investigate in section 4 their low

energy limit by using the one-to-one correspondence demonstrated in [1] between K , H and 4-sets of bilinear

quark operators. At this limit, renormalizability is not a concern and Yukawa couplings can be rewritten in a very

simple form in which, in particular, symmetries clearly show up. Using the Partially Conserved Axial Current

hypothesis (PCAC) [3] [4] [5] and the Gell-Mann-Oakes-Renner (GMOR) [6] [5] relation enables to account

for the mass of the pions and to determine the values of all but one Yukawa parameters. The last one is obtained

by identifying the Goldstones of the spontaneously broken weak SU(2)L symmetry. A last constraint results

from considering the π0 − η system and requesting that it be devoid of any tachyonic state. This determines

the quantity (mu − md) < ūu − d̄d > ((mu + md) < ūu + d̄d >) is determined by the GMOR relation).

We comment at length on fermion masses, and the important role of both Higgs doublets in their generation.

After gathering the values of the parameters in section 5, section 6 is devoted to the scalar potential. V (K,H)

is chosen to be invariant by the chiral group U(2)L × U(2)R, which clearly identifies the Goldstone of chiral

symmetry breaking. It only depends on two parameters, one quadratic and one quartic coupling. At low energy,

it receives corrections from the bosonised (low energy) form of the Yukawa couplings, which yields an effective

potential Veff (K,H). A last constraint comes from minimizing Veff at the known VEV’s of the two Higgs

bosons, which reproduce the pion andW masses. It determines the value of the quartic coupling and the masses

of the two Higgs bosons. In section 7, we determine their couplings to quarks, gauge bosons and leptons.

Section 8 provides some additional considerations concerning symmetries, Goldstone and pseudo-Goldstone

bosons. Several symmetries are at work and some fields play dual roles. We focus in particular on the custodial

SU(2) symmetry and on the respective roles of < ūu+ d̄d > and < ūu− d̄d >. Section 9 gives some remarks

concerning more generations. Section 10 is a brief conclusion.

2 Kinetic terms for the Higgs doublets and gauge boson masses

The masses of gauge bosons arise from the kinetic terms

1

2

(

DµK(DµK)† +DµH(DµH)†
)

(5)

for the two Higgs doublets K and H . Dµ is the covariant derivative with respect to the group SU(2)L of weak

interactions. Owing to the laws of transformations (3), the VEV’s of s0 and s3 generate a mass mW for the ~W

gauge bosons

m2
W =

g2

4

(
< s0 >2 + < s3 >2

)
= g2

v2 + σ2

8
, (6)
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in which g is the SU(2)L coupling constant

g ≈ .61 . (7)

3 Yukawa couplings

We choose to first introduce Yukawa couplings because their low-energy limit (see section 4) will in particular

constrain the effective scalar potential.

3.1 General expression

Quarks must be coupled to the two Higgs doublets K and H . Introducing the couplings ρu and ρd to K and λu

and λd to H , the Yukawa Lagrangian writes 1

LY ukawa = + ρd

(

uL dL

)

K dR − ρu

(

uL dL

)

(iτ2K∗)uR

+ λd

(

uL dL

)

H dR + λu

(

uL dL

)

(iτ2H∗)uR

+ h.c., (8)

which gives, explicitly,

LY ukawa = −
[

δ1
v√
2µ3

(ūu+ d̄d) + κ12
σ√
2ν3

(ūu− d̄d)

]

s0 −
[

δ12
v√
2µ3

(ūu+ d̄d) + δ2
σ√
2ν3

(ūu− d̄d)

]

s3

+

[

δ1
v√
2µ3

(

ūγ5d p
− + d̄γ5u p

+ + (ūγ5u− d̄γ5d) p
3
)

+ κ12
σ√
2ν3

(

d̄u p+ − ūd p− + (ūγ5u+ d̄γ5d) p
3
)]

−
[

δ12
v√
2µ3

(

d̄γ5u s
+ − ūγ5d s

− − (ūγ5u− d̄γ5d) p
0
)

+ δ2
σ√
2ν3

(

d̄u s+ + ūd s− − (ūγ5u+ d̄γ5d) p
0
)]

.

(9)

In (8) and (9) the signs have been set such that for positive < s0 > and< s3 >, the fermion masses are positive

for positive ρu,d and λu,d (given that a fermion mass term is of the form −mψ̄ψ). We introduced in (9) the

parameters with dimension [mass]2

δ1 =
ρu + ρd

2

√
2µ3

v
,

κ12 =
ρu − ρd

2

√
2ν3

σ
,

δ12 =
λu + λd

2

√
2µ3

v
,

δ2 =
λu − λd

2

√
2ν3

σ
. (10)

3.2 Fermion masses

We define the two quantum Higgs fields ς and ξ by shifting the scalar fields s0 and s3 occurring respectively in

the Higgs doublets K and H (see (1),(2)) according to

s0 =< s0 > +ς, s3 =< s3 > +ξ. (11)

1τ2 is the Pauli matrix





0 −i

i 0



. The doublets K̃ ≡ iτ2K∗ and H̃ ≡ iτ2H∗ are isomorphic to K and H .
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The two VEV’s (given in (1) and (2)) contribute to the fermion masses according to

mu = ρu < s0 > +λu < s3 >=
vρu + σλu√

2
, md = ρd < s0 > +λd < s3 >=

vρd + σλd√
2

. (12)

Additional remarks concerning fermion masses are written in subsection 4.4.

4 The low energy limit

At low energy we use the one-to-one correspondence between K,H and

K =
1√
2

v

µ3




φ1 − iφ2

−(φ0 + φ3)



 =
v
√
2

µ3




d̄γ5u

− 1
2 (ūu+ d̄d)− 1

2 (ūγ5u− d̄γ5d)



 ≡




k1 − ik2

−(k0 + k3)



 ,

< ūu+ d̄d > = µ3,

H =
1√
2

σ

ν3




ξ1 − iξ2

−(ξ0 + ξ3)



 =
σ
√
2

ν3




d̄u

− 1
2 (ūγ5u+ d̄γ5d)− 1

2 (ūu− d̄d)



 ≡




h1 − ih2

−(h0 + h3)



 ,

< ūu− d̄d > = ν3,

(13)

that has been established in [1] and identify accordingly

(s0, p1, p2, p3) ≃ (k0, k1, k2, k3), (p0, s1, s2, s3) ≃ (h0, h1, h2, h3). (14)

4.1 Rewriting Yukawa couplings

The first consequence of this correspondence is that, defining

m2
12 = κ12 + δ12, (15)

and expressing the bilinear quark operators in (9) in terms of the components (s0,~p), (p0,~s) of K and H , the

Yukawa couplings (9) rewrite

Leff
Y ukawa = −δ1K†K − 1

2
m2

12 (K
†H +H†K)− δ2H

†H, (16)

or, indifferently, since renormalizability is not an issue at low energy, as a sum of 4-fermion interactions

Leff
Y ukawa = −δ1 K†K− 1

2
m2

12 (K
†H+ H†K) − δ2 H

†H. (17)

This bosonised form of the Yukawa couplings, only valid at low energy, will be later added to the scalar potential

V (K,H) to define the low energy effective potential Veff (K,H) (see subsection 6.2).

4.2 PCAC and the Gell-Mann-Oakes-Renner relation

Kinetic terms together with Yukawa couplings include in particular

1

2
(∂µK)†∂µK − δ1K

†K − 1

2
m2

12 (K
†H +H†K) +

1

2
(∂µH)†∂µH − δ2H

†H + . . . (18)

and we now raise the issue whether, at low energy, the charged components of K can be identified with the

charged pions. As we shall see in subsection 4.3 below, both δ2 and m2
12 have to vanish: the first to ensure that
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the breaking of the weak SU(2)L is accompanied by three true Goldstone bosons, and the second to ensure that

the p0−p3 system does not exhibit a tachyonic state. Eq. (18) reduces then to standard kinetic terms for unmixed

doublets. Furthermore, the scalar potential will be chosen in such a way that the three pseudoscalar bosons inside

K are Goldstone bosons in the absence of Yukawa couplings. So, due to the mass term proportional to δ1, the

three “pions” inside K get a mass m at the simple condition that δ1 = 1
2m

2.

Owing to the Partially Conserved Axial Current (PCAC) hypothesis [3][4]

i(mu +md) ūγ5d =
√
2fπm

2
π π

+, (19)

which identifies the interpolating pion field with a bilinear quark operator, and to the corresponding Gell-Mann-

Oakes-Renner relation [6]

(mu +md) < ūu+ d̄d >= 2f2
πm

2
π, (20)

p+ ≡ p1 + ip2 = v
√
2

µ3 d̄γ5u as it is defined in (16) and (14) can be identified at low energy with

p± ≃ − iv

fπ
π±. (21)

So, the kinetic terms 1
2 (∂µK)†∂µK , which contain in particular 1

2∂µp
+∂µp− ≡ 1

2

(
∂µp

1∂µp1 + ∂µp
2∂µp2

)
,

will be normalized in the standard way if

v = fπ, (22)

such that

p± ≃ −iπ±. (23)

Then, the term proportional to δ1 in (18) is a suitable pion mass terms if

δ1 =
1

2
m2

π. (24)

Going back to the definition of δ1 in (10) and using (22) and (20), (24) corresponds to

ρu + ρd =
mu +md

2
√
2fπ

. (25)

Since fπ ≪ mW , (22) plugged into (6) entails

σ ≈ 2
√
2mW

g
, (26)

which shows that the ~W ’s get their mass essentially from the VEV of s3. The ratio of the VEV’s of the two

Higgs doublets comes out accordingly as

tanβ =
< s3 >

< s0 >
=
σ/

√
2

v/
√
2
≈ 2

√
2mW

gfπ
≈ 4038. (27)

They correspond respectively to the weak (mW ) and chiral (fπ) scale. Both scales can now coexist, unlike in the

genuine Glashow-Salam-Weinberg model where the parity-transformedH of the Higgs doublet K is missing.

Eqs. (12) and (26) then determine λu and λd

(λu + λd) =
3g

8mW
(mu +md), (λu − λd) =

g

2mW

(

(mu −md)−
fπ√
2
(ρu − ρd)

)

, (28)

that is

λu = g
7mu −md − 2

√
2fπ(ρu − ρd)

16mW
, λd = g

7md −mu + 2
√
2fπ(ρu − ρd)

16mW
, (29)

in terms of ρu − ρd which is, at this point, still undetermined.
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4.3 Goldstones and pseudo-Goldstones

4.3.1 The charged Goldstones of the broken SU(2)L

Since< s3 > provides most of the mass of the ~W ’s, the charged Goldstone bosons of the broken SU(2)L weak

symmetry are, to a very good approximation, the excitations of s3 by the generators T+
L and T−

L , that is s+ and

s− ∈ H .

However, the SU(2)L invariant Yukawa couplings that need to be introduced to provide fermions with “soft”

masses also give, at low energy, among other couplings, a “soft” mass to s+ and s− through the term propor-

tional to δ2. The situation for s+ and s− is different from that of the pions which can become pseudo-Goldstone

bosons and stay as physical particles. The spontaneously broken SU(2)L symmetry requires true Goldstones,

which can only go along with

δ2 = 0, (30)

which is accordingly a side-effect of weak symmetry breaking. Looking at (10), one could think that ν3 ≡<
ūu − d̄d >= 0 could be a solution to δ2 = 0. However, we shall see later in subsection 8.1 that < ūu > must

be different from < d̄d > as a trigger of both weak and custodial symmetry breaking. So, (30) entails

λu = λd =
3g

16mW
(mu +md). (31)

By (28), (31) determines

ρu − ρd =

√
2(mu −md)

fπ
, (32)

and, combined with (25),

ρu =
5mu − 3md

4
√
2fπ

, ρd =
5md − 3mu

4
√
2fπ

. (33)

4.3.2 The p3
− p0 system

The (p3, p0) or (k3, h0) or, equivalently (π0, η) system gets endowed by the Yukawa couplings with a mass

matrix 


2δ1 m2

12

m2
12 2δ2



 . (34)

However, since δ2 has been fixed to zero in subsection 4.3.1, this system now exhibits a tachyonic state unless

m2
12 = 0 ⇔ (ρu − ρd)

ν3

σ
= −(λu + λd)

µ3

v
⇔ mu −md

mu +md
= −3

4

µ3

ν3
≡ −3

4

< ūu+ d̄d >

< ūu− d̄d >
, (35)

in which we have used (15).(10), (31), (33) and the definitions of µ3 and ν3 that were introduced in (13).

Then, p0 is a true Goldstone and p3 keeps its mass m2
π. They do not mix. This fits the picture of p0 being

the third Goldstone boson of the broken SU(2)L symmetry, and p3 being the neutral member of the triplet

of pseudo-Goldstone bosons of the broken chiral symmetry SU(2)L × SU(2)R down to the diagonal SU(2).

Other considerations concerning symmetries will be given in section 8.

4.3.3 No scalar-pseudoscalar coupling

Yukawa couplings are seen on (9) to potentially generate couplings between charged scalars, for example s− =
σ√
2ν3

d̄u and pseudoscalars, for example p+. It is the second important effect of the conditionm2
12 ≡ δ12+κ12 =

0 obtained in subsection 4.3.2 to cancel these transitions.
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4.3.4 The unitary gauge. Leptonic decays of pions

In the unitary gauge the crossed couplings between the ~W gauge bosons and the (derivative of the) SU(2)L

Goldstone bosons p0, s+, s− are canceled, which leaves untouched the similar couplings between ~W and the

three pions. Their proportionality to v = fπ yields in particular leptonic decays of pions in agreement with the

standard PCAC calculation.

4.4 Fermion masses versus the low energy effective Lagrangian

Fermions receive their masses from the VEV’s of the two Higgs doublets K and H . From (12) and the values

of the parameters that have been determined (see also section 5 below), it appears that < s3 >∈ H contribute

to the u and d masses by the same amount σλu√
2
= σλd√

2
= 3

8 (mu +md). Then, < s0 >∈ K contributes to the u

mass by vρu√
2
= 5mu−3md

8 and to the d mass by vρd√
2
= 5md−3mu

8 .

The second point is the inadequacy to calculate quark masses from the low energy effective expression (16) of

the Yukawa couplings and its set of parameters determined by low energy considerations. When plugged into

(16) the conditions δ2 = 0 and m2
12 ≡ δ12 + κ12 = 0 demonstrated respectively in (30) and in (35) entail

that quark masses come from the sole Higgs doublet K , by −δ1K†K . Going back to quark fields and writing

it for example as the product −δ1K†K of scalar fields K times their equivalents in terms of bilinear quark

operators K, which respects renormalizability, Leff
Y ukawa does, through quark-antiquark condensation, generate

quark masses. They however come out as −δ1 v2

2µ3 (ūu + d̄d) = − 1
8 (mu +md)(ūu + d̄d), which is different

from the masses obtained from the original Lagrangian (9)

−δ1
v√
2µ3

(ūu+ d̄d) < s0 > +δ12

(
σ√
2ν3

(ūu− d̄d) < s0 > − v√
2µ3

(ūu+ d̄d) < s3 >

)

. (36)

Using the expression for δ12 deduced from (10) and (28), (36) yields the mass terms

−δ1
v2

2µ3
(ūu+ d̄d) + δ12

vσ

2

(
ūu− d̄d

ν3
− ūu+ d̄d

µ3

)
(38)
= −f

2
πm

2
π

4

ūu+ d̄d

µ3
+

3f2
πm

2
π

4

(
ūu− d̄d

ν3
− ūu+ d̄d

µ3

)

(38)
= − 1

8
(mu +md)(ūu+ d̄d)

︸ ︷︷ ︸

from δ1

− 1

2
(mu −md)(ūu− d̄d)

︸ ︷︷ ︸

from κ12

− 3

8
(mu +md)(ūu+ d̄d)

︸ ︷︷ ︸

from δ12

.

(37)

In (37), unlike in Leff
Y ukawa, the terms proportional to δ12 do not vanish because the bilinear fermion operators

do not reduce to their low energy VEV’s < ūu − d̄d >= ν3, < ūu + d̄d >= µ3. Furthermore, even if mu

is set equal to md, the part proportional to δ12, which describes H −K interplay, contributes to quark masses

3 times as much as the one proportional to δ1 which comes from K alone. Therefore, neither the effective

Lagrangian Leff
Y ukawa nor the “low energy truncation” of the model, that includes only one Higgs doublet, K ,

can correctly account for fermion masses (nor, of course, for the masses of the gauge bosons, problem which

led to “technicolor” models [7]). Leff
Y ukawa we shall accordingly only use to deal with low energy physics of

scalars and pseudoscalars, in particular to build the effective scalar potential Veff in subsection 6.2.

5 Summary of the parameters

By low energy considerations, we have determined the following parameters, introduced in particular in (8) and

(10):
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ρu =
5mu − 3md

4
√
2fπ

, ρd =
5md − 3mu

4
√
2fπ

, λu = λd =
3g(mu +md)

16mW
,

δ1 =
1

2
m2

π, κ12 = −δ12 = − 3gfπm
2
π

4
√
2mW

, δ2 = 0,

(mu +md) < ūu+ d̄d >
(20)
= 2f2

πm
2
π, (mu −md) < ūu− d̄d >

(35)
= −3

2
f2
πm

2
π,

v ≡
√
2 < s0 >= fπ, σ ≡

√
2 < s3 >=

2
√
2mW

g
. (38)

These should be plugged into the renormalizable form (9) of the Yukawa Lagrangian. Note that, unlike its low

energy avatar (16), it depends on κ12 and δ12 = −κ12, and not on m2
12 = 0.

6 The scalar potential

6.1 A U(2)L × U(2)R invariant potential

We shall consider a quartic U(2)L × U(2)R invariant potential

V (K,H) = −m
2
H

2
(K†K +H†H) +

λH
4

(

(K†K)2 + (H†H)2
)

, (39)

which thus decomposes into two independent potentials, one for K and one for H .

This is possible because (see [1]) K and H are stable by both SU(2)L and SU(2)R and transform into each

other by U(1)L and U(1)R (with the appropriate signs). This last symmetry dictates in particular the equality

of the couplings (quadratic and quartic) for the two doublets.

SU(2)L breaking by v 6= 0 and σ 6= 0 generates three Goldstone bosons in each Higgs multiplet: ~p ∈ K ,

the pseudoscalar singlet p0 and the two charged scalars s± ∈ H . This also fits the scheme according to which

v 6= 0 and σ 6= 0 spontaneously break the chiral U(2)L × U(2)R down to U(1) × U(1)em (see [1]); there,

too, six Goldstones are generated. The pseudoscalar triplet ~p ∈ K gets a small mass from the SU(2)L invariant

Yukawa couplings while the pseudoscalar singlet p0 and the two charged scalars s± ∈ H must be protected

from this since they are also the three Goldstones to be eaten by the ~W gauge bosons (see section 4). p0 plays a

double role in that is also the Goldstone of the breaking of U(1)L × U(1)R down to the diagonal U(1), which,

at the level of the algebra, is related to parity breaking.

v 6= 0 is associated with < ūu+ d̄d > 6= 0, responsible for the breaking of SU(2)L × SU(2)R down to SU(2)

with the three pions as (pseudo)-Goldstone bosons, while σ 6= 0 is associated with < ūu − d̄d > 6= 0 which is

also responsible for the breaking of the custodial SU(2) into U(1)em and of the ~W mass.

Our choice for the potential amounts to requesting that, in the absence of Yukawa couplings, all fields are

Goldstones but for the two Higgs bosons.

In the most general potential for two Higgs doublets the following terms have accordingly been discarded:

• (m2K†H + h.c), with m ∈ C would mediate in particular transitions between scalars and pseudoscalars

that should not occur classically;

• λ4(K
†K)(K†H) + h.c., λ5(H

†H)(K†H2) + h.c. with λ4, λ5 ∈ C would also mediate unwanted classical

transitions between scalars and pseudoscalars;

• λ3(K
†H)2 + h.c. with λ3 ∈ C would in particular contribute to the mass of the neutral pion and not to

that of the charged pions. Such a classical π+ − π0 mass difference which is not electromagnetic nor due to

mu 6= md is unwelcome;

8



• λ1(K
†K)(H†H), λ2(K

†H)(H†K), with λ1, λ2 ∈ R would also spoil the Goldstone nature of the pions

and η, the first because of terms proportional to < s3 >2 ~π2 and < s0 >2 η2, the second because of terms

proportional to < s0 >2 η2, < s3 >2 π02 and < s0 >< s3 > π0η.

6.2 The low energy effective potential

At low energy, the renormalizable V (K,H) is supplemented by (−1)× the bosonised form of the Yukawa

Lagrangian (16). This yields the effective potential

Veff (K,H) = V (K,H) + δ1K
†K +

1

2
m2

12 (K
†H +H†K) + δ2H

†H

= −m
2
H

2
(K†K +H†H) +

λH
4

(

(K†K)2 + (H†H)2
)

+ δ1K
†K +

1

2
m2

12 (K
†H +H†K) + δ2H

†H.

(40)

It is further simplified since we have shown that δ2 = 0 and m2
12 = 0 (see (30) and (31) in section 4) and Veff

accordingly reduces to

Veff (K,H) = −m
2
H −m2

π

2
K†K − m2

H

2
H†H +

λH
4

(

(K†K)2 + (H†H)2
)

. (41)

Last, to suitably reproduce the ~π and ~W masses, we know that it should have a minimum at values of v and σ

given by (22) and (26). The two equations
∂Veff

∂s0

∣
∣
∣
<s

0>= fπ
2

= 0 and
∂Veff

∂s3

∣
∣
∣
<s

3>=
2mW

g

= 0 yield respectively

m2
H = λH < s0 >2 +m2

π and m2
H = λH < s3 >2 such that

λH =
m2

π

< s3 >2 − < s0 >2
≈ m2

π

< s3 >2

(

1 +
< s0 >2

< s3 >2

)

=
g2m2

π

4m2
W

(

1 +
g2f2

π

8m2
W

)

, (42)

which puts it definitely in the perturbative regime. It is because of the presence of m2
π that λH is different from

zero. mπ 6= 0 keeps accordingly the theory away from instability.

6.3 The masses of the two Higgs bosons ς and ξ

Since the effective scalar potential is now fully determined, one can calculate the masses of the two Higgs

bosons ς and ξ defined in (11), which do not mix. One gets

mξ = < s3 >
√

λH ≈ mπ,

mς = < s0 >
√

λH = mξ
< s0 >

< s3 >
≈ mπ

gfπ

2
√
2mW

≈ 34KeV, (43)

In particular, their ratio is that of the two VEV’s

mξ

mς
=
< s3 >

< s0 >
=

2
√
2mW /g

fπ
(44)

which is also the ratio of the two scales involved in this 1-generation standard model, the weak scale ≃ mW

and the chiral scale ≃ fπ. The masses are small and justify a posteriori our low energy treatment of the scalar

effective potential.

The composition of the two Higgs doublets is accordingly as follows. Inside the “chiral” doublet K one finds

3 pions and the very light scalar Higgs boson ς . As was shown in [1], they correspond respectively to a triplet

and a singlet of the custodial SU(2) symmetry. Inside the “weak” doublet H , one finds the three Goldstones of

the broken SU(2)L weak symmetry, the neutral pseudoscalar SU(2) singlet and two charged scalars inside the

SU(2) triplet. The third component of this triplet is the second scalar Higgs boson ξ with mass ≈ mπ. Note

that the four particles (~π, ξ) with mass mπ do not lie together inside the same SU(2)L doublet, nor do the three

SU(2)L Goldstones and the very light Higgs boson ς .

9



6.3.1 The roles of mW and mπ

In our rebuilding of Standard Model with only one generation, we find that the masses of the two Higgs bosons

are both proportional to mπ and small. But they are not small in the same way. If mπ is replaced by the mass of

some heavier bound statem ≤ 2
√
2mW /g ≡< s3 >≈ 375GeV ,mς will stay very smallmς ≤ fπ ≈ 93MeV

while mξ will grow like the mass of the bound state. So, in the case of more generations, the presence of very

light Higgs boson(s) with a mass lower than 100MeV looks a robust feature as a damping effect of the weak

scale mW but larger masses can be expected for some others. It would not be a surprise that, for 3 generations

and up to some coefficient, the mass of one of the Higgs bosons be set by that of a bound state involving the top

quark.

In the present case, the masses of the two Higgs bosons vanish at the limit mπ → 0, that is, by the GMOR

relation (20), either when < ūu + d̄d >→ 0 or when (mu +md) → 0. Since we have also determined (see

(38)) that (mu −md) < ūu − d̄d > vanishes with mπ, this limit corresponds either to < ūu >= 0 =< d̄d >

or to mu = 0 = md.

7 Couplings of the Higgs bosons

7.1 Couplings of Higgs bosons to quarks

Like for the calculation of fermion masses (see subsection4.4), the bosonised forms (16) or (17) of the Yukawa

couplings, which are only valid at low energy, is inappropriate to evaluate the couplings of fermions, in particular

those to the Higgs bosons. Indeed, plugging into (16) or (17) the relations m2
12

(15)
≡ δ12 + κ12 = 0 and δ2 = 0

that we have obtained for the crossed couplings (see (38)) from low energy considerations would erroneously

leave as the only couplings of quarks to Higgs bosons the ones present in −δ1K†K , in which, in particular,

no coupling exists between the “quasi-standard” Higgs boson ξ, which belongs to H , and quarks. In order to

properly determine these parameters, the original form (9) of the Yukawa couplings must instead be used.

Plugging therefore the definition (11) into (9) yields the following couplings of the Higgs bosons ς and ξ to

quarks

−ς (ρuūu+ ρdd̄d)− ξ (λuūu+ λdd̄d)

= −ς
(

δ1
v√
2µ3

(ūu+ d̄d) + κ12
σ√
2ν3

(ūu− d̄d)
)

− ξ
(

δ12
v√
2µ3

(ūu+ d̄d) + δ2
σ√
2ν3

(ūu− d̄d)
)

(45)

which exhibits, of course, the same structure as in (36) and which, using the values (38) of the parameters

δ12 = −κ12 and δ2 = 0, yields

LHiggs−quarks = −ς
(
5mu − 3md

4
√
2fπ

ūu+
5md − 3mu

4
√
2fπ

d̄d

)

− ξ
3g(mu +md)

16mW
(ūu+ d̄d). (46)

The ς Higgs boson is more strongly coupled to quarks than ξ. Its coupling is still “perturbatively” since

mu,md ≪ fπ. It however suggests that, for heavier quarks, some Higgs boson(s) could strongly couple to

hadronic matter. As far as ξ is concerned, it is instructive to rewrite its coupling as (using eqs. (10), (12), then

(26), (22) and (25))

− δ12v√
2µ3

ξ(ūu+d̄d) = −
(
mu +md√

2σ
− v(ρu + ρd)

2σ

)

ξ(ūu+d̄d) = −g(mu +md)

4mW
(1− 1

4
) ξ (ūu+d̄d). (47)

At first sight it looks “quasi-standard” because it is proportional to gmquark/mW . Eq. (47) shows however that

it is not quite so. In the standard case we would have obtained g
2mW

(muūu+mdd̄d) ξ. The first difference lies

10



in the 1
4 which is subtracted from 1, the origin of which can be traced down to the part of quark masses which

is due to the K Higgs doublet. The second difference is that, though u and d have different masses, they get

coupled to ξ with equal strength: unlike in the genuine Glashow-Salam-Weinberg model, the heavier quark is

no more strongly coupled than the lighter. Taking md = γmu, γ > 1, the coupling
3g(1+γ)
16mW

mu of ξ to u quarks

can be very close to the standard one (it becomes identical for γ = 5
3 ), while the one

3g(1/γ+1)
16mW

md of ξ to the

heavier d is smaller than standard by the factor
3(1+γ)

8γ .

7.2 Couplings of Higgs bosons to gauge bosons

They arise from the kinetic terms (5). Using (22) and (26)), one gets

LHiggsWW =
gmW

2
W 2

µ ξ +
g2fπ

4
√
2
W 2

µ ς. (48)

ξ couples accordingly in a “standard” way ≃ gmW to two W ’s while the coupling of ς , O(g2fπ) is much

smaller by a factor O(10−3).

7.3 Couplings of Higgs bosons to leptons

Yukawa couplings to leptons need introducing four parameters, ρe and ρν for s0 and the quantum Higgs ς , λe

and λν for s3 and the quantum Higgs ξ

LY uk−lept =
(

(ρν ν̄ν + ρeēe) s
0 − (λν ν̄ν + λeēe) s

3
)

+

(
ρν + ρe

2

(

ν̄γ5e p
− + ēγ5ν p

+ + (ν̄γ5ν − ēγ5e) p
3
))

+
ρν − ρe

2

((

ēν p+ − ν̄e p− + (ν̄γ5ν + ēγ5e) p
3
))

−
(
λν + λe

2

(

ēγ5ν s
+ − ν̄γ5e s

− − (ν̄γ5ν − ēγ5e) p
0
))

+
λν − λe

2

((

ēν s+ + ν̄e s− − (ν̄γ5ν + ēγ5e) p
0
))

.

(49)

Using again (22) and (26 provides the lepton masses

me = ρe
fπ√
2
+ λe

2mW

g
, mν = ρν

fπ√
2
+ λν

2mW

g
. (50)

7.3.1 The low energy limit

Let us use again the one-to-one correspondence between the components of the Higgs multiplets and bilinear

quark operators (13). Using PCAC (19) and the Gell-Mann-Oakes-Renner relation (20), we could relate the

charged pion fields π± and the charged pseudoscalar components p± of the Higgs doublet K by (23). Yukawa

couplings (49) are then seen to trigger, among others, leptonic decays of charged pions. These come in addition

to the “standard ones” obtained from the Wµ∂
µπ crossed couplings that originate from the kinetic terms (5) at

low energy (see subsection 4.3.4) and which agree with PCAC usual calculations.

This means that, in a first approximation (and it is not the goal of this work to go beyond), we should take

ρν ≈ 0 ≈ ρe. (51)

In case observed leptonic pion decay turn out to differ from PCAC estimates, the issue could be raised whether

(51) should be revisited.

In relation with (50) the choice (51) leads to a standard coupling of the Higgs boson ξ to leptons, proportional

to gmlepton/mW , while the ones of ς vanish (or are extremely close to).
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8 Symmetries again

8.1 The roles of < ūu + d̄d > and < ūu − d̄d >

< ūu + d̄d > 6= 0 is the signal for what is commonly called “chiral symmetry breaking”, the breaking of

SU(2)L × SU(2)R down to the diagonal SU(2). < ūu − d̄d > 6= 0 breaks SU(2)L, and the custodial SU(2)

down to U(1)em. Let us show that < ūu > cannot be equal to < d̄d >. Indeed, for ν3 = 0 one gets from (10)

δ2 = 0 = κ12. Then

m2
12 = δ12 =

3gfπm
2
π

4
√
2mW

, (52)

in which we used the definition of δ12 in (10), the GMOR relation (20) and (28).

Performing the minimization of the effective potential Veff (K,H) while still supposing that V (K,H) is

U(2)L × U(2)R invariant gives the two equations

m2
H = λH < s0 >2 +2δ1 + δ12

< s3 >

< s0 >
, m2

H = λH < s3 >2 +δ12
< s0 >

< s3 >
, (53)

which yield, since < s3 >≫< s0 > (see (22) and (26))

λH ≈ 2δ1
< s3 >2

+
δ12

< s0 >< s3 >
=

5g2m2
π

16m2
W

. (54)

The mass matrix of the s0 − s3 system becomes then (we use (53))





∂2Veff

(∂s0)2 ≡ 2λH < s0 >2 −δ12<s
3>

<s
0>

1
2
∂2Veff

∂s0∂s3 = 0

1
2
∂2Veff

∂s0∂s3 = 0
∂2Veff

(∂s3)2 ≡ 2λH < s3 >2 −δ12<s
0>

<s
3>



 ≈




− 3

2m
2
π 0

0 5
2m

2
π



 .

(55)

It exhibits, because of the term −δ12<s
3>

<s
0> in

∂2Veff

(∂s0)2 , which comes from the low energy expression of Yukawa

couplings, a tachyonic s Higgs boson m2
ς ≈ − 3

2m
2
π. The theory with < ūu > 6=< d̄d > is thus unstable.

Since we have everywhere supposed that the minimum of the effective potential fits the ~W and ~π masses, we

conclude that chiral and weak symmetry breakings as they are observed are only possible for< ūu > 6=< d̄d >.

Unlike for the pions the masses of which are related to < ūu + d̄d > by the GMOR relation (20), there is no

such relation betweenmW and< ūu− d̄d > (see the last line of (38)). Moreover, even when< ūu >=< d̄d >

(that is, < ν3 >= 0) < s3 > can be equal to σ/
√
2 because, in its expression (13), ν3 cancels between the

numerator and the denominator. This is why it looks opportune to rather speak of < ūu > 6=< d̄d > as the

catalyst of weak (and custodial) symmetry breaking.

8.2 The custodial SU(2)

While (ūu + d̄d) gets annihilated by all generators of SU(2), (ūu − d̄d) does not, it only gets annihilated by

T 3 = Q (see [1]). So, < ūu > 6=< d̄d > spontaneously breaks the custodial SU(2) down to U(1)em. In this

breaking one expects two Goldstones. They are the excitations by T+ and T− of the s3 vacuum , that is the

two scalars s+ and s− eaten byW±, and which coincide with the two charged Goldstones of the spontaneously

broken weak SU(2)L.

The electroweak Lagrangian is invariant by the custodial SU(2) as soon as the ~W ’s form an SU(2) vector. But,

in the broken phase, the W 3 can only eat s0 which is a SU(2) singlet. This is how the generation of the ~W

mass breaks the custodial symmetry.
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8.3 Goldstones and pseudo-Goldstones

Three true Goldstones are eaten by the ~W ’s to get massive: they are p0, s+ and s−, belonging to the doubletH .

p0 is also the Goldstone of the U(1)L × U(1)R spontaneous breaking down to the diagonal U(1). The three ~p

(the three pions) are the pseudo-Goldstones of the broken SU(2)L × SU(2)R down to SU(2).

The only non-Goldstones are the two Higgs bosons ξ and ς in the sense that, though their masses also vanish

with mπ, they do not seem connected with the breaking of any continuous symmetry. The first could only be

excited by acting either on p0 with T 3
L or T 3

R, or on p3 with IL or IR. However, in a first approximation, neither

p0 nor p3, being a pseudoscalar, has a non-vanishing VEV. Likewise, H could only be excited either by acting

on p3 with T 3
L or T 3

R, or on p0 with IL or IR. The same argumentation rejects thus both as Goldstone bosons,

unless some additional spontaneously broken continuous symmetry is at work, which is to be uncovered.

9 A few hints for more generations

Before concluding, it is worth pointing at a few features concerning the case of a larger numberN of generations

(some information can also be found in [8]). A more detailed study is postponed to [9].

There are features of this work which only belong to the case of one generation. For example the fact that

the η pseudoscalar meson (pseudoscalar singlet) becomes the longitudinal neutral W 3. In the case of more

generations, it may happen that this role is still held by the singlet ∝ ūγ5u + d̄γ5d+ c̄γ5c+ d̄γ5s+ . . ., but it

is no longer the η, or by another neutral combination. Though this can only be known by a precise study, it is

likely that the η can then live again its life as a physical pseudoscalar meson.

Other features are certainly, at the opposite, robust, like the fact that there is a very light Higgs boson with mass

≤ fπ ≈ 93MeV . Likewise, from the expression (42) for the quartic Higgs coupling λH , it seems reasonable to

believe that, even if the mass of the pion gets replaced by the mass of a much heavier bound state, λH will stay

smaller than 1 and thus “perturbative”. It can only get equal to 1 if mπ is replaced by 2
√
2mW /g ≈ 375GeV ,

such that one should only be careful when the “top” generation is concerned, for which “non-perturbative”

phenomena could appear.

The logic of the present work and of [1] is that all (pseudo)scalar doublets isomorphic to the one of the Standard

Model of Glashow, Salam and Weinberg [2] should be incorporated. This would stay an empty or meaningless

statement without noticing that the standard Higgs doublet has transformations by the chiral group (3) (4) that

are identical to those of bilinear quark operators. For one generation, this doubled the number of possible

doublets, with parity distinguishing the two of them. In the case of N generations, it was shown in [8] that

there exists 2N2 such doublets, divided, by parity again, in two sets. Their 8N2 real components can be put

in one-to-one relationship with the same number of scalar and pseudoscalar J = 0 mesons that occur for 2N

flavors of quarks. The same logic as the one followed here requires accordingly that the Standard Model be

then endowed with 2N2 complex Higgs doublets. Among these, one expects in particular as many Higgs fields

as there exist quark-antiquark < q̄iqi > condensates, that is, 2N . Owing to the large number of parameters

involved, it looks of course too optimistic to think that one can easily calculate all masses and couplings as we

did here. This path stays nevertheless in our opinion the most natural to follow, the underlying guess being that

the mystery of Higgs boson(s) simply lies inside the one of scalar (and eventually pseudoscalar) J = 0 mesons.
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10 Conclusion and prospects

As we re-built it, the Standard Model for one generation of fermions is complete in the sense that all masses

and couplings of all fields present in the Lagrangian and of all J = 0 pseudoscalar mesons are determined.

Pions are accounted for with the correct decays and, of the four expected scalar mesons, two (the charged ones)

become the longitudinal chargedW± while the last two are the Higgs bosons ς and ξ. Both have small masses

and are perturbatively coupled and self-coupled. While ξ is expected to be close to standard, ς is extremely light

and has peculiar properties that deserve a specific investigation concerning the role that it can hold in nature

[10]. As far as we can see, this minimal extension of the Standard Model is different from what other authors

have been considering; it is different as a 2-Higgs doublet model [11] [12] [13], and it is different in that, for

a larger number of generations N > 1, it cannot stay as a 2-Higgs doublet model and should be endowed with

2N2 Higgs doublets. A key ingredient to account simultaneously for the different scales in presence, weak and

chiral, is parity doubling. It could only be uncovered through the one-to-one correspondence demonstrated in

[1] between the Higgs fields and bilinear quark operators and detailed symmetry considerations. The breaking

of parity has reflected here in the mass splitting of the two Higgs bosons, their ratio being precisely that of the

two scales in presence.

At this stage, no physics “beyond the Standard Model” looks needed 2 but, since the one generation case can

only be considered as a “toy Standard Model”, this is one among the features that should be carefully scrutinized

for more generations of fermions [9].

Acknowledgments: it is a great pleasure to thank O. Babelon, M. Capdequi-Peyranère, S. Davidson, M. Knecht,

J. Lavalle, G. Moultaka and M.I. Vysotsky for conversations and advice for how to write this work.

2The only hint in favor of it may be the vanishing of the masses of the two Higgs bosons at the chiral limit, which makes them appear

“like pseudo-Goldstone bosons” (see subsection 8.3).
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