
HAL Id: hal-00718438
https://hal.science/hal-00718438v1

Submitted on 17 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PAGAI: a path sensitive static analyzer
Julien Henry, David Monniaux, Matthieu Moy

To cite this version:
Julien Henry, David Monniaux, Matthieu Moy. PAGAI: a path sensitive static analyzer.
Tools for Automatic Program AnalysiS (TAPAS 2012), Sep 2012, Deauville, France. pp.3,
�10.1016/j.entcs.2012.11.003�. �hal-00718438�

https://hal.science/hal-00718438v1
https://hal.archives-ouvertes.fr


PAGAI: a path sensitive static analyzer

Julien Henry David Monniaux Matthieu Moy

July 17, 2012

Abstract

We describe the design and the implementation of PAGAI, a new static
analyzer working over the LLVM compiler infrastructure, which computes
inductive invariants on the numerical variables of the analyzed program.

PAGAI implements various state-of-the-art algorithms combining ab-
stract interpretation and decision procedures (SMT-solving), focusing on
distinction of paths inside the control flow graph while avoiding system-
atic exponential enumerations. It is parametric in the abstract domain in
use, the iteration algorithm, and the decision procedure.

We compared the time and precision of various combinations of analy-
sis algorithms and abstract domains, with extensive experiments both on
personal benchmarks and widely available GNU programs.

1 Introduction

Sound static analysis automatically computes properties on programs, such as
the possible values of their variables during execution. Applications include:
showing that a program cannot encounter a runtime error (such as arithmetic
overflow, division by zero, array access out of bounds), as in e.g. the Astrée
analyzer [7]; computing invariants for use with assisted proof systems (such
as the B method [1]), thereby lessening the burden on the user; computing
invariants for advanced optimization techniques in compilation (e.g. showing
that two array cells are distinct, in order to allow instruction reordering between
assignments to these cells). All these applications need invariants on numerical
quantities.

This article introduces PAGAI, a new tool for fully automatic static analysis.
PAGAI takes as input a program in the “bitcode” intermediate representation
of LLVM [13, 14], a modern compilation framework. LLVM bitcode is a tar-
get for several industrial-strengh compilers, most notably Clang (supporting C,
C++, Objective-C and Objective-C++) and llvm-gcc (supporting, in addition
to these, Fortran and Ada); furthermore, a growing number of analysis tools,
testing tools, etc. are currently built around this platform (Calysto, KLEE,
LAV, LLBMC).

1



The output of PAGAI is a list of inductive invariants for a selected subset
of the control nodes of the original program: for structured source programs,
PAGAI will provide an inductive invariant for loop headers.1

At present, PAGAI checks user-specified safety properties provided through
assertions using the standard C/C++ assert (condition) macro. The tool will
attempt proving that the assertion failure is unreachable and, if unsuccess-
ful, provide a warning message (the tool does not at present include bounded
model checking or path exploration techniques for reconstructing an actual
failure trace, thus such a warning message should be interpreted as a possi-
ble assertion failure). It also allows user-specified assumptions, through the
assume(condition) macro. Executing traces falsifying assertions or assumptions
are considered to terminate when executing the macro; thus, user-specified as-
sertions may be used to guide the analyzer by providing invariants that it was
not able to synthesize by itself. Possible extensions could include checking for
memory safety of array accesses.

PAGAI is based on abstract interpretation, a general framework for fully
automatic static analysis. PAGAI infers invariants of a selected form; by default
it performs linear relation analysis, which obtains invariants as conjunctions of
linear inequalities (or, equivalently, convex polyhedra), but it also supports
other abstract domains through a runtime option. Depending on the iteration
algorithm selected, PAGAI may also infer invariants as disjunctions of elements
of the abstract domain (e.g. unions of convex polyhedra).

Textbook descriptions of abstract interpretation-based static analysis state
that an inductive invariant is computed at every control point of the program.
In contrast, PAGAI abstracts straight-line sequences of statements en bloc, com-
puting invariants only at points where control flow branches or merges. Further-
more, several algorithms implemented in PAGAI compute invariants only at the
heads of loops (or, in general control-flow graph, at nodes forming a feedback ver-
tex set, whose removal breaks all cycles in the graph), expanding the rest of the
control flow to a possibly exponential number of straight-line sequences of state-
ments between the selected nodes. In order to avoid explicit enumerations of
exponential sets, PAGAI uses decision procedures for arithmetic theories, based
on the satisfiability modulo theory (SMT) approach: each path is enumerated
only if needed, in response to a positive satisfiability query [11, 16].

The PAGAI tool is dedicated to experimenting with new analysis algorithms.
It allows independent selection of the abstract domain and the iteration strat-
egy, and partially independent selection of decision procedure,2 and thus is
well-suited for comparisons. We thus conducted extensive experiments both on
examples we produced ourselves (sometimes inspired by industrial code) and on

1A preliminary analysis pass selects a subset of nodes that cuts all cycles in the control-flow
graph, by selecting all targets of return edges in a depth-first search traversal; when applied
to a structured program, it selects loop headers.

2Certain abstract domains express relationships, such as linear congruences, that certain
decision procedures cannot deal with. It is at present necessary that the decision procedure
reflects semantics at least as precise as those of the abstract domain. This limitation will be
lifted in the future.

2



GNU programs, for which the ability to run on any C or C++ code, through
the LLVM system, was especially useful. Front-ends for many analysis tools put
restrictions (e.g. no backward goto instructions, no pointer arithmetic...), often
satisfied by safety-critical embedded programs, but not by generic programs;
our tool suffers no such restrictions, though it may in some cases apply coarse
abstractions which may possibly yield weak invariants.

After illustrating the limitation of traditional abstract interpretation on an
example in section 2, we will describe PAGAI’s implementation in section 3,
and comment on the results of extensive experiments in section 4, allowing the
comparison of state of the art techniques on real-life programs.

2 Motivating Example

In most forward abstract interpretation-based analyses, when control flows from
several nodes into a single node, the abstract value at that node is obtained by
computing the least upper bound of the incoming abstract values in the abstract
domain (in backward analysis, this occurs when control flows from a single node
to several nodes). If the abstract domain is convex polyhedra, then this means
computing the convex hull of the incoming polyhedra. Such an operation may
induce unrecoverable loss of precision by introducing spurious states that cannot
occur in concrete program runs.

An example of program where such a loss of precision occurs is depicted in
Fig. 1. In this program, the loop body has two feasible paths that are executed
alternatively, depending on a variable “phase”. Such programs, with active code
paths depending on global “mode” or “phase” variables, often occur in reactive
systems.

Removing program point n0 breaks all cycles; we are thus primarily con-
cerned with obtaining an inductive invariant at that point. We consider the
domain of convex polyhedra and thus wish to obtain this invariant as a polyhe-
dron. Because convex polyhedra form a lattice of infinite height, we use Kleene
iterations (pushing abstract values through control-flow edges) with a widen-
ing scheme, which ensures convergence in finite time to an inductive invariant,
followed by decreasing (narrowing) iterations.

At program point n5, classical forward abstract interpretation with convex
polyhedra computes the convex hull of three incoming polyhedra over variables
(phase, x, t). This convex hull introduces extra states, unreachable in the con-
crete programs, for the analysis of the fragment from n5 to n9. When analyzing
the whole loop, these extra states prevent proving x < 100.

To cope with this problem, a solution is to compute disjunctive invariants
at all intermediate nodes: at n5, keep an explicit list of three polyhedra, and
thus obtain a list of nine polyhedra at n9. We pass the convex hull of these
polyhedra to the widening operator at point n0 (which operates on polyhedra,
not on lists of polyhedra). The drawback is that the number of elements in the
lists may grow exponentially with the number of successive tests.

A second solution, equivalent to the preceding with respect to final results

3



but different in its operation, is to distinguish all nine paths inside the loop (from
n0 to n0), compute the final outcome of each path, and compute the convex hull
of these outcomes. Instead of enumerating all nine paths explicitly, we consider
them in succession, only as needed. We start with an empty polyhedron at n9

(more generally, it should contain initial states at this control point), and process
paths as long as they make this polyhedron grow. The next path to consider is
obtained from a model of an arithmetic formula expressing this growth condition
[16]; if this formula is unsatisfiable, this means there is no such path and thus
the convex hull encompasses the outcome of all paths.

The advantages of this second method over the preceding one are twofold:
there is no exponentially large list of abstract elements, and the satisfiability
query for the formula is handed over to a satisfiability modulo theory (SMT)
solver. Modern SMT-solvers are very efficient; their caching mechanisms may,
for instance, remember that taking a certain branch in the code is incompatible
with taking another one (if a Boolean is associated with passing through each
branch, then this is just a blocking clause inside the underlying SAT-solver).
The algorithms implemented in PAGAI are variants of this approach of implic-
itly representing of exponentially-sized sets of paths and enumerating them as
needed.

i n t x = 0 ;
i n t t = 0 ;
i n t phase = 0 ;

while ( t < 100) {
i f ( phase == 0 )

x = x +2;
i f ( phase == 1 )

x = x−1;
phase = 1−phase ;
t ++;

}
a s s e r t ( x <= 1 0 0 ) ;

n

n0nf

n1

n3n2 n4

n5

n7n6 n8

n9

x← 0

phase← 1

t >= 100

t < 100

phase,0? < > =

x← x+ 2

phase,1? < > =

x← x− 1

phase←

1− phase

t←

t + 1

Figure 1: Example of program, where the loop behaviour vary depending on a
variable phase.

4



Name kLOC |PR|

a2ps 55 2012

gawk 59 902

gnuchess 38 1222

gnugo 83 2801

grep 35 820

gzip 27 494

lapack/blas 954 16422

make 34 993

tar 73 1712

Table 1: List of analyzed open-source projects, with their respective number of
lines of code, and their number of control points in PR

3 Implementation

PAGAI is a prototype interprocedural static analyzer, that implements our re-
cent combined techniques [11] as well as the classical abstract interpretation
algorithm, and the state-of-the-art techniques Path Focusing [16] and Guided
Static Analysis [10].

Abstract domains are provided by the APRON library [12], and include
convex polyhedra (from the builtin Polka “PK” library), octagons, and products
of intervals. It also has an interface with the Parma Polyhedra Library [3], giving
access to more abstract domains (e.g. a reduced product of polyhedra and linear
congruences, producing invariants such as 0 ≤ x ≤ 1001 ∧ x ≡ 0 (mod 7)).

For SMT-solving, our analyzer uses Yices [9] or Microsoft Z3 [8] through
their C API. An implementation of communications with the SMT-solver by
textual messages sent through a pipe following the SMT-Lib 2 standard [4] is
underway, and now partially supports Z3, MathSAT 5 and SMTinterpol.3

3.1 Analysis algorithm

For each program, we distinguish a set PW of suitable widening points by a sim-
ple algorithm: initialize PW = ∅ and for each procedure, compute the strongly
connected components of its control-flow graph using Tarjan’s algorithm; the
targets of the back-edges of the depth-first search are added to PW . The re-
sulting cut set or feedback vertex set is not necessarily minimal, but is sufficient
to disconnect all cycles — more sophisticated techniques are discussed in e.g.
Bourdoncle [6].4 It is however unclear whether more advanced selection tech-

3It is unfortunately impossible to ignore differences between solvers behind the supposedly
standard interface, since different solvers may support slightly different sets of operators and
settings and may return models in different formats.

4 It would be possible to obtain a feedback vertex set minimal with respect to inclusion
by successive removal of nodes. Obtaining one of minimal cardinality is an NP-complete

5



niques would finally yield stronger invariants; the current simple scheme has the
advantage that, when run over a control-flow graph obtained from a structured
program, it marks heads of loops, which is a “natural” choice.

While [11, 16] provide for another set PR ⊇ PW , with abstract join operators
(as opposed to widenings) being applied at points in PR \ PW , our tool does
not currently such technique, which is meant to reduce the complexity of SMT
formulas at the expense of analysis precision.

LLVM bitcode is in static single assignment (SSA) form: a given scalar
variable is given a value at a single syntactic point in the program. In concrete
terms, an assignment x=2*x+1; gets translated into a definition x2 = 2x1 + 1,
with distinct variables x1 and x2 corresponding to the same original variable
x at different points in the program. Because LLVM generally assigns rather
straightforward names (e.g. x.0 for the first renaming of variable x), the user
can map the invariants back to the original source code; an automatic and
more robust back-to-source mapping, based on debugging information, is being
developed.

LLVM makes it easy to follow definition-use and use-definition chains: for a
given variable (say, x2) one can immediately obtain its definition (say, 2x1+1).
One may see conversion to SSA form as a static precomputation of some of
the symbolic propagations proposed by Miné [15] to enhance the precision of
analyses.

SSA introduces φ-functions at the head of a control code to define variables
whose value depends on which incoming edge was last taken to reach this con-
trol node. For instance, for if (...) { x = 2*x+1; } else { x= 0; }, then x2 is
defined as φ(2x1 + 1, 0).

In this framework, each variable is uniquely defined as an arithmetic (+,
−, ×, /) function of other variables that themselves may not be representable
as arithmetic functions, because they are defined using φ-functions, loads from
memory, return values from function calls, or other numerical operations (e.g.
bitwise operators) that are not representable with our class of basic arithmetic
operations. We may vary the class of arithmetic operations, for instance, by
restricting ourselves to linear ones.

This motivates a key implementation decision of our tool: only those vari-
ables v1, . . . , vn that are not defined by arithmetic operations are retained as
coordinates in the abstract domain (e.g. as dimensions in polyhedra), assuming
they are live at the associated control point.

For instance, assume that x, y, z are numerical variables of a program, x is
defined as x = y + z, and x, y, z are live at point p. Instead of having x as
a dimension for the abstract value at point p, we only have y and z. All the
properties for x can be directly extracted from the abstract value attached to
p and the relation x = y + z. This is an optimisation in the sense that there is
redundant information in the abstract value if both x, y and z are dimensions
of Xp. The classical definition of liveness can be adapted to our case:

problem, but Shamir [18] showed that it can be done in linear time for a class of graphs
including reducible graphs, that is, those obtained from structured programs. This latter
algorithm is being implemented.

6



Definition 1 (Liveness by linearity). A variable v is live by linearity at a
control point p if and only if one of these conditions holds: (i) v is live in p.
(ii) There is a variable v′, defined as a linear combination of other variables
v1, v2, . . . , vn, so that ∃i ∈ {1, . . . , n}, v = vi, and v′ is live by linearity in p.

Finally, a variable is a dimension in the abstract domain if and only if it
is live by linearity and it is not defined as a linear combination of program
variables.

A basic block of code therefore amounts to a parallel assignment oper-
ation between live-by-linearity variables (v1, . . . , vn) 7→ (f1(v1, . . . , vn), , . . . ,
fn(v1, . . . , vn)); such operations are directly supported by APRON. This has
three benefits: (i) it limits the number of dimensions in the abstract values,
since polyhedra libraries typically perform worse with higher dimensions;5 (ii)
the abstract operation for a single path in path-focusing methods also is a (large)
parallel assignment; (iii) as suggested by Miné [15], this approach is more precise
than running abstract operations for each program line separately: for instance,
for y=x; z=x−y; with precondition x ∈ [0, 1], a line-by-line interval analysis
obtains y ∈ [0, 1] and z ∈ [−1, 1] while our “en bloc” analysis symbolically
simplifies z = x− x = 0 and thus z ∈ [0, 0].

In the event that a node is reachable only by a single control-flow edge
(which may occur because of dead code, or during the first phases of guided
static analysis), the φ operation reduces to a copy of the values flowing from
that edge. In this case, our tool just propagates symbolic values through the
predecessor node, without introducing φ-variables.

3.2 Use

PAGAI takes as input an LLVM bitcode file, and outputs an inductive invariant
for each control point in PR (typically, the widening points). When a program
contains an assert (...) function call, PAGAI also outputs whether the state-
ment has been proved. It is also possible to add some preconditions about the
variables, etc, using a function assume(...) . Both assert and assume are imple-
mented as C macros. assert (x) is roughly defined as if (! x) assert fail (); ,
and the tool just tests for the reachability of assert fail (); : if it is un-
reachable, then the assertion is true. assume works with the same principle,
and is defined as if (! x) assumption declared(). Both assert fail and

assumption declared are noreturn functions, terminating the program imme-
diately.

3.3 Current limitations of the tool, possible future works

Our tool currently only operates over scalar variables from the SSA represen-
tation and thus cannot directly cope with arrays or memory accessed through

5The additional dimensions express linear equalities between variables, which are directly
handled by polyhedra library. They should therefore cost little assuming some sparse repre-
sentation of the constraints. Alas, several libraries, including APRON, compute with dense

vectors and matrices, which means that any increase in dimensions slows computations.

7



pointers. We therefore run it after the “memory to registers” (mem2reg) opti-
mization phase in LLVM, which lifts most memory accesses to scalar variables.
The remaining memory reads are treated as nondeterministic choices, and writes
are ignored. This is a sound abstraction.6

The analysis is currently intraprocedural: function calls are ignored in a
sound way (the return value is a nondeterministic choice, the value of all vari-
ables escaping from the local scope is discarded...). In order to increase precision,
we apply function inlining as an LLVM optimization phase. Plans for interpro-
cedural analysis include computing input/output summaries for functions as
elements of the abstract domain (e.g. if the function operates over variables x
and y, then one could compute a polyhedron over (x, y, x′, y′) encompassing all
input-output pairs) or as more general formulas.

Since it is often advantageous to distinguish whether a loop has been exe-
cuted at least once,7 we unroll every loop once, again with a LLVM optimization
phase.

Our tool currently assumes that integer variables are unbounded mathe-
matical integers (Z) and floating-point variables are real (or rational) numbers.
Techniques for sound analysis of bounded integers, including with wraparound,
and of floating-point operations have been developed in e.g. the Astrée system
[5, 7], but porting these techniques to our iteration schemes using SMT-solving
requires supplemental work. It is unclear whether one should use bitvector
arithmetic inside the SMT formula, or use mathematical integers with explicit
splits for wraparound.8

Our implementation of path-focusing currently does not use true acceleration
techniques, as proposed by Monniaux et Gonnord [16]. Instead, it simply runs
widening and narrowing iterations on a single path.

We currently analyze each strongly connected component of the control-flow
graph in topological order; thus each loop nest gets analyzed as a single fixed
point. An alternative method would be to recursively decompose the strongly
connected components (for structured programs, this amounts to reconstructing
the nested loop structure) and summarize the inner loops before analyzing the
outer loop.

The analysis is currently only forward, even though nothing in the techniques
implemented is specific to forward analysis. A possible extension would therefore
be backward analysis from the assert fail () statements.

6As rightly pointed out by a referee, this is a sound abstraction only if memory safety is
assumed. The mem2reg preprocessing phase also assumes memory safety, as well as, possibly,
the absence of other undefined behaviors as defined by the C standard. This is the price
of using the front-end from a generic compiler: C compilers have the right to assume that
undefined behaviors do not occur, including in preprocessing and optimization phases.

7Consider the very simple loop for( int i=0; i<n; i++) . The obvious loop invariant is 0 ≤
i ≤ n, but it is valid only if n > 0. One would thus need to use disjunctive loop invariants to
obtain 0 ≤ i ≤ n ∨ (i = 0 ∧ n ≤ 0). It is much simpler to unroll the loop once.

8E.g. an operation z = x + y over n-bit signed integers would appear as the disjunction
of three statements z = x + y ∧ −2n−1 ≤ x + y < 2n−1, z = x+ y + 2n ∧ −x + y < −2n−1,
z = x+ y − 2n ∧ x+ y ≥ 2n−1: one “normal” control path and two “overflow” paths.

8



Benchmark G/S PF/S PF/G G+PF/PF G+PF/G DIS/G+PF

( ) unc. ( ) unc. ( ) unc. ( ) unc. ( ) unc. ( ) unc.

a2ps-4.14 0.28 0 0 4.82 2.55 2.27 4.54 2.55 2.27 6.81 0.28 0 8.23 0 0 13.06 3.40 0.56

gawk-4.0.0 4.62 0 0 3.70 20.37 0.92 0.92 22.22 0 22.22 0 0 11.11 2.77 0 16.66 2.77 0.92

gnuchess-6.0.0 1.51 3.47 0 6.50 4.33 0 6.72 3.25 0.21 6.72 2.38 0 10.19 2.38 0 15.18 2.81 3.03

gnugo-3.8 0.51 4.44 0.34 11.45 4.27 3.07 12.13 4.27 2.73 10.25 3.07 2.05 17.77 3.76 0.34 9.05 11.28 4.78

grep-2.9 0 6.19 0.47 1.90 4.76 0.47 3.80 1.90 1.90 7.61 2.38 0 8.57 2.38 0 10.47 5.23 0.47

gzip-1.4 0.58 7.01 1.75 1.75 12.86 1.16 3.50 8.18 1.16 15.78 2.92 1.16 17.54 1.75 0 17.54 15.78 1.16

lapack-3.3.1 2.60 5.77 0.40 3.11 5.06 1.03 4.66 3.47 1.62 7.55 1.06 0 9.24 1.06 0.81 16.11 7.09 1.34

make-3.82 2.61 0.52 0 1.82 6.26 1.82 1.56 8.09 1.82 11.74 0.52 0 6.52 2.34 1.56 12.27 4.43 0.78

tar-1.26 4.53 3.27 0 5.28 2.77 0 2.77 2.01 0.75 7.05 0.50 0 7.05 0.25 0 9.82 7.05 1.51

Table 2: Results of the comparison of the various techniques described in this
paper: classic Abstract Interpretation (S), Guided Static Analysis (G), Path-
focusing (PF), our combined technique (G+PF), and its version using disjunc-
tive invariants (DIS). For instance, G/S compares the benefits of Guided Static
Analysis over the classic Abstract interpretation algorithm. ( (resp. )) gives
the percentage of invariants stronger (more precise; smaller with respect to in-
clusion) with the left-side (resp. right-side) technique, and “uncomparable”
gives the percentage of invariants that are uncomparable, i.e neither greater nor
smaller; the code points where both invariants are equal make up the remaining
percentage

4 Experiments

We conducted extensive experiments on real-life programs in order to compare
the different techniques, mostly on open-source projects (Tab. 1) written in C,
C++ and Fortran.

4.1 Precision of the various techniques

For each program and each pair (T1, T2) of analysis techniques, we list the
proportion of control points in PR where T1 (resp. T2) gives a strictly stronger
invariant, denoted by ( (resp. )), and the proportion of control points where
the invariants given by T1 and T2 are uncomparable for the inclusion ordering
(the remainder of the control points are thus those for which both techniques
give the same invariant). We use convex polyhedra as the abstract domain.

Let us briefly comment the results given in more details in Table 2. Guided
Static Analysis from Gopan et Reps [10] improves the result of the classical
Abstract Interpretation in 2.21% of the control points in PR. Path-focusing
from Monniaux et Gonnord [16] finds better invariants in 4.13% of the control
points.

However, these two techniques also lose precision in an important number
(4.64% for G, 5.14% for PF) of control points, and obtain worse results than the
classical many times. This result is unexpected, and could be partially explained
by bad behaviour of the widening operator.

Finally, our combined technique gives the most promising results, since it is
statistically more precise than the other techniques. It improves the precision
of the inductive invariant in 8.29% to 9.86% of the control points compared to

9



Benchmark S G PF G+PF DIS

a2ps-4.14 23 74 34 115 162

gawk-4.0.0 15 46 12 40 50

gnuchess-6.0.0 50 220 81 312 351

gnugo-3.8 77 159 92 766 1493

grep-2.9 41 85 22 65 122

gzip-1.4 22 268 91 303 230

lapack-3.3.1 294 3740 3773 8159 10351

make-3.82 67 108 53 109 257

tar-1.26 37 218 115 253 396

Table 3: Execution time for each technique, expressed in seconds

the three previous techniques. Still, we obtain worse result in a non-negligible
number of cases (2.02%).

The analysis using disjunctive invariants greatly improves the precision of
the analysis (for 14.46% of the control points in PR compared to G+PF), at the
expense of a higher time cost (see Table 3). It also gives worse results in 6.85%
of the points, most probably because of a non-optimal choice of the σ function,
detailed in [11].

While experimenting with techniques that use SMT-solving, we encountered
some limitations due to non-linear arithmetic in the analyzed programs. Indeed,
the SMT-solver is not able to decide the satisfiability of some SMT-formulae ex-
pressing the semantics of non-linear programs. In this case, we skipped the func-
tions for which the SMT-solver returned the “unknown” result. This limitation
occurred very rarely in our experiments, except for the analysis of Lapack/Blas,
where 798 over the 1602 functions have been skipped. Lapack/Blas implements
matrix computations, which use floating-point multiplications. In cases where
the formula is expressed in too rich a logic for the SMT-solver to deal with, a
number of workarounds are possible, including: (i) Linearization, as per Miné
[15], which overapproximates nonlinear semantics by linear semantics. (ii) Re-
placing the results of nonlinear operations by “unknown”. Neither is currently
implemented in our tool.

Table 3 gives the execution time of the different analysis techniques. It
is interesting to see that Path-focusing is sometimes faster than the classical
algorithm. This seems due to the fact that this algorithm computes inductive
invariant on a small number of control points compared to classical approaches,
thus leading to fewer operations over abstract values.

4.2 Precision of Abstract Domains

For each program and each pair (D1, D2) of abstract domains, we compare by
inclusion the invariants of the different control points in PR = PW (Tab. 4).

10



Benchmark PK/OCT PK/BOX OCT/BOX PK/PKEQ PK/PKGRID POLY/POLY*

( ) unc. ( ) unc. ( ) unc. ( ) unc. ( ) unc. ( ) unc.

a2ps-4.14 12.74 .78 0 21.64 0 2.13 18.94 0 .93 90.47 0 0 0 .72 .36 .77 0 0

gawk-4.0.0 21.34 0 0 26.96 0 0 17.97 0 0 88.76 0 0 0 4.44 0 0 0 0

gnuchess-6.0.0 5.99 5.78 2.47 12.67 3.68 2.24 14.87 0 0 83.43 0 0 0 2.23 0 .20 3.47 0

gnugo-3.8 18.75 2.08 2.08 22.50 1.66 1.11 10.86 0 1.12 71.27 .21 1.29 0 .47 0 0 3.69 0

grep-2.9 3.30 0 0 8.26 0 0 8.26 0 0 61.74 0 0 0 .44 0 0 0 0

gzip-1.4 21.16 2.18 0 32.84 .72 1.45 26.27 0 0 80.29 0 0 0 0 0 0 8.75 0

lapack-3.3.1 11.84 5.67 .85 78.96 2.16 2.99 85.03 0 0 94.46 0 .09 .09 3.22 .47 0 4.25 0

make-3.82 6.50 4.00 5.50 6.52 4.34 5.97 11.94 0 0 46.50 0 0 0 2.29 0 0 2.98 5.47

tar-1.26 5.17 4.20 0 9.70 3.23 .97 9.38 0 0 62.13 0 0 0 3.31 0 0 4.91 0

Table 4: Results of the comparison of the various abstract domains, when using
the same technique (G+PF). We used as abstract domains Convex Polyhedra
(PK and POLY), Octagons (OCT), intervals (BOX), linear equalities (PKEQ)
and the reduced product of NewPolka convex polyhedra with linear congruences
from the Parma Polyhedra Library [3]. (PKGRID). The last column compares
the domain of Convex Polyhedra with the improved widening operator from
Bagnara et al. [2] (POLY*), and Convex Polyhedra using the classical widening
operator (POLY). POLY and POLY* use the PPL[3]. (, ) and “unc.” are
defined as in Tab. 2.

Statistically, the domain of convex polyhedra gives the better results, but
commonly yields weaker invariants than the domains of octagons/intervals; this
is a known weakness of its widening operator [17]. The Octagon domain appears
to be much better than intervals; this is unsurprising since in most programs
and libraries, bounds on loop indices are non constant: they depend on some
parameters (array sizes etc.).

The Lapack/Blas benchmarks are unusual compared to the other programs.
These libraries perform matrix computations, using nested loops over indices;
such programs are the prime target for polyhedral loop optimization techniques
and it is therefore unsurprising that polyhedra and octagons perform very well
over them.

The analysis of linear equalities (PKEQ) performs very fast compared to
other abstract domains, but yields very imprecise invariants: it only detects
relations of the form

∑
i aixi = C where ai and C are constants.

Using the reduced product of convex prolyhedra with linear congruences
(PKGRID) improves the analysis by 2.52%.

Finally, we evaluated the benefits of the improved version of the widening
operator for convex polyhedra from Bagnara et al. [2], compared to the classical
widening. We found that the improved version from Bagnara et al. [2] yields
more precise invariants for 3.70% of the control points in PR.

4.3 Future Work

It is not totally relevant to compare by inclusion the abstract values obtained
by the various analysis techniques. Indeed, a slightly smaller invariant may
not always be useful to prove the desired properties. Future work should thus
include experiments with better comparison metrics, such as (i) the number of

11



assert that have been proved in the code. Unfortunately, it is difficult to find
good benchmarks or real life programs with many assert statements; (ii) the
number of false alarms in a client analysis that detects array bound violations,
arithmetic overflows, etc.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005. ISBN 0521021758.

[2] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening op-
erators for convex polyhedra. Science of Computer Programming, 58(1–2):
28–56, Oct. 2005.

[3] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and veri-
fication of hardware and software systems. Science of Computer Program-
ming, 72(1–2):3–21, 2008.

[4] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In SMT, 2010.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical soft-
ware. In Programming Language Design and Implementation (PLDI), pages
196–207. ACM, 2003.

[6] F. Bourdoncle. Sémantiques des Langages Impératifs d’Ordre Supérieur
et Interprétation Abstraite. PhD thesis, École Polytechnique, 1992.
http://tinyurl.com/BourdonclePhD-pdf.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The ASTRÉE analyzer. In Programming Languages and Systems
(ESOP), number 3444 in LNCS, pages 21–30. Springer, 2005.

[8] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
volume 4963 of LNCS, pages 337–340. Springer, 2008.

[9] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for
DPLL(T). In CAV, volume 4144 of LNCS, pages 81–94. Springer, 2006.

[10] D. Gopan and T. W. Reps. Guided static analysis. In SAS, volume 4634
of LNCS, pages 349–365. Springer, 2007.

[11] J. Henry, D. Monniaux, and M. Moy. Succinct representations for abstract
interpretation. In Static analysis (SAS), Lecture Notes in Computer Sci-
ence. Springer Verlag, 2012. To appear.

12

http://www.worldcat.org/isbn/0521021758
http://tinyurl.com/BourdonclePhD-pdf


[12] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains
for static analysis. In CAV, volume 5643 of LNCS, pages 661–667. Springer,
2009.

[13] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75–86, Washington,
DC, USA, Aug. 2004. IEEE Computer Society.

[14] LLVM Language Reference Manual. LLVM team, 2012.
http://llvm.org/docs/LangRef.html.

[15] A. Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In VMCAI, volume 3855 of LNCS, pages 348–363. Springer, 2006.

[16] D. Monniaux and L. Gonnord. Using bounded model checking to focus
fixpoint iterations. In Static analysis (SAS), volume 6887 of LNCS, pages
369–385. Springer, 2011.

[17] D. Monniaux and J. Le Guen. Stratified static analysis based on variable
dependencies, 2011. http://arxiv.org/abs/1109.2405.

[18] A. Shamir. A linear time algorithm for finding minimum cutsets in re-
ducible graphs. SIAM Journal of Computing, 8(4):645–655, 1979. doi:
10.1137/0208051.

13

http://llvm.org/docs/LangRef.html
http://arxiv.org/abs/1109.2405
http://dx.doi.org/10.1137/0208051

	Introduction
	Motivating Example
	Implementation
	Analysis algorithm
	Use
	Current limitations of the tool, possible future works

	Experiments
	Precision of the various techniques
	Precision of Abstract Domains
	Future Work

	References

