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Abstract The PROBA2 Science Centre (P2SC) is a small-scale science operations cen-
tre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun
Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiome-
ter (LYRA). PROBA2 is one of ESA’s small, low-cost Projects for Onboard Autonomy
(PROBA) and part of ESA’s In-Orbit Technology Demonstration Programme. The P2SC
is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator
teams. The P2SC tasks cover science planning, instrument commanding, instrument moni-
toring, data processing, support of outreach activities, and distribution of science data prod-
ucts. PROBA missions aim for a high degree of autonomy at mission and system level, in-
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cluding the science operations centre. The autonomy and flexibility of the P2SC is reached
by a set of web-based interfaces allowing the operators as well as the instrument teams to
monitor quasi-continuously the status of the operations, allowing a quick reaction to solar
events. In addition, several new concepts are implemented at instrument, spacecraft, and
ground-segment levels allowing a high degree of flexibility in the operations of the instru-
ments. This article explains the key concepts of the P2SC, emphasising the automation and
the flexibility achieved in the commanding as well as the data-processing chain.

Keywords PROBA2 · SWAP · LYRA · Science operations · Instrument and data
management

Abbreviations
ADP Auxiliary Data Processor
APS Active Pixel Sensor
BELSPO Belgian Science Policy Office
BCA LYRA Backup Calibration FITS File
BST LYRA Backup Science FITS File
CAL LYRA Calibrated FITS File
CLOG Cataloging Tool
CME Coronal Mass Ejection
CCSDS Consultative Committee for Space Data Systems
DCVC Data Consistency and Validation Checker
DSLP Dual Segmented Langmuir Probe
EIT Extreme-ultraviolet Imaging Telescope
ESAC European Space Astronomy Centre
FITS Flexible Image Transport System
FOV Field-of-view
IDL Interactive Data Language
IOS Instrument Operations Sheet
JPEG Joint Photographic Expert Group
LAR Large Angle Rotation
LYBSDG LYRA Base Science Data Generator
LYEDG LYRA Engineering Data Generator
LYRA Large Yield Radiometer
LYTMR LYRA Telemetry Processor
MAGNION Magnetospheric and Ionospheric Satellites
MET LYRA Meta-data FITS File
MOC Mission Operations Centre
P2SC PROBA2 Science Centre
PNG Portable Network Graphics
PROBA Projects for Onboard Autonomy
PTI Planning Tool Interface
REJ LYRA Rejected FITS File
SAA South Atlantic Anomaly
SCSL Science Consortium of SWAP and LYRA
SIDC Solar Influence Data Centre
SMOS Soil Moisture and Ocean Salinity
SQL Structured Query Language
SSW SolarSoft
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STD LYRA Standard FITS File
STOWG Science and Technology Working Group
SWAP Sun Watcher using APS detectors and image Processing
SWBSDG SWAP Base Science Data Generator
SWEDG SWAP Engineering Data Generator
SWMPG SWAP Media Product Generator
SWTMR SWAP Telemetry Reformatter
SOHO Solar and Heliospheric Observatory
TPMU Thermal and Plasma Measurement Unit
UV ultraviolet

1. Introduction

PROBA2 is the second Project for Onboard Autonomy (PROBA) spacecraft, part of ESA’s
in-orbit Technology Demonstration Programme. PROBA2 was launched on 2 November
2009 as a co-passenger to ESA’s Soil Moisture and Ocean Salinity (SMOS) spacecraft, and
was injected in a Sun-synchronous, near-polar orbit at an altitude of approximately 725 km.
It carries 17 technology demonstrators as well as four scientific experiments that address
topics in solar science and space weather (see Santandrea et al., 2012).

The two primary scientific instruments, SWAP and LYRA, are controlled from the
PROBA2 Science Operations Centre (P2SC) at the Royal Observatory of Belgium. The
Large Yield Radiometer (LYRA: Hochedez et al., 2006; Dominique et al., 2012) is a small,
compact solar ultraviolet (UV) radiometer, equipped with newly developed diamond de-
tectors that are insensitive to visible light. LYRA monitors the variability of the solar ir-
radiance in four ultraviolet pass bands, carefully selected for their relevance to aeronomy,
space weather, and solar physics. The Sun Watcher using APS detectors and image Pro-
cessing (SWAP: Berghmans et al., 2006; Seaton et al., 2012) is a successor of the Extreme-
Ultraviolet Imaging Telescope (EIT: Delaboudinière et al., 1995) onboard SOHO. SWAP
continues the systematic coronal mass ejection (CME) programme of the EIT instrument
for systematic detection of space-weather related solar events. SWAP has an image cadence
faster than two minutes and a FOV of 54 arcmin. SWAP and LYRA observe the Sun contin-
uously, only interrupted by calibration or other dedicated scientific campaigns.

The Thermal Plasma Measurement Unit for Microsatellites (TPMU) and the Dual Seg-
mented Langmuir Probe (DSLP) measure in-situ the environment of the Earth. The main
objective of TPMU is to extend the series of similar plasma measurements carried out dur-
ing the last two decades onboard the Magnetospheric and Ionospheric (MAGION) satel-
lites. DSLP measures the density of the space plasma and its variations in the range of 102

to 106 particles cm−3, the electron temperature in the 500 – 3000 K range, and the satellite
potential in the range of −5 V to 5 V. The instrument consists of two Langmuir probes. The
plasma density and temperature are determined from the Langmuir probe current–voltage
curve. Both instruments are contributions from and operated at the Academy of Science of
the Czech Republic (Hercik et al., 2008).

After launch, the PROBA2 mission management was transferred from ESA’s Technical
Directorate to ESA’s Science and Exploration Directorate, which is currently funding the
mission. The PROBA2 Steering Group is responsible for all programmatic aspects of the
mission. The Steering Group is made up of representatives from both ESA Directorates, rep-
resentatives from the Belgian Science Policy Office (BELSPO), the Principal Investigators
of the scientific instruments, a representative of the Royal Observatory, and a representative
of the Mission Operations Centre (MOC).
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Figure 1 The PROBA2 ground and flight segments.

The PROBA2 mission consists of the spacecraft, the reception stations, the Mission Op-
erations Centre (MOC), the Science Operations Centre (P2SC), the Science Consortium of
SWAP and LYRA (SCSL), and the final data archive at the European Space Astronomy
Centre (ESAC), as depicted in Figure 1.

All science-planning aspects are discussed and decided by the Science and Technology
Operations Working Group (STOWG). Representatives from all science instrument teams,
industry, the MOC, and the two ESA Directorates form the STOWG, which convenes every
six – eight weeks.

The P2SC is situated at the Royal Observatory of Belgium, Brussels, and co-located
with the Solar Influences Data Analysis Centre (SIDC: Berghmans et al., 2002). Its respon-
sibilities includes the science planning, the detailed instrument commanding, the production
and delivery of scientific data to the scientific community, as well as the preparation of the
long-term scientific archive. The long-term archive is hosted at ESAC alongside the SOHO
archive (St. Cyr et al., 1995).

The MOC is located at the ESA Redu Station in Belgium. The MOC consolidates the
science timelines with the required spacecraft and technology demonstrator timelines and
uplinks them to the spacecraft using one of the S-band antennae at the Redu station. There
are ten equally spread downlink passes per day supported by two S-band antennae located
in Redu and one S-band antenna located in Svalbard. The telemetry downlink streams from
all stations are processed at the MOC and forwarded to the P2SC.

The individual stages of commanding and data handling will be described in more detail
in the following sections, followed by a summary of implementation issues, the finally se-
lected hardware, and security aspects. Data distribution is discussed for SWAP and LYRA,
followed by an overview of the Guest Investigator Programme. Finally, the lessons learned
concerning implementation and operational aspects are given.
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2. Instrument Commanding

2.1. Overview

The commanding of the scientific instruments is performed in three steps: the preparation
of a long-term plan, the implementation of a weekly plan, and urgent short-term updates, if
necessary.

A long-term plan covers six – eight weeks and is discussed and confirmed by the
STOWG. All parties provide information on special scientific opportunities, joint obser-
vation plans with other satellites or observatories, instrument calibration campaigns, tech-
nology instrumentation campaigns, and spacecraft or on-ground maintenance activities. All
information is collected and a conflict-free plan is agreed on during a working-group meet-
ing. This long-term plan is the input for the Operations Calendar. All teams report on the
execution and lessons learned from the previous planning period.

The short-term planning covers a full calendar week. An assigned person from the P2SC
translates the information from the Operations Calendar into a commanding database, taking
into account the latest environmental and planning information:

• Periods when crossing the South Atlantic Anomaly (SAA), to avoid critical operations
during this period.

• Periods of spacecraft operations, again to avoid critical operations.
• Periods of Earth occultations, to avoid acquiring useless data.
• Periods of technology demonstrator activities that require dedicated scientific instrument

modes.

A Planning Tool Interface (PTI) allows the entry and validation of the short-term plan
using a web-based graphical user interface. The short-term plan is converted into a text-
based file – the Instrument Operations Sheet (IOS) – containing the high-level commands for
the SWAP and LYRA operations. The PTI supports the delivery of the IOS to the MOC and
tracks the status of the high-level commands until they are successfully executed onboard.
Once the weekly IOS of an instrument is uploaded, the operator can decide at any time to
send a modified IOS via the MOC to the spacecraft. Onboard, the existing command buffer
will be replaced by the newly uplinked commands. This option is rarely used, except in the
following cases:

• Unforeseen spacecraft events require an immediate adaptation of the already committed
IOS.

• Solar activity requires the update of commanding parameters.
• Unforeseen resource conflicts require the update of commanding parameters.

2.2. Planning Tool Interface

The Planning Tool Interface (PTI) is the only interface for the P2SC to program the in-
struments. The interface provides a graphical display of planning information, including
contents of the commanding and pass planning databases, SAA, and Large Angle Rotation
(LAR) occurrences. A user has access to the tool via a secure channel over the Internet either
as standard user or as operator. Only an operator can work on the commanding database,
verify and send out an IOS to the MOC. Both types of user can re-load and visualise the
commanding from the past. It is possible to create, edit, and modify sequences of instru-
ment commands that can be saved in a commonly accessible workspace.
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2.2.1. SWAP PTI

The PTI allows the programming of the SWAP imager in different observation and data
modes:

• Instrument ON/OFF/IMAGING/IDLE.
• Onboard artefact removal, i.e. dead pixel removal and the setting of its threshold.
• Rebinning and its parameters.
• Recoding.
• Bias settings.
• Compression mode (i.e. OFF, JPEG, LZW) and its parameters.
• Onboard priority number generation flag.
• On-ground priority number setting.
• Automatic CME detection mode.

Once SWAP is in imaging mode, continuous imaging is performed that is triggered by
an acquisition command, allowing the control of

• The sampling scheme, i.e. correlated double sampling or double sampling (De Groof
et al., 2008).

• The integration time.
• The acquisition period or cadence.
• The sub-windowing.
• The gain settings.
• The calibration LED activation.
• The spacecraft off-pointing.

SWAP also allows commanding using a TABLE mode. A table contains the individual
high-level commands as table elements. Once uploaded onboard, a part of the table can
be selected by specifying the first and last table elements. All the commands between the
first and last elements are then repeatedly executed in sequential order. The table may con-
tain up to 100 elements, and it is thus large enough to hold a multitude of programming
sequences. This scheme allows to upload several calibration tasks and nominal operation
sequences once and then select within an IOS the command sequences to be executed. The
table programming is fully supported in the PTI.

Some of the concepts are experimental in nature:

Onboard artefact removal
Before the start of the image compression algorithm, image discontinuities (e.g. caused by
cosmic rays or dead pixels) are removed by replacing corresponding pixel values by their
nearest neighbours average. This approach reduces compression artefacts.

Recoding
In case of image compression using the JPEG algorithm, the 12-bit pixel values are re-
coded to 8-bit before compression (Nicula, Berghmans, and Hochedez, 2005). A non-linear
recoding algorithm is used to take advantage of the shot noise inherent in the measurement
to reduce the data without sacrificing the dynamic range.

On-ground priority number settings
The number of successfully downlinked images is dependent on a number of aspects. The
overall downlink volume is determined by the amount of downlink passes, its durations,
and the transfer rate between spacecraft and antenna. The onboard memory size deter-
mines the maximum number of images that can be stored between downlink passes. In the
case that the onboard memory does not provide sufficient memory to store the next image
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acquisition, the onboard software determines the oldest image with the lowest priority set-
ting, releases its memory that is then used to store the most recent image acquisition. The
priority numbers must be programmed on-ground, e.g. by specifying – using the TABLE
mechanism – a different priority number for each acquisition. If several images have to be
deleted onboard due to lack of free memory, the deleted images will not be consecutive
and thus the data gap is minimal. This mechanism ensures that in case of interesting so-
lar events and the need to overwrite images onboard, the number of consecutive images
lost is minimal. It also proved to be sufficient to guarantee the downlink of calibration or
campaign data for PROBA2.

Onboard priority number flag
Based on the same principle as the on-ground priority number settings, an automatic data-
prioritisation process has been defined to set the priority numbers. This algorithm aims to
identify potentially interesting solar events and transfer the associated data to the ground
in higher priority. In-orbit tests and analysis showed that the algorithm did set the priority
flag when passing the SAA. The implemented algorithm cannot distinguish between solar
events and the increased noise level caused by the passage of the SAA.

Automatic CME detection
In the automatic CME-detection mode, the onboard computer analyses each image to detect
a CME and then re-points the spacecraft in the direction of the predicted CME movement.
Post-launch analysis of the algorithm showed that the spacecraft pointing capabilities were
not sufficient to guarantee the proper execution of the algorithm onboard, even though
PROBA2 performs well inside of the originally designed margins for pointing stability.
On-ground simulations using images of eruptions from SWAP are in progress and will be
used to confirm whether an in-flight test of the algorithm is feasible.

Sampling Scheme
The SWAP detector is an Active Pixel Sensor (APS) allowing several operation modes at
the detector level. Two different modes of the detector can be programmed from within the
PTI.

Calibration LED activity
Between filter and detector, the SWAP instrument carries two LEDs for calibration pur-
poses. The status of the LEDs can be commanded via IOS.

Spacecraft off-pointing
The IOS allows to specify a spacecraft off-pointing of up to ±3 degrees in two axes to
map the corona far off the solar disk. The off-pointings can be commanded in an IOS
without being in conflict with other subsystems. This feature is regularly used for scientific
campaigns.

2.2.2. LYRA PTI

The LYRA radiometer can also be programmed in a high-level language, allowing the con-
trol of the three LYRA units and their detectors:

• Instrument ON/OFF/WARM-UP/IDLE for the LYRA instrument.
• Activation of one or two units out of the three LYRA has.
• Cover control of each unit.
• Voltage-to-frequency calibration period.
• Integration time.
• LED control.
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2.3. P2SC/MOC Interface

The interface between the P2SC and the MOC is the IOS, which contains time-tagged, high-
level instrument commands; one for each instrument. Each IOS is fully validated before it is
transfered via a secure file transfer protocol (sFTP) to the MOC. The validation includes the
syntax check of the individual commands, the range check of the given parameters as well
as some context checks. The context checks guarantee that e.g. minimal periods between
two adjacent commands are maintained. At the MOC, the IOS syntax is re-checked and
each command is translated into low-level instrument commands that are then uplinked.
For each of these steps, an incremental report is sent from the MOC to P2SC. The IOS
related commands are uplinked to the satellite when received at least 15 minutes before the
next planned uplink pass. Listing 1 demonstrates the IOS usage giving one example for the
SWAP instrument, here explained line by line:

00 Name of the instrument, either SWAP or LYRA.
01 Unique identifier for each IOS.
02 Creation date of this IOS file.
03 Activation date of this IOS; onboard, all commands already existing and scheduled after

this date are deleted.
04 Start of a table configuration setting and prefixed with its activation date.
05 First entry of the table configuration, defining:

– Row number: 0.
– Integration time: 10 ms.
– Four corners of subwindow, in the example a full 1024 × 1024 window is specified.
– Gain: 1.
– Image cadence: 30 seconds.
– Spacecraft off-pointings towards solar East – West: 0.0015; this corresponds to 11 arc-

min.
– Spacecraft off-pointing towards solar North – South: 0.0.
– Usage of LED: on.
– Priority number: 240.

06 – 07 Second and third table entries, the first three entries define a calibration campaign
with LEDs switched-on and the Sun outside the field-of-view.

08 – 10 Fourth, fifth and sixth table entries defining a standard 100-second image cadence
observation campaign with low priority numbers (0 is the lowest priority number).

11 Start date of calibration campaign that loops continuously through the first, second and
third tables entries until the next command starts.

12 Start date of a standard observation campaign that loops continuously through the
fourth, fifth, and sixth table entries; as there is no other command following, the ob-
servations continue until a new IOS with a new command is uploaded.

Listing 1 An example IOS file

[ 0 0 ] SWAP
[ 0 1 ] 00261
[ 0 2 ] 2 0 1 1 . 0 3 . 0 8 T12 : 1 2 : 2 9 . 0 0 0
[ 0 3 ] 2 0 1 1 . 0 3 . 0 8 T17 : 0 0 : 0 0 . 0 0 0
[ 0 4 ] 2 0 1 1 . 0 3 . 0 8 T17 : 0 5 : 0 0 . 0 0 0 t a b l e _ c o n f i g u r a t i o n 6
[ 0 5 ] 0 10 0 0 1023 1023 1 30 0 .0015 0 . 0 on 240
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[ 0 6 ] 1 10 0 0 1023 1023 1 30 0 .0015 0 . 0 on 241
[ 0 7 ] 2 10 0 0 1023 1023 1 30 0 .0015 0 . 0 on 242
[ 0 8 ] 3 10 0 0 1023 1023 1 100 0 . 0 0 . 0 o f f 251
[ 0 9 ] 4 10 0 0 1023 1023 1 100 0 . 0 0 . 0 o f f 252
[ 1 0 ] 5 10 0 0 1023 1023 1 100 0 . 0 0 . 0 o f f 253
[ 1 1 ] 2 0 1 1 . 0 3 . 0 8 T17 : 0 5 : 1 0 . 0 0 0 t a b l e _ a c q u i s i t i o n 0 3
[ 1 2 ] 2 0 1 1 . 0 3 . 0 9 T00 : 0 0 : 0 0 . 0 0 0 t a b l e _ a c q u i s i t i o n 3 3

3. PROBA2 Data Pipeline Architecture

3.1. Overview

All spacecraft communication frames received by the ground stations are processed at the
MOC into instrument and housekeeping packets in the format of the Consultative Committee
for Space Data Systems (CCSDS: CCSDS Secretariat, 2000). For LYRA, these packets are
transfered directly to the P2SC. The SWAP packets are reformatted into binary files such that
one file contains all packets belonging to one image acquisition. All housekeeping packets
are converted into physical values and stored in time-tagged ASCII files. The data coverage
of the SWAP, LYRA, or housekeeping data is not necessarily covering the same time period,
as the onboard downlink channels are independent of each other.

The data pipeline hosted at the P2SC is based on the Linux operating system and run
as two virtual servers on VMware™. Once the incoming data files are received at a drop-
box, a data flow concept processes all incoming files into intermediate and final products.
The data flow is made of 31 software modules that are controlled and synchronised by a
dedicated control module. All software modules are configurable via a human readable text
configuration file. The modules are implemented in either Perl, PHP, Python, C, or IDL™.

3.2. Data Processing

Figure 2 shows the general structure of the P2SC science-data pipeline, sketching the most
important software modules. The processing starts in three independent chains – one for

Figure 2 Architectural overview of the P2SC data processing.
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LYRA, one for SWAP, and one housekeeping – that can be executed in parallel. All input
files are pushed from the MOC onto the P2SC servers.

SWAP Telemetry Reformatter (SWTMR)
The SWTMR module starts up on the existence of a newly arrived binary SWAP input file.
Each image is processed into an image file in FITS format containing the measured digital
numbers of the detector as well as the decoded instrument housekeeping values contained
in the input file. In addition, a thumbnail image in PNG format is created for quicklook
support of the operators. The SWTMR is implemented in the C programming language.

LYRA Telemetry Reformatter (LYTMR)
The LYTMR module is triggered on the arrival of a new binary LYRA input file. All mea-
surement samples as well as instrument housekeeping data are processed and ingested into
a SQL database. The LYTMR module is implemented in the Python scripting language.

Auxiliary Data Processor (ADP)
The ADP module is triggered on the arrival of a new ASCII housekeeping input file. Most
of the housekeeping parameters are extracted and ingested into a SQL database. The ADP
module is implemented in the PHP scripting language.

SWAP Engineering Data Generator (SWEDG)
The SWEDG module is triggered by the successful completion of the SWAP Telemetry
Processor or the Auxiliary Data Processor. The FITS files created by the SWAP Telemetry
Processor are read and converted into new FITS files that contain, besides the raw image,
all of auxiliary data that are needed in the further calibration chain. The SWEDG module
is implemented in the C programming language.

LYRA Engineering Data Generator (LYEDG)
The LYEDG is triggered by the successful completion of the LYRA Telemetry Processor or
the Auxiliary Data Processor module. A daily FITS file is created containing all measure-
ment values as well as all necessary auxiliary data needed for the calibration process. As
the data of several passes contribute to the final data spanning a one-day period, this FITS
file is overwritten several times a day, triggered by the arrival of new instrument data or
new housekeeping data. The individual time series of all of parameters are stored as binary
extensions within each daily FITS file. The LYEDG is implemented in the Python scripting
language.

SWAP Base Science Data Generator (SWBSDG)
The SWBSDG module is triggered by the successful completion of the SWAP Engineering
Data Generator. Each FITS file is processed into a fully calibrated FITS file. The necessary
calibration files (e.g. dark-current files and flat fields) are retrieved from the local file sys-
tem using a file pattern matching selection method. The SWBSDG module is implemented
in the IDL scripting language.

LYRA Base Science Data Generator (LYBSDG)
The LYBSDG module is triggered by the successful completion of the LYRA Engineering
Data Generator. A daily, calibrated FITS file is created taking into account calibration files
stored on the local file system of the P2SC. The LYBSDG module is implemented in the
IDL scripting language.

SWAP Media Product Generator (SWMPG)
The SWMPG module is triggered by the successful completion of the SWAP Base Sci-
ence Data Generator and produces, or updates, a daily movie file. The SWMPG module is
implemented in the C programming language.

Cataloging tool (CLOG)
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The metadata of the engineering and calibrated SWAP and LYRA products is inserted into
databases to facilitate data mining. The CLOG module is implemented in the C program-
ming language.

Data Consistency and Validation Checker (DCVC)
The DCVC module is triggered by the successful completion of the Auxiliary Data Pro-
cessor and ensures the consistency of all available data sources within the P2SC. These
include, e.g.,

• The instrument planning consistency.
The mode changes of an instrument are available in the P2SC and are compared against
the planned instrument commands. As the instrument mode changes cannot be mapped
one-to-one to the high-level IOS commands, for each IOS command a mode simulation
is run and compared against the executed instrument mode changes onboard. Whenever a
mode change is executed outside of an acceptance window, the DCVC throws a warning.

• The instrument mode transition correctness.
• The instrument mode transitions against known problems.
• The housekeeping parameter range consistency.
• The spacecraft parameters against instrument parameter consistency.

The DCVC module is implemented in the PHP scripting language.
Logging, Monitoring, and Triggering (LMAT)

All tools mentioned so far are orchestrated by a system backbone, named LMAT. Two con-
figuration files contain the setup for the overall P2SC. The first configuration file defines
the data flow based on the existence of files in dedicated directories. For each directory,
a file pattern is specified and the name of the tool to run, if a pattern match is detected.
The second configuration file defines the processing flow. For each tool in the P2SC, the
configuration includes:

• The maximum time the tool is expected to execute. After this time period, the LMAT
stops the instance of the tool and flags the processing as unsuccessful.

• The Internet protocol (IP) address of the server to run the tool on. This functionality
allows the parallel execution of the data pipelines for SWAP and LYRA.

• A priority number that allows the LMAT to start tools with higher priorities before others.
Seven different priority numbers are in use to control all the tools of the pipeline.

• The name of the tool to start after a successful completion.

All tools send information (i.e. errors, warnings, informational notes) to the LMAT. An LMAT
graphical user interface provides an overview of the data pipeline and the execution of its
tools to the operators. The LMAT module is implemented in the Perl scripting language.

3.3. Data Pipeline and Instrument Health Monitoring

A graphical user interface, accessible through a secured network channel using any web
browser, allows the monitoring of the data pipeline as well as the visualisation of all instru-
ment and several spacecraft housekeeping parameters. The user interface, implemented in
the PHP scripting language, lists all of the processes of the data pipeline and indicates their
status: SCHEDULED, PROCESSING, PROCESSED OK, PROCESSED WITH WARNING,
PROCESSED WITH ERROR. The tool allows the user to navigate quickly to all of the mes-
sages of an individual run of a module. ERRORS and WARNINGS can be dismissed either
individually or all errors or warnings of a module run can be dismissed. Each error or warn-
ing is labelled by an identifier for which an explanatory text including possible resolutions
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and necessary activities is documented in an operational WIKI system. This functionality
allows the operator to quickly get an overview of the data pipeline status and react ade-
quately to errors. A basic visualisation tool allows the plotting against time of individual or
several housekeeping parameters in one or a set of plots. The plots are produced on-the-fly
and the operator can easily tailor the requested plots. As a result, the operator can judge
the health and nominal operations of the instruments instantaneously. A LYRA quicklook
viewer – also accessible via a web interface – allows the visualisation of data samples for
arbitrary time periods. Movies of SWAP produced by the SWMPG allow quick evaluation
of the imager operations. A set of command-line tools directly access the databases or FITS
files, allowing the trend analysis of several parameters:

• Temperature evolution of several thermistor values of the spacecraft and the instrument.
• Dark current evolution over longer time periods.
• Detector degradation over long time periods.

In addition to the Operational Calendar, all daily activities are logged in a log book,
implemented on the operational WIKI system.

3.4. Implementation Issues

To allow flexibility in the small development team and to use the different advantages of a
multitude of programming languages and supporting libraries, strict requirements towards
the interfacing of the software modules towards the overall data-processing system were
necessary. Each of the software modules must be capable of:

• Being invoked from the command line as well as from the pipeline scheduler.
• Reading in all settable parameters from a human readable, well-defined configuration file.
• Sending defined start-up messages.
• Sending warning and error messages using a defined syntax and globally defined identi-

fiers.
• Sending defined closing messages and exiting in a defined way.

To achieve this interface behaviour, the listed functionalities are implemented in Perl and
compiled into a library that is then made available via an interface which is accessible by all
programming languages employed.

The P2SC made use of a multitude of open-source software libraries, allowing a relatively
short implementation phase.

3.5. Hardware

The development of the software modules was performed using several operating systems
(i.e. Microsoft Windows™, Suse Linux™, Mac™ OS X). The final hardware selected is an
off-the-shelf Linux workstation with a redundant disk system integrated into a 19-inch rack:

• Two quad-core Intel™ 1.6 GHz processor boards.
• 24 × 750 GByte RAID system.
• Two Fiber Channel switches to connect the two processor boards to the RAID system.

Supplementary to the operating system, the usage of virtualisation allows the creation
of isolated guest operating systems within a normal host operating system (Smith and Nair,
2005). The usage of the VMware™ system within the P2SC allowed us to virtualise and
isolate the data pipelines. This allowed us to physically disconnect servers that connect to
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Table 1 SWAP distributed data products.

Name Level Format Description

Engineering Raw FITS Measured digital numbers

Calibrated Calibrated FITS Dark-current, flat-field, and gain corrected

Quicklook Raw PNG Thumbnails of raw data

Movies Calibrated MPEG-4 Daily movie file of calibrated data

Intensity Calibrated FITS Average intensity over full field-of-view

the outside world (e.g. the interface P2SC/MOC or the public web server) from the P2SC
internal servers thus increasing the security of the overall system. The virtualisation was
also used to separate the development system from the operational system and allowed the
quick building of test environments supporting distributed testing. The virtualisation can
also be used to separate sporadically appearing tasks, e.g. the re-processing of data, from
the rest of the operational system. It was felt very advantageous during the nominal mission
to be able to fall back to an isolated system to re-process the full data archive without any
interference and interaction to the archival system in use by the scientific community. The
final usage of virtualisation covers the fall-back possibility onto a newly created system in
case of hardware problems on the operational system.

3.6. Security

The PROBA2 Science Centre infrastructure is protected by the Observatory firewall. In stan-
dard configuration, only the publicly available data directories are visible and readable out-
side the firewall. A small set of port-to-port connections are allowed to support the data
exchange between the Science Centre and the Mission Operations Centre, and the Science
Centre and the long-term archive facilities at ESAC.

4. Data Distribution

All data are distributed via the PROBA2 home page. All distributed science data are in FITS
format and the file structures are comparable to those used by SOHO (St. Cyr et al., 1995).
All ancillary spacecraft data necessary to process the next calibration level are contained in
the FITS files themselves.

4.1. SWAP Science and Quicklook Data

Table 1 lists all the data products available from SWAP (Seaton et al., 2012). Supplementary
to these standard products, the SWAP calibration software and the calibration files that are
necessary to convert engineering FITS files into calibrated FITS files are distributed via
SolarSoft (SSW: Freeland and Handy, 1998). The SWAP files are fully integrated into the
SSW object-oriented programming system, which itself is freely available as a tree of the
Interactive Data Language (IDL) programming environment. This allows any user to create
customised calibrated images.

http://proba2.oma.be
http://www.lmsal.com/solarsoft
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Table 2 LYRA distributed data products.

Name Level Format Description

Engineering Raw FITS Daily Fits files

Calibrated Calibrated FITS Dark-current and degradation
corrected

Averaged Calibrated FITS Calibrated, one-minute averaged data

1-day quicklook Calibrated PNG Images containing daily, one-minute
averaged, calibrated data

3-day quicklook Calibrated PNG Images containing three days,
one-minute averaged, calibrated data

4.2. LYRA Science and Quicklook Data

Due to the number of instrument units, their control, and the overall complexity of the in-
strument, several FITS files are produced (Dominique et al., 2012). Each of these contains
the data of interest covering a full day. Table 2 gives a summary of these products.

For the engineering-data level, seven different FITS files are available:

Standard Science Data (STD)
The standard FITS file contains all data samples of all four channels from UNIT 2 as a
binary extension table.

Calibration Data (CAL)
All measurements of UNIT 2 obtained during calibration campaigns, typically these are
LED calibration campaigns or dark-current measurements.

Meta–data (MET)
A daily FITS file with three tables, containing spacecraft housekeeping, instrument status
information, and instrument-calibration voltage measurements. These tables are needed in
the calibration process.

Backup Science Data (BST)
Same as STD, but for the backup unit.

Backup Calibration Data (BCA)
Same as CAL, but for the backup unit.

Rejected Data (REJ) and Backup Rejected Data (BRE)
Rejected data samples of standard and backup unit, respectively.

The data-type acronym is part of each file name.
All calibrated data from all channels are within one FITS file. The same is valid for the

averaged data. LYRA reading routines are available via the SolarSoft tree of IDL.

4.3. Ancillary Data

Position, pointing, and time-related information is distributed via SPICE kernels (Acton,
1996). These are made available from the PROBA2 WWW page, and are described in Ta-
ble 3.

5. The Guest Investigator Programme

A Guest Investigator programme was initiated to support the PROBA2 science commu-
nity. The programme foresees a yearly call for proposals – typically early Summer – with

http://www.lmsal.com/solarsoft
http://proba2.oma.be/aux/data/spice/kernels
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Table 3 PROBA2 distributed SPICE kernels.

Name Update Frequency Description

CK Per pass Spacecraft attitude

FK On request Reference frames

IK On request Instrument FOV orientation and shape

LSK Irregular NAIF leap-second kernel

PCK Irregular NAIF planetary-constants kernel

SCLK On request GPS time to UTC time conversion

SPK Per pass Spacecraft position information

the selection of up to seven guest investigators, primarily Ph.D. students. A stay of several
weeks at the P2SC is supported to shorten the time to understand the instrument, its com-
manding, and data analysis. An active participation in the science planning and operation is
encouraged, especially when specific campaigns are requested to support the proposed data
analysis.

The Guest Investigator programme of 2010 – 2011 received 16 proposals of which five
proposals combined SWAP and LYRA data analysis, nine for SWAP, and two for LYRA.
The proposer locations included China (one), Russia (four), India (three), Iran (one), and the
US (one). The other proposers were from ESA member states: Austria, Belgium, France,
Germany, the UK, and Greece. The six selected proposals covered the following science
topics:

• Understanding the solar UV and Lyman-α irradiance variability from LYRA observations.
• Studying of the solar inner corona and searching for quasi-stationary coronal streams

from active regions using SWAP off-disk observations.
• Transients and their role in heating and acceleration.
• Studying coronal holes and solar-wind velocity forecasts based on SWAP data analysis of

the solar wind.
• Cross-calibration and comparison of LYRA and SOLSTICE (Rottman, Woods, and Sparn,

1993).
• Reconstructing the solar variability from bandpass measurements.

The Guest Investigator programme of 2011 – 2012 received 15 proposals from India (two),
Russia (three), US (two), Poland (one), and Croatia (two). The proposals from ESA mem-
bers states received were from the UK (one), Ireland (two), Portugal (one), and Spain (one).
In total, seven proposals were selected, covering:

• Regularities of CME propagation in the new solar cycle.
• Probing flare reconnection regions with LYRA and AIA.
• Investigation of UV radiation of solar flares with LYRA.
• The relationship between the on-disk “EIT wave” and its associated CME.
• The study of the origin, evolution, and geo-effectiveness of narrow CMEs.
• Blind deconvolution technique for accurately estimating the Point Spread Function of

SWAP.
• The long-term study of the solar EUV corona.

More information on the Guest Investigator programme can be found on the PROBA2
WWW page.
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6. Lessons Learned from PROBA2

Several lessons were learned during the development and the first two years of operations of
PROBA2:

High-level commanding language
The high-level commanding language used at the P2SC is translated at the MOC into low-
level instrument commands. These commands are then uplinked to the spacecraft. In case
of uplink problems, the MOC reports these problems back to the P2SC often pointing
to the low-level commands that were not uplinked. As the P2SC has no insight into these
low-level commands, it cannot react correctly and is not able to translate the received infor-
mation into the corresponding databases. For future science operations centres it is advised
either not to translate the high-level commanding language at all and ensure that these
high-level commands are executed onboard or that the science centre does the translation
itself and has full visibility on all details.

Commanding life cycle
Based on the previous point and also on the fact that housekeeping parameters are time-
tagged at fixed intervals (not necessarily the same as used for the command tags), the
P2SC is not able to unambiguously match the downlinked data to the uploaded instrument
commands. As a result, the verification of the uplink stream is very complicated and not
complete. The authors advise that any command or type of command is given a unique
identifier that is bundled into the science-data packets whenever a corresponding command
is executed. As an alternative, the identifier could be implemented for each instrument
mode and would serve the same purpose.

Experimental instrument features
Several experimental features were implemented to allow the optimisation of science
data: onboard priority schemes, table programming, selectable compression, spacecraft off-
pointing, etc. These features were implemented due to the fact that PROBA2 is a technol-
ogy mission. The link from P2SC–MOC–spacecraft–MOC–P2SC was carefully analysed
and optimised and finally implemented in each of these linked systems. Nearly all features
were found to be very useful and are recommended to be considered for other missions.

Database usage to store highly sampled data
LYRA and housekeeping data are sampled at high rate, e.g. 50 Hz for LYRA. The P2SC
foresaw to store all samples in SQL databases. To achieve reasonable response times, major
efforts on SQL database table optimisation as well as SQL table query optimisation had
to be done. It is advised to estimate carefully during the design of a science segment the
retrieval times assuming a maximum data and system load before agreeing on the selected
storage architecture.

Virtualization
The use of a virtual operating system was beneficial. The achieved redundancy was ob-
tained by an increased processing time (e.g., a factor of two – three). None of the P2SC al-
gorithms were processing intensive and the impact on the overall processing performance
was minimal.

Usage of standard interfaces during implementation
It was decided early in the design to allow different programming languages for the im-
plementation. Team members were able to select a programming language that was either
better suited for the implementation of the task or already providing powerful libraries.
E.g. the SWAP calibration routines were implemented in IDL using the already existing
SolarSoft library and allowing solar scientists – typically able to program in IDL – to redo
the calibration steps themselves. This approach also allowed more flexibility to select team
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members for the implementation of the diversity of implementation tasks. To allow for this
flexibility, a rigorous interface was defined for each of the programming languages used
to guarantee the correct and standard execution of the error handling, the interfacing to
the controlling dataflow mechanism, the calling interface, and the handling of configura-
tion parameters. Especially for small projects with limited development resources, this is
considered to be a valuable choice, if mutual interfaces have been precisely defined before-
hand.

7. Conclusion

The implementation of the P2SC was carried out within 1.5 years. The data pipeline was ver-
ified very soon after the launch and already used with most functionality during the commis-
sioning phase. Since then, the P2SC is operational and processes all data within 30 minutes
of arrival. Interruptions are very rare and of short duration, typically less than four hours.
The commanding tools are very flexible and the operator can react to solar activity within
hours. The high-level commanding language allows the operator to discuss and program the
instruments directly in cooperation with the scientists. The use of web-based tools allows
the execution of the P2SC pipeline from any terminal in the world using secured access. The
processed data products are available in near-real time and are freely accessible.

Within the context of the PROBA Guest Investigator programme, external solar physi-
cists are regularly invited to join the P2SC for a period of a few weeks. They take part in the
instrument planning and commanding, and the analysis of the resulting scientific data. The
programme was found to be important to increase the visibility of a small science mission.

In closing, the implementation and operation of the PROBA2 Science Centre as a co-
operation between the European Space Agency and the Royal Observatory of Belgium has
been smooth and efficient, and it is considered as a success by all involved parties.
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