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Abstract

The thermodynamic treatment of the glass transition remains an issue of intense debate. When

associated with the formalism of non-equilibrium thermodynamics, the lattice-hole theory of liquids

can provide new insight in this direction, as has been shown by Schmelzer and Gutzow [J. Phys.

Chem. 125, 184511 (2006)], by Möller et al. [J. Phys. Chem. 125, 094505 (2006)], and more

recently by Tropin et al. [J. Non-Cryst. Solids 357, 1291; 1303 (2011)]. Here, we employ a similar

approach. We include pressure as an additional variable, in order to account for the freezing-in

of structural degrees of freedom upon pressure increase. Secondly, we demonstrate that important

terms concerning first order derivatives of the affinity-driving-force with respect to temperature

and pressure have been previously neglected. We show that these are of crucial importance in the

approach. Macroscopic non-equilibrium thermodynamics is used to enlighten these contributions

in the derivation of Cp, κT , and αp. The coefficients are calculated as a function of pressure and

temperature following different theoretical protocols, revealing classical aspects of vitrification and

structural recovery processes. Finally, we demonstrate that a simple minimalist model such as

the lattice-hole theory of liquids, when being associated with rigorous use of macroscopic non-

equilibrium thermodynamics, is able to account for the primary features of the glass transition

phenomenology. Notwithstanding its simplicity and its limits, this approach can be used as a very

pedagogical tool to provide a physical understanding on the underlying thermodynamics which

governs the glass transition process.
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I. INTRODUCTION

There are numerous approaches dealing with the glass transition process. Some are based

on microscopic models, while others are mostly driven by macroscopic and phenomenological

view-points. One of this approaches, is the thermodynamic of irreversible processes, or

non-equilibrium thermodynamics. Within this latter approach, the notion of one or more

structural order parameters is used to characterize the glassy state. Such structural order

parameters ξi, have to be taken into account in addition to classical thermodynamic variables

in order to describe the non-equilibrium aspect of the glass transition. The affinity A is the

conjugated variable associated to the order parameter. It plays a fundamental role since

it defines the driving force of the non-equilibrium process. The formalism of classical non-

equilibrium thermodynamics has been developed by De Donder in a self-consistent manner

[1]. The first attempts to apply this theory to glass science have been made by Prigogine

and Defay[2], and Davies and Jones [3].

Non-equilibrium thermodynamics has been used all along the last century by different

groups of researchers, and has seen renewed interest in the last few years [4–15]. As an

example, Bouchbinder and Langer used the generalized non-equilibrium thermodynamics

based on internal variables to investigate one of the most striking aspect of the glass tran-

sition, i.e. the Kovacs effect [16]. They provided fits of the numerical simulation curves

obtained by Mossa and Sciortino on the Kovacs effect [17]. Among these recent works, Gut-

zow, Schmelzer and co-workers have brought new aspects to the field [18–24]. Using the

so-called lattice-hole theory of liquids, and an evolution equation for the order parameter

as a function of temperature, they investigated the process of vitrification and structural

recovery following defined temperature protocols [18, 19, 23, 24]. Among other points, a

new expression for the Prigogine-Defay ratio and a thermodynamic definition of the fictive

temperature was provided [18, 24].

In this paper, we elaborate the same approach towards a more complete and rigorous

treatment of the glass transition. First, we include pressure as an additional variable into

the expression of the relaxation time to account for vitrification by pressure perturbation

in analogy to temperature changes. Secondly, we demonstrate that the total derivatives

of the affinity with respect to pressure and temperature are of crucial importance for the

consistency of the approach. We show that to neglect them leads to incoherence such as
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discussed later.

The paper is organized as follows: In the section II, the lattice-hole theory of liquids

is recalled. The configurational Gibbs free energy is written as a function of pressure p,

temperature T , order parameter ξ and phenomenological parameters. Next, we illustrate

how to extract the values of the phenomenological parameters from experimental data. Then

we compute the equilibrium values of the order parameter as a function of temperature and

pressure.

In section III, we describe how to obtain the non-equilibrium behavior of the order pa-

rameter assuming a first order relaxation equation with a modified Vogel-Fulcher-Tamman-

(VFT) relaxation time accounting for the pressure and the temperature. In resolving nu-

merically the relaxation equation, we are able to compute the non equilibrium values of the

order parameter according to specified temperature and pressure variation protocols.

In section IV, we use these results to compute the affinity as a function of temperature or

pressure. We compute the configurational parts of the thermodynamic coefficients Cp, κT , αp

and show that in order to obtain qualitative agreement with experimental observations, the

derivatives of the affinity should not be neglected (as done in, e.g., Ref. [24]). This model

is able to qualitatively reproduce typical experimental observations such as for instance

vitrification and structural recovery.

In the final section V, we discuss the fictive temperature concept and its possible model-

independent definition within this framework.

It will be demonstrated that a simple minimalist model such as the lattice-hole theory

of liquids, when being associated with rigorous use of macroscopic non-equilibrium thermo-

dynamics is able to account for the primary features of the glass transition phenomenology.

Because of this simplicity, this approach can be used as a very pedagogical tool to tackle

the thermodynamics which underlies glass transition process.

II. EQUILIBRIUM LATTICE-HOLE MODEL OF LIQUIDS

A. Introduction of the lattice-hole model of liquids

The phenomenological approach of the glass transition by the lattice-hole model has been

described in several papers [25, 26] and books [27, 28]. Generally, liquids have a larger molar
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volume than solids. Thus some volume of the liquid is supposed to embed holes. Let be NA

the Avogadro number and Nh the number of holes per mole of the liquid. In the lattice-hole

model this defines an order parameter ξ :

ξ =
Nh

NA +Nh

.

A perfect crystal has no holes and ξ = 0.

A liquid at equilibrium at a given temperature T and pressure p has a given excess volume

with respect to the crystal form △Vconf = Vliq(T, p)−Vcrystal(T, p) from which the equilibrium

value of the order parameter can be measured if the relationship between excess volume (or

configurational volume) and ξ is known. Following previous approaches [18, 19, 28], we

assume constant volume of holes v0. The excess volume and the order parameter are thus

connected by the following relationship :

△Vconf = Nhv0 = V0

ξ

1− ξ
(1)

where V0 is the molar volume of one hole. In one of the first hole theories Frenkel considered

the holes to be atom-sized [27] while later Hirai and Eyring considered them to be much

smaller [29].

The configurational molar Gibbs free energy associated with the presence of holes in the

liquid is written as [28]:

△Gconf = ∆E0ξ + pV0

ξ

1− ξ
+RT

[

ln (1− ξ) +
ξ

1− ξ
ln ξ

]

. (2)

In this expression of the configurational Gibbs free energy, discussed thoroughly in the

monograph [28], ∆E0 represents the energy associated with the braking of molecular bonds

between the material molecules in order to create one mole of holes. The last term in the

right hand side of the equation corresponds to the entropy of mixing between holes and

molecules. The value ∆E0 and V0 can be extracted from experimental data as described in

the next paragraph.

1. Extraction of ∆E0 and V0:

The lattice-hole model is used up to the melting temperature Tm. We use experimental

measurements at Tm of ∆Vm and ∆Sm in order to calculate ∆E0 and V0. As an exem-

plary model system, we choose o-terphenyl for which PV T measurements, and melting data
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Table I: Characteristic of o-terphenyl melting and corresponding parameters used in the lattice-hole

model.

p (MPa) 0.1 39.2 78.5

Tm(K) 329.352 343.4 356.8

∆Sm (J · K−1 · Mol−1) 52.195 51.61 50.87

Vl (cm
3 · Mol−1) 218.50 215.87 213.51

Vc (cm
3 · Mol−1) 199.13 197.83 196.61

∆Vm (cm3 · Mol−1) 19.38 18.03 16.90

ξeq(Tm) 0.09279 0.087209 0.082433

V0 (cm
3 · Mol−1) 7.34 7.08 6.89

∆E0 (J · Mol−1) 7908.9 8081.3 8252.3

at different pressures, are available [30]. A relaxation time constant τ(p, T ) depending on

temperature as well as pressure, is also available from experimental data [31]. The charac-

teristics of the melting process are recalled in the table I. From these experimental values

we derive the parameters used to describe the lattice-hole model.

First, we estimate the equilibrium value of the order parameter at the melting temperature

Tm . We express the Eq. (1) at Tm and invert it :

ξeq(Tm) =
∆Vconf/V

(1 + ∆Vconf/V )
,

where V = (Vl + Vc)/2 is taken as an initial estimation of V0 and ∆Vconf = Vl − Vc. The

computed values of ξeq are presented in the table I. Once an approximate value for ξeq is

known, the estimation of V0 and ∆E0 is done as following.

The Eq. (2) is valid at the melting temperature of the crystal. The liquid-crystal transi-

tion is an equilibrium phase transition and thus the affinity A = 0 :

A = −
∂∆Gconf

∂ξ

∣

∣

∣

∣

T,p

= 0. (3)

This conditions is rewritten as :

−RTm ln ξeq = ∆E0(1− ξeq)
2 + pmV0. (4)
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The various (Tm, pm, ξeq) are known from experimental works [30] and from the basic

equation of state (Eq. (4)).

To completely solve the system we need a third equation that is obtained considering

the equilibrium melting transition. The Clausius-Clapeyron equation describing the line of

coexistence of the crystal and liquid phases in the p− T plane allows to write [32]:

dT

dp
=

T (∂△Vconf/∂ξ)T,p
(∂△Hconf/∂ξ)T,p

. (5)

Where △Hconf = ∆E0ξ + pV0ξ/(1− ξ) is the configurational enthalpy. The various config-

urational parts are expressed at Tm and pm from Eq. (1) and equation of △Hconf above:

∂△Vconf

∂ξ
=

V0

(1− ξ)2
(6)

∂△Hconf

∂ξ
= ∆E0 +

pV0

(1− ξ)2
(7)

Combining Eq. (4) and Eq. (6) and (7) at pm and Tm, Eq. (5) is rewritten as :

dT

dp
= −

V0

R ln ξeq(Tm, pm)
=

∆Vm

∆Sm

. (8)

The experimental values for ∆Vm and ∆Sm allow to compute the value of V0 (see Table I).

It is then possible to give an approximate value for ∆E0 by using Eq. (4). These values are

slightly pressure dependent, but as we are only interested in general behavior, we use the

values of V0 and ∆E0 obtained at atmospheric pressure, to compute the properties of the

system at various pressures and temperatures.

We compute the equilibrium values of the order parameter, ξeq, for various pressures and

temperatures by solving Eq. (3). The evolution of ξeq as a function of temperature and

at constant pressure is plotted on the inset (a) of Fig. (1) and the evolution of ξeq as a

function of pressure and at constant temperature is plotted on the inset (a) of Fig. (2). In

both cases ξeq continuously changes and shows no saturation in the temperature and pressure

intervals investigated. At equilibrium, the system continuously adapts its configuration so as

to minimize its Gibbs free energy according to the external set of constraints, here imposed

only by the temperature T and pressure p.
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III. OUT OF EQUILIBRIUM PROPERTIES OF THE LATTICE-HOLE MODEL

OF LIQUIDS

A. Rate equation

From the knowledge of ξeq(p, T ) the changes of the order parameter ξ(p, T, t) upon tem-

perature variation T (t), pressure variation p(t), or both, is computed by solving the following

first order equation :
dξ(T, p, t)

dt
=

(ξeq(T, p)− ξ(T, p, t))

τ(T, p)
. (9)

The initial condition should be a state in the liquid at equilibrium uniquely determined by

the values of T and p. The equation (9) assumes that the linear regime holds (see discussion

on this point in Ref. [19] ) and that the relaxation time of the order parameter depends

only on T and p.

Equations (4) and (9) together with the expression (10) of the relaxation time below

entirely determine the out of equilibrium properties of the system.

B. Extraction of τ(T, p)

The question now arises as to how the melt could freeze. From the relaxation law (Eq.

(9)) the glass transition takes place if the system is brought within an appropriate time

scale in a range of variables (p, T ) where the relaxation time τ is high enough that
dξ
dt

tends towards zero. In this case, all configurational contributions to the thermodynamic

properties disappear. Generally, the expressions of the relaxation time that are chosen follow

the so-called VFT law, τ = A exp
(

A
T−T0

)

or Tool–Narayanaswamy–Moynihan (TNM) law

τ(T, Tf ) = A exp
[

x△h∗

RT
+ (1− x)△h∗

RTf

]

. In this work, a modified VFT law with pressure is

considered for the relaxation time :

τ = τ0 exp

(

B + b(p− 0.1)

T − [T0 + a(p− 0.1)]

)

(10)

where p is in MPa and B = 2500 K; b = 0.29 K/MPa; a = 0.3 K/MPa; T0 = 191 K;

τ0 = 8.9× 10−19s. This expression is taken from the results in Leyser et al.[31] who fitted

specific-heat spectroscopy data both in pressure and temperature. The evolution of τ on

the investigated temperature interval is shown in the inset (b) of Fig. (1) and the evolution

of τ on the investigated pressure interval is shown in the inset (b) of Fig. (2).
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parameters V0 ∆E0 τ0 B b T0 a

value 7.3383 cm3 · Mol−1 7909J · Mol−1 8.9 · 10−19 s 2500K 0.29 K·MPa−1 191 K 0.3K · MPa−1

Table II: Table of the parameters used for the numerical computations used in this work.

C. Temperature dependence of ξ

We check if the system is driven out of equilibrium and frozen by changing the temper-

ature. The evolution of the order parameter is numerically computed by using Eq. (9) and

the expression (10) for the relaxation time τ . The initial condition starts from equilibrium in

the liquid phase at pressure p0 = 0.1MPa and Tmax = Tm = 329.35K. While the pressure is

kept constant, the temperature is decreased at a defined rate γT = dT/dt until temperature

Tmin = 230 K. Obviously the choice of such minimum temperature is arbitrary: we only

ensure to have freezing (ξ =constant) conditions at this temperature. Subsequently, the

system is reheated at the same rate until the initial equilibrium state. Fig. (1) shows the

evolution of ξ as a function of temperature T obtained for two different rates γT = ±6K/min

and γT = ±0.3K/min. The plots for cooling and subsequent heating are shown. Upon cool-

ing, the departure from equilibrium occurs at different temperatures and depends on the

cooling rate. The higher the cooling rate, the higher is the temperature at which the system

departs from equilibrium. The glass transition temperature is around Tg = 245 K close to

the value reported in Ref. [30] for the same cooling protocol. The ratio of the glass transition

temperature and the melting temperature is θ = Tg/Tm = 0.74 is slightly higher than the

value of 2/3 of the Kauzmann-Beaman rule [28]. These results, in quantitative agreements

with experiments, suggest that the parameters used in the expression of the relaxation time

are physically relevant.

Upon reheating, the order parameter ξ first crosses the equilibrium value ξeq before re-

turning to the equilibrium curve although with some delay. This behavior is well understood

and has been obtained and discussed in Ref. [19]. The behavior of the order parameter upon

reheating is due to the rapid decrease of the relaxation time. At a particular point the sys-

tem reaches equilibrium ξ = ξeq and would stay there if the temperature was kept constant

(see Eq. (9)). However, the temperature keeps increasing at a constant rate and the system

relaxation time is not yet sufficiently fast to follow the temperature variation. Thus, the
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Figure 1: Evolution of the order parameter as a function of temperature at constant pressure

p = 0.1MPa. The arrows and colors indicate the sense of variation of the temperature : down and

blue correspond to cool down and vitrification whereas up and red correspond to reheating. The

temperatures variation rates are γT = ±0.3 K/min (thick lines) and γT = ±6 K/min (dashed lines).

Insets : (a) Equilibrium order parameter as a function of temperature on the whole temperature

range. (b) Evolution of log(τ) as a function of temperature.

system is again driven out of equilibrium until the relaxation time becomes sufficiently small

as compared to the temperature variation time that can be connected to the inverse of the

rate γ−1

T . Then the system returns to equilibrium.
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D. Pressure dependence of ξ

We check if the system is driven out of equilibrium and frozen by changing the external

pressure. We start the numerical computations from an initial condition in an equilibrium

state at pressure p0 = 0.1MPa and T0 = 271.6K. While the temperature is kept constant,

the pressure is raised at a rate γp = dp/dt until a maximum value of pmax = 200MPa is

reached. The pressure is then reduced at the rate −γp until the initial equilibrium state.

The evolution of the order parameter is numerically computed by using equation (9) and

the expression (10) for the relaxation time τ . The figure (2) shows the results obtained

for two different rates γp = 25MPa/min and γp = 1.25 MPa/min. The plots of the values

of the order parameter for pressure increase and subsequent decrease are shown together

with the equilibrium value of the order parameter as a function of pressure. It is observed

that the system undergoes a glass transition as the pressure is increased. The curves are

very similar to those shown in Fig. (1). The effect of the pressure variation rates on the

transition pressure is observed: at a higher rate the pressure at which the system is frozen

is smaller than at a smaller rate. Although it may seem to go in an opposite way as for

the case of temperature variation, it is equivalent in nature. Indeed, the relaxation time

increases when the pressure raises as seen on the inset (b) of Fig. (2). So an increase in

pressure corresponds to an increase in the relaxation time and leads to vitrification if the

pressure-rate-timescale is appropriate. When the pressure is decreased the relaxation time

decreases and the system returns to the equilibrium after crossing the equilibrium line once.

This simple model gives us all the thermodynamic parameters of the system. It gives

a qualitative behavior of the order parameter as a function of temperature variation and

pressure variation. From the knowledge of the order parameter for any path in the p − T

plane, we shall compute the affinity and all the configurational contributions in the next

section.
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Figure 2: Evolution of the order parameter as a function of pressure at constant temperature

T = 271.6K. The arrows and colors indicate the sense of variation of the pressure : down and blue

correspond to pressure increase and vitrification whereas up and red correspond to pressure decrease.

The pressure variation rates are γp = ±1.25 MPa/min (thick lines) and γT = ±25 MPa/min (dashed

lines). Inset: (a) Equilibrium order parameter as a function of pressure on the whole pressure range.

(b) Evolution of log(τ) as a function of pressure.

IV. DERIVATIVES OF THE AFFINITY AND EXPRESSION OF THE CONFIG-

URATIONAL PARTS

A. Affinity as a function of pressure and temperature

From the previous computations the values of the order parameter have been found as a

function of temperature and pressure and as a function of the control parameter variations.
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According to the out of equilibrium thermodynamics, the state of the system is entirely

determined by the parameters T, p and ξ. We compute the affinity by using its definition

(Eq. (3)). This gives:

A(T, p, ξ) = −∆E0 −
pV0

(1− ξ)2
−RT

lnξ

(1− ξ)2
(11)

The figure (3) and figure (4) show the plots of the affinity respectively as a function of T at

a fixed pressure and as a function of p at a fixed temperature. The glass transition becomes

observable when the affinity starts to deviate from zero. At temperatures and pressures in

which the system is frozen and very little variations of the order parameter are observed,

the affinity keeps varying linearly indicating that the variation of the control parameters

pushes the system farher away from equilibrium without any influences of relaxational effects.

During successive heating (or pressure decrease), the affinity undergoes a clear bump and

even crosses the equilibrium A = 0 black line (or ξ = ξeq) before returning to equilibrium.

Relaxational effects due to the unfreezing of structural degrees of freedom are important in

these ranges. The variations of affinity clearly shows the out of equilibrium nature of the glass

transition. They contribute significantly to the configurational parts of the thermodynamic

coefficients as shown in the next paragraph.

B. Expression of the configurational parts general case

To evaluate the configurational parts of the thermodynamic coefficients, we need to eval-

uate the absolute derivative of the order parameter with respect to the control parameter

that is in our case, either the temperature or the pressure. Since it is possible to compute the

order parameter as shown in the preceding paragraphs, it is straightforward to evaluate the

configurational contributions. Here, we focus on the affinity and express the total derivatives

of the order parameter as a function of the affinity and its derivatives. This may prove to

be useful in the general case when the expression of the Gibbs free energy is not known and

when the out of equilibrium thermodynamic formalism is pushed to its limits [15].

Since the affinity is a state function, its total differential is :

dA =

(

∂A

∂T

)

p,ξ

dT +

(

∂A

∂P

)

T,ξ

dp+

(

∂A

∂ξ

)

p,T

dξ (12)

Maxwell relations [32] are used to transform the partial derivatives, and the equation above
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Figure 3: The affinity A divided by RT as function of temperature. The pressure is p = 0.1 MPa.

The arrows and colors indicate the sense of variation of the temperature : down and blue correspond

to cool down and vitrification whereas up and red correspond to reheating. The temperatures

variation rates are γT = ±0.3 K/min (thick lines) and γT = ±6 K/min (dashed lines).

may be expressed in a practical way making explicitly apparent the infinitesimal time evo-

lution :

dA

dt
=

[

(

∂H
∂ξ

)

p,T
+ A

]

T

dT

dt
−

(

∂V

∂ξ

)

T,p

dp

dt
−

(

∂2G

∂ξ2

)

p,T

dξ

dt
(13)

The last term relates changes in affinity with changes of the order parameter (i.e relaxational

effects due to structural changes). Irreversible thermodynamics requires that ∂2G/∂ξ2|p,T >

0. All the thermodynamic coefficients which can be experimentally measured are calculated

from this fundamental equation. We start with the configurational specific heat.
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Figure 4: The affinity A divided by RT as a function of applied pressure. The temperature is

T = 271.6 K. The arrows and colors indicate the sense of variation of the pressure : down and blue

correspond to pressure increase and vitrification whereas up and red correspond to pressure decrease.

The pressure variation rates are γp = ±1.25 MPa/min (thick lines) and γT = ±25 MPa/min (dashed

lines)

C. Configurational specific heat

The isobaric heat capacity is measured experimentally by applying the following protocol.

A certain amount of heat is exchanged reversibly between the system and an heat reservoir.

This heat exchange occurs within a certain time scale, and the resulting temperature change

is monitored on the same time scale. The pressure is kept constant during the measurement

but the order parameter evolves freely according to Eq. (9). The heat capacity measured

by the experimentalist is [32] :

14



Cp =

(

dH

dT

)

p

=

(

∂H

∂T

)

p,ξ

+

(

∂H

∂ξ

)

p,T

(

dξ

dT

)

p

= Cp,ξ + Cconf
p (14)

The first term is written
(

∂H
∂T

)

p,ξ
= Cp,ξ. Since it implies a constant order parameter, it

characterizes a frozen (glassy) state. The second term is the configurational heat capacity,

which within the glass transition range is time dependent and equal to:

Cconf
p (t) =

(

∂H

∂ξ

)

p,T

(

dξ

dT

)

p

=

(

∂H

∂ξ

)

p,T

(

dξ/dt

dT/dt

)

p

(15)

Owing to the fundamental equation (13), the configurational heat capacity is equal to:

Cconf
p (t) =

(

∂H
∂ξ

)

p,T

[

(

∂H
∂ξ

)

p,T
+ A− T

(

dA
dT

)

p

]

T
(

∂2G
∂ξ2

)

p,T

(16)

This is the general expression of the isobaric configurational heat capacity of an out-of equi-

librium system as a function of the partial derivatives involved in the process and particularly

as a function of the affinity and its temperature derivative. This general expression has been

used by one of us to derive the so-called expression of the frequency dependent complex heat

capacity under linear regime assumption [33].

Following the same principle, other authors [18, 24] have derived these results basing

their reasoning solely on the order parameter ξ. In extending their result to the affinity

they conclude that the derivative of the affinity can be neglected in the equation (16) [24].

Their approximation is inconsistent since it implies that the affinity stays constant during

the glass transition. Instead, Eq. (16) shows explicitly that the derivative of the affinity

cannot be neglected compared with the other terms in the square bracket. Indeed, these

three contributions are shown as a function of temperature for cooling and heating on Fig.

(5). Neither during vitrification, nor during structural recovery the term T
(

dA
dT

)

p
can be

neglected with respect to the two others,
(

∂H
∂ξ

)

p,T
and A.What can be neglected, however, is

the affinity A as compared to
(

∂H
∂ξ

)

p,T
within all the temperature range. This corresponds

to the linearity assumption such as discussed in the appendix A of the reference [15].To

further illustrate our point, the computations of the configurational specific heat are plotted

on the figure (6) according to the results derived in Ref. [18, 23, 24] (see for example formula

(17) of Ref. [18]) and compared with our results from Eq. (16). The qualitative behavior
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Figure 5: Comparison between the affinity A, its derivative with respect to temperature T
(

dA
dT

)

p
,

and ∂∆Hconf/∂ξ)p,T in a glass transition simulated for cooling and heating protocol of γT =

±6K/min. The pressure is kept constant and equal to 0.1 MPa. The dashed line shows the

affinity. Because of the scale, the cooling and heating curves are superimposed. The thick lines

show TdA/dT and the arrows and colors indicate the sense of variation of the temperature : up

and blue correspond to temperature decrease and vitrification whereas down and red correspond

to subsequent reheating and structural recovery. Finally the constant black line corresponds to the

term ∂∆Hconf/∂ξ)p,T .

of the specific heat computed using results of [18, 23, 24] is inconsistent with experimental

data: no gradual decrease of the configurational specific heat is reproduced upon cooling,

no overshoot of the specific heat is reproduced upon reheating, contrary to the behavior
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Figure 6: Computations of the configurational specific heat according to formula (17) of [18] (dashed

lines) and Eq. (16) of this work (thick lines). The temperature variation rate is γT=±0.3 K/min.

The pressure is kept constant and equal to 0.1 MPa. The arrows and colors indicate the sense of

variation of the temperature : the blue color corresponds to temperature decrease and vitrification,

whereas the red color corresponds to subsequent reheating and structural recovery. The equilibrium

configurational specific heat is plotted as a thick black line (cooling or warming).

depicted from Eq. (16) by the blue and red thick lines.

The qualitative comparisons with experiments is best done by computing the normalized

configurational specific heat [34, 35]: CN
p = (Cconf

p /Cconf
p,eq ). The Fig. (7) shows the results of

the computations of the normalized configurational heat capacity for two different protocols.

For the first protocol the temperature was ramped up and down at the same rate γT =

±0.3 K/min. Upon cooling the jump in the normalized configurational specific heat is the
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Figure 7: The normalized heat capacity at constant pressure (p = 0.1 MPa) as a function of

temperature. The arrows and colors indicate the sense of variation of the temperature : down

and blue correspond to temperature decrease and vitrification, whereas up and red correspond

to subsequent reheating. The temperature variation rates are γT = −0.3 K/min (thick blue),

γT = +0.3 K/min (thick red), γT = −0.5 K/min (dashed blue), γT = +20 K/min (dashed red).

signature of the glass transition and occurs in the same temperature range as the freezing

of the order parameter (see Fig. (1)). Upon reheating at the same rate the glassy state

disappears and the normalized specific heat first decreases and overshoots above the cooling

curves. This overshoot in the heat capacity is characteristic of the structural recovery during

reheating. It is commonly measured by differential scanning calorimetry.

For the second protocol, the rates of temperature variation were modified in order to

assess their effects on the normalized specific heat, and to qualitatively compare the model
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with experimental observations. A slight increase in the cooling rate (γT = −0.5 K/min)

shows that the jump in the normalized specific heat occurs at a slightly higher temperature.

This is coherent with experimental observations [36, 37]. An increase in the heating rate

(γT = 20 K/min) strongly increases the overshoot of the normalized specific heat, as observed

in experiments, and shifts it towards higher temperatures [36, 37]. It could also be remarked

that, following the ratio of the cooling/heating temperature rates used, the model is able

to reveal a decrease of the normalized heat capacity just before the overshoot. This effect,

sometimes called "negative specific heat effect", is visible for the γT = ±0.3 K/min protocol

while not accessible for the γT = −0.5 K/min and γT = 20 K/min protocol. This generally

finer effect is also a typical characteristic of the glass transition [34, 38]. It results from a

still decreasing enthalpy even during reheating.

Eventually, the model and computations are able to reproduce qualitatively the experi-

mental behavior of the configurational specific heat. In the next sections we focus on the

isobaric configurational coefficient of thermal expansion and isothermal compressibility.

D. Configurational coefficient of thermal expansion

The coefficient of thermal expansion is measured experimentally by applying the following

protocol. Some heat is exchanged between the system and a heat reservoir within a given

timescale. The pressure is kept constant but the volume, the temperature and the order

parameter change. The coefficient of thermal expansion is obtained by computing the ratio:

(

dV

dT

)

p

= V αp =

(

∂V

∂T

)

p,ξ

+

(

∂V

∂ξ

)

p,T

(

dξ

dT

)

p

By using Maxwell relations [28, 32], the following expression for the configurational part of

the dilatation coefficient is found :

αconf
p =

1

V

(

∂V

∂ξ

)

p,T

(

dξ

dT

)

p

=

(

∂V
∂ξ

)

T,p

[

(

∂H
∂ξ

)

p,T
+ A− T

(

dA
dT

)

p

]

V T
(

∂2G
∂ξ2

)

p,T

(17)

This last expression is the out of equilibrium thermodynamic expression of the configu-

rational isobaric dilatation coefficient emphasizing the role of the affinity. This expression

makes explicit use of the affinity, its temperature derivative, and coefficients such as
(

∂V
∂ξ

)

T,p
,
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Figure 8: Computation of the normalized configurational coefficient of thermal expansion. The

temperature variation rate is γT=±0.3 K/min. The pressure is kept constant and equal to 0.1 MPa.

The arrows and colors indicate the sense of variation of the temperature : the blue color corresponds

to temperature decrease and vitrification, whereas the red color corresponds to subsequent reheating

and structural recovery.

(

∂H
∂ξ

)

p,T
,
(

∂2G
∂ξ2

)

p,T
as well as the volume and temperature. As for the normalized heat ca-

pacity, the normalized coefficient of thermal expansion, αN
p = αconf

p /αconf
p,eq is plotted on

Fig. (8), as a function of temperature during a cooling and successive heating at a rate of

γT = ±6K/min. The pressure is constant and equal to 0.1 MPa. As it can be also shown

from equations, exactly the same curves are obtained as for the normalized isobaric heat

capacity [39, 40].
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E. Configurational compressibility

We consider here the isothermal compressibility. It is measured experimentally by using

the following protocol. The external pressure is varied with a given timescale and the

resulting volume change is recorded on the same time scale. The temperature is kept constant

and the order parameter evolves according to Eq. (9). The isothermal compressibility is

obtained by computing the following ratio :

−V κT =

(

dV

dp

)

T

=

(

∂V

∂p

)

T,ξ

+

(

∂V

∂ξ

)

T,p

(

dξ

dp

)

T

By applying the same reasoning as in the previous parts the configurational isothermal

compressibility is expressed as :

κconf
T = −

1

V

(

∂V

∂ξ

)

T,p

(

dξ

dp

)

T

=

(

∂V
∂ξ

)

T,p

[

(

∂V
∂ξ

)

T,p
+
(

dA
dp

)

T

]

V
(

∂2G
∂ξ2

)

p,T

(18)

As previously, this expression emphasizes the role of the affinity derivative, but this time

with respect to pressure. In order to evaluate the importance of the terms in the bracket,

−
(

∂V
∂ξ

)

T,p
and

(

dA
dp

)

T
are plotted on Fig.(9) for two different rates of pressure variation at

constant temperature (see legend for details). Both contribute significantly to the configu-

rational isothermal compressibility, and the affinity derivative can not be neglected [24]. On

this figure it is observed that above 100 MPathe two terms are approximately equivalent in

absolute value.

In a similar way to what has been done for the configurational specific heat and con-

figurational dilatation coefficient, we define the normalized configurational compressibility

as the ratio of the configurational compressibility and the equilibrium configurational com-

pressibility: κN
T = κconf

T /κconf
T,eq . This ratio is represented on Fig. (10) for two pressure

variation rates of 1.5 MPa/min and of 25 MPa/min. Vitrification by pressure increase is

clearly evidenced, and the higher the pressure rate is, the lower the glass transition pressure

is. The two protocols have been carried out for a constant temperature of 271.6 K. It may

be shown that the characteristic pressure around which the vitrification process occur is

directly dependent on temperature, and the highest the constant temperature is, the lowest

the glass transition pressure is, for a given pressure rate.
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Figure 9: Comparison of
(

dA
dp

)

T
(red lines) and −

(

∂V
∂ξ

)

T,p
(black lines) for two pressure rates. The

arrows indicate the sense of pressure variation. The pressure variation rates are γP = 1.5 MPa/min

(thick line) and γP = 25 MPa/min (dashed line).

V. FICTIVE TEMPERATURE

Tool defined the fictive temperature Tf as the effective temperature of the configurational

degrees of freedom in a glass-former [41, 42]. By definition, the configurational enthalpy,

δHconf , of the non-equilibrium glassy state at the temperature T , equals that of the corre-

sponding equilibrium liquid taken at the fictive temperature:

δHconf (T ) = δHeq
conf (Tf ) (19)

From this definition, in deriving with respect to temperature this gives directly the config-

urational heat capacity [38, 43]:

Cconf
p (T ) = Cconf

p,eq (Tf )
dTf

dT
(20)
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Figure 10: Normalized configurational compressibility at constant temperature of 271.6 K. The

data for a pressure variation rate of γp = 1.5 MPa/min (thick line) and of γp = 25 MPa/min

(dashed line) are represented. Inset : absolute values of the configurational compressibility over

the full pressure range for γp = 1.5 MPa/min (thick line) and γp = 25 MPa/min (dashed line).

So, the normalized heat capacity (Cf. for example curves on Fig. (7)), is equivalent to the

temperature derivative of the fictive temperature:

CN
p =

dTf

dT
(21)

This latter equality can therefore be used to obtain directly the fictive temperature by

integration of the normalized heat capacity curves. The result of such integration, for a

simple cooling rate protocol with γ = −0.5 K/min, is plotted on Fig. (11) as the thick red

line.
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In the reference [22] and [24], Schmelzer, Tropin, and co-workers proposed a model-

independent definition of the fictive temperature (and fictive pressure) based on the classical

thermodynamic definition of a temperature:

Tf =

(

∂U

∂S

)

V

(22)

or equivalently at constant pressure,

Tf =

(

∂H

∂S

)

p

(23)

The difference with usual temperatures comes here from the presence of the term Adξ (or
∑

i Aidξi for multi order-parameters, see [24]) in the expression of the first law of thermo-

dynamics as defined in De Donder’s thermodynamics:

dH = TdS + V dp− Adξ (24)

In developing dξ as a function of the variables S, p and A, this yields to:

dH =

(

T − A

(

∂ξ

∂S

)

p,A

)

dS +

(

V − A

(

∂ξ

∂p

)

S,A

)

dp− A

(

∂ξ

∂A

)

p,S

dA (25)

The third term is absent in references [22, 24]. Therefore, for the sake of preciseness,

the definition proposed by Schmelzer and co-workers is not only defined as the entropy

derivative of the internal energy (constant volume) or entropy derivative of the enthalpy

(constant pressure), but also as partial derivative at constant affinity. For example, at

constant pressure this yields to:

Tf =

(

∂H

∂S

)

p,A

= T − A

(

∂ξ

∂S

)

p,A

(26)

or Tf =
(

∂U
∂S

)

V,A
= T−A

(

∂ξ

∂S

)

V,A
at constant volume and affinity (see Eq. (48) in Ref. [22], or

Eq. (44) in Ref. [24]). By contrast in Eq. (24), it is observed that the usual temperature of

the system is rather defined as entropy derivative at constant order parameter. For example,

at constant pressure:

T =

(

∂H

∂S

)

p,ξ

(27)

or T =
(

∂U
∂S

)

V,ξ
at constant volume. It is worth noting that under this definition, the fictive

temperature may be a partial derivative at constant affinity while the usual temperature is

a partial derivative at constant order parameter.

24



We shall show here whether this thermodynamic-like definition of the fictive temperature

has something in common with the classical definition of the fictive temperature such as

proposed by Tool and discussed previously. Firstly, it has to be mentioned that in references

[22, 24], the following underlying assumption is used: the partial derivative
(

∂ξ

∂S

)

p,A
has to be

equivalent to
(

∂ξ

∂S

)

p,T
(or if volume is constant, we must have the equality between

(

∂ξ

∂S

)

V,A

and
(

∂ξ

∂S

)

V,T
). This is, as it follows from cited papers, however, not the original intention

of mentioned authors because terms containing the affinity variation in the total differential

of U or H have been neglected. It turns out that, under this assumption, the entropy of

mixing coming from the hole theory can be used,
(

∂ξ

∂S

)

p,T
= 1/

[

R
[

ln (1− ξ) + ξ

1−ξ
ln ξ
]]

,

in order to calculate Tf from Eq. (26). The fictive temperature following the equation (26)

can also be written as a function of A and
(

∂H
∂ξ

)

p,T
by using the thermodynamic equality

T
(

∂S
∂ξ

)

p,T
= A+

(

∂H
∂ξ

)

p,T
:

Tf = T − A

(

∂ξ

∂S

)

p,T

= T









1−
A

[

A+
(

∂H
∂ξ

)

p,T

]









(28)

The temperature behavior of this fictive temperature is plotted on the figure (11) as the

thick blue line following the same cooling rate protocol of −0.3 K/min. The agreement of

the two curves coming from the two definitions above is of very high quality. On the same

figure, we represent the fictive temperature calculated by Tropin et al. as the thick black

line on Fig. (11)). The fictive temperature increasing at low temperatures such as depicted

on Fig. (4) of Ref. [24], is inconsistent with frozen-in fictive temperatures in the glassy

state. This is due to an approximated expression taken by the authors of the cited papers

for the affinity, A ≃ −RT
(

ξ−ξeq
ξeq

)

(see for example Eq. (50) of Ref. [22]), which is valid

only under particular conditions.

In conclusion, the model-independent definition of the fictive temperature given by

Schmelzer and co-workers is consistent with the classical (or Tool’s definition) of the fic-

tive temperature, only if the fundamental assumption that
(

∂ξ

∂S

)

p,A
is equivalent to

(

∂ξ

∂S

)

p,T

is valid. This underlying assumption seems exact upon the framework of the lattice-hole

model, but may not be true in general. Consequently, despite its interest and simplic-

ity, the new definition proposed across Eq. (26) for example, is not a model independent

thermodynamic-like definitions of the fictive temperature. Some of the authors of the present
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Figure 11: Fictive temperatures as a function of temperature during cooling at a temperature rate

of −0.5 K/min at constant pressure of 0.1MPa. The read one, which comes from the classical

definition of the fictive temperature, is issued from integration of the corresponding normalized

heat capacity data. The blue one is issued from the Eq. (28). The black one is inferred from

calculation of Tropin and co-workers with an approximate value of the affinity (see Eq. (50) of Ref.

[22]).

work have given a thermodynamic-like definition of the fictive temperature based on the no-

tion of entropy production, which is present in any irreversible processes, not only the glass

transition process [13]. Although we do not discuss it here, exactly the same arguments can

be given for the definition of the fictive pressure proposed in Ref. [22, 24].
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VI. CONCLUSION AND PERSPECTIVES

We have presented a minimalist model (the lattice-hole model of liquids) which, if the laws

of non-equilibrium thermodynamics are rigorously applied, is able to reproduce qualitatively

the characteristic behavior of thermodynamic coefficients such as Cp, αp or κT during a glass

transition. The characteristic features of vitrification and structural recovery obtained under

different conditions, particularly upon temperature or pressure perturbations, have been

reproduced. The possibility to calculate jumps in Cp, αp or κT at Tg or pg following different

simulated experimental protocols have practical applications and allows one to define and

compute classical Prigogine-Defay ratio as well as linear PD ratio [44] or non-equilibrium

Prigogine-Defay ratio [15].

While the model is able to reveal most of the principal characteristics of the glass transi-

tion, it describes also qualitatively some experimental behavior. For example, the predicted

glass transition temperature of o-terphenyl is quantitatively consistent with experiments.

On the other hand, using the model ad hoc to fit experimental data for Cp, αp or κT such as

for example done with TNM model, or Adam-Gibbs approach, has not yet been performed,

and it is not the purpose of this work. Instead, we focused on the role of pressure and

affinity. If data are to be fitted according to the model, it may require the addition of new

ingredients such as, among others:

i) coexistence of several order parameters [3].

ii) deviation from the linear regime.

iii) dependence of the relaxation time on the non-equilibrium state of the system [35, 45].

iv) effect of heterogeneities and the presence of a distribution of relaxation times [35, 45].

As an example of the limit of the model, in its current shape, it is not able to reveal the

apparition of the Kovacs effect after cross-over experiments such as studied recently [16, 17].

Promising works by A. Lion and co-workers who developed for few years a more accurate

non-equilibrium thermodynamics with internal state variables offer interesting perspectives

in this direction. [10–12].
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