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Abstract

We consider the stationary incompressible Navier Stokes equation in the exterior of a disk B C R?
with non-zero Dirichlet boundary conditions on the disk and zero boundary conditions at infinity.
We prove the existence of solutions for an open set of boundary conditions without symmetry.
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1 Introduction

In this paper we consider the incompressible Navier Stokes equations in an exterior domain:

{ Au—Vp=u-Vu, inRQ\E,

diva=0,
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(1)

with B a smooth bounded domain, with non-zero Dirichlet boundary conditions on B, and zero boundary

conditions at infinity:
up,, =u’, ‘xl‘iinoo u(x)=0.

Of particular interest is the case of boundary data u* with zero flux:

/ u*-ndo=0.
oB

*Work supported in part by the Swiss National Science Foundation.

(2)



We note that, since the size of B is arbitrary, we have set without restriction of generality all the physical
constants in () equal to one.
The above system is a special case of the exterior Navier Stokes problem:
—(u-V)u—XAhu+Au—-Vp=0, . .. =
{ Vou=o0. in R"\ B, (4)

with n = 2 or 3, with B a smooth bounded domain in R™, with boundary conditions (2], and with
A € {0,1} distinguishing between the case of a flow “around” B (A = 0) and a flow “past” B (A = 1),
respectively. The system (II)-(B]) corresponds to n = 2 and A = 0. The case A = 0 is in many respects
more complicated than the case A\ = 1, and, whereas the picture is rather complete for n = 3, the case
n = 2, A\ = 0, presents particular difficulties. The difficulty with the classical method for solving the
Navier Stokes equations consists in the fact that the linearization around u = 0 is given by the Stokes
system, which, for n = 2, does not admit a solution satisfying (2]), unless the domain B and the boundary
data u* satisfy certain symmetry conditions. This fact is known as the Stokes paradox. For completeness
we note that if one relaxes the no flux condition (B]), there exists a two parameter family of solutions to
([@D-(@), the so called Hamel solutions, see [7]. These examples emphasize that the decay of solutions can
be arbitrary slow and that uniqueness might be lost for some boundary data. However, these solutions
have flux larger than one, and are far from the regime which we will consider here.

In what follows we construct a new class of solutions to ({))-([]), by linearizing not around u = 0, but
around u = px*/ |x|*, with |p| > v/48. This improves the decay of the solutions to the vorticity equation,
yielding vorticities decaying at infinity generically faster than |x| 2, instead of like |x| " as would be the
case for the Stokes equation, thus avoiding the Stokes paradox when reconstructing u via the Bio-Savart
law.

To put our problem into a wider context, we briefly recall the concept of weak solutions for (), (2]
(also known as generalized solutions or D-solutions), and the method of J. Leray [I6] for proving the
existence of such weak solutions.

Definition 1 Given u* € H'/?(0B) satisfying (@), a function u which satisfies the following conditions
is called a weak solution to (), (@):

1. ue DLQ(R"_\E), where DY2(R™\ B) is the subset of Li,.(R?\ B) containing functions with gradient
in L?(R" \ B),

2. u is divergence-free and u = u* on 0B,

3. for all divergence-free vector fields w € C2°(R™ \ B), there holds:
/ Vu:VW+/ (u-V)u+Aou)-w=0.
R?\B R"\B

The method of J. Leray to prove the existence of solutions according to this definition, and a posteriori
to @), @), in the sense of distributions, consists in the following steps:

e First, one introduces a sequence of approximate problems by restricting (@) to bounded subsets
) C R™ containing B, with zero Dirichlet boundary conditions on 992\ dB.

e Second, one proves the existence of (weak) solutions to all these approximate problems.

e Third, one shows that for any sequence of bounded subsets exhausting R™ \ B, there exists a
subsequence, such that the corresponding approximate solutions converge to a weak solution of (),

@.

e Finally, given a weak solution u, a pressure p an be constructed via De Rham’s theory, such that
the equations () are satisfied in D'(R™ \ B).



See also [12] [13] 20, 23], 24], where this method has been adapted to a similar system with more general
boundary conditions. Note that if B has a smooth boundary, the ellipticity of the Stokes operator (see
[5, Section IX.1]) and the smoothness of u* imply that weak solutions are smooth. Therefore, for smooth
data, the only possible shortcoming of weak solutions is that they may not satisfy the boundary condition
at infinity in a point-wise sense. Much work has been devoted to clarify the situation in various cases
(see [7] for more details):

For n = 3, the condition u € D?(R3\ B) implies that weak solutions tend to zero at infinity. The
exact decay can be obtained by various methods yielding the following results:

e for A\ = 1, there exists a solution that decays like the fundamental solution of the Oseen equation
(the linear system obtained from (@) by deleting the nonlinear convective terms) [2 B, 4]. This
result can be obtain by a detailed analysis of the Oseen equation with a source term in the usual
Sobolev spaces [2 ], and also in weighted Sobolev spaces [3].

e for A = 0 and sufficiently small boundary data, there exists a unique weak solution, and this
solution decays like a Landau solution [I5], a special solution of the nonlinear system which decays
like 1/|x|. This result can been obtained by constructing first a strong solution to (2)), (@), which
is asymptotic to the Landau solution, by perturbative techniques. Using the known decay of this
particular solution as an input [7, Section IX.9], one then proves a weak-strong uniqueness result
for small data.

For n = 2, the situation is more delicate since the condition u € D%?(R?\ B) does not guarantee that
the boundary condition at infinity is satisfied:

e For \ = 1, the relevant linear system is again the Oseen equation, but the results concerning the
decay are limited to small data, since, as for the case n = 3, A\ = 0, perturbative techniques are
used to prove the existence of a strong solution decaying at infinity like the fundamental solution
of the Oseen equation. This solution is then again used as an input to a weak strong uniqueness
argument in order to show the decay of weak solutions. These results can be found in [6].

e The case A = 0 remains largely open. As we already pointed out, the problem is that the solution
to the Stokes equation with boundary data u* # 0 diverges at infinity, unless one makes additional
assumptions on the domain B and the data u*. Partial results for the Navier Stokes system with
symmetric data can be found in [8] I8 19, [17] .

From now on we limit the discussion to the case where B is a disk of radius one. We choose x = (x,y)
Cartesian coordinates with the origin at the center of B, (r,0) € Q := (0,00) X (—m,7) the associated
polar coordinates, and (e,, ep) the corresponding local orthonormal basis. For the function u we have in
polar coordinates:

u(r,0) = u.(r,0)e, +ug(r,0)eg, V (r,0) € Q. (5)

The following theorem is our main result:

Theorem 2 Let pg > pierie = V48 and u* € C*(9B) satisfying @) be sufficiently close to u}, :=poey.
Then, the equations (1), (@), with boundary condition u*, have at least one solution (u,p) € C>=(R?\
B)? x C>=(R?\ B). Moreover, there exist ji close to pg such that:

. Heo  roo/ _
Tlggo rHu(r,@) . ; L( 7T,7T)H =0. (6)
Remark 3 If the pair (u(x,y),v(z,y)) is a solution for the boundary condition (u*(x,y),v*(x,y)), then
the pair (u(z, —y), —v(xz,—y)) is a solution for the boundary condition (u*(x,—y), —v*(x,—y)). Thus,
our result extends to o < —erit-

Remark 4 Ifu(r,0) is a solution for the boundary condition u*on the complement of the unit disk, then
for all X > 0, Au(Ar,0) is a solution for the boundary condition Au* on the complement of the disk of
radius A7 *.



Remark 5 The restriction to the case where B is a disk is for the sake of simplicity only. This permits
to rewrite the system in polar coordinates, yielding explicit expressions for the solutions. We expect that
with more work the results can be generalized to arbitrary smooth B.

To prove Theorem [2] we proceed as follows: We fix p > ficrir and consider the pair (u,,p,):

Keg
u#(T,Q):— ) pH(T,9)17§—2 ) V(T,@)EQ, (7)
r r
which is an exact solution to (), ). Next we set, (u,p) = (u, +v,p = p,+ ¢) and prove, that for all
sufficiently small boundary conditions v* satisfying

/ viindo =0, (8)
oB

there existence of a solution (v, q) € C*°(R?\ B)? x C*°(R?\ B) such that v|,5 = v* + p., for some
s > lerit depending on p and v*. In a final step, we show that this function can be inverted, giving u
as a function of u, and v*, thus yielding Theorem [2

The feasibility of our approach relies on the fact that the system obtained by linearizing (), (2 around
the explicit solution (u,,p,) can be analyzed explicitly. As mentioned above, when compared with the
case yu = 0, i.e., the Stokes equation, the vorticity decays for p > picqi faster than 1/r2, instead of like
1/r, such that u can be shown to decay faster than 1/r at infinity, making the nonlinearity subcritical.
Introducing suitable function spaces, we are then able to solve the full non-linear system by a classical
fixed-point argument.

2 Dynamical system formulation

Let (u,p) € C*°(R?\ B) be a solution to (@), @), satisfying [@B). We first make the construction of
the stream-function ¢ associated with u precise. Since u € C*°(R? \ B), we have in particular that
u* € C®(0B). Let us € C®(B) satisfy u,; = u* on dB. Such a function exists since u* satisfies ().
For instance, u;,+ can be the solution to the Stokes equations on B, with boundary condition u* on 0B.
Then, setting:

u in R?\ B,

Wint in Ev

o) - {
we obtain a continuous divergence-free vector-field on the whole of R%2. Furthermore, this function is

smooth on both sides of B so that there exists ¢» € C1(R?)NC>(B)NC>(R?\ B) satisfying u = V+1).
Instead of (), (@), we consider now the equation for the stream function v and the vorticity w = V xu,

A’L/J = —Ww . 2\
{Aw W Vw in R\ B.

For the function u we have in polar coordinates (), and the vorticity becomes:
1 1
w= ;&(Tue) — ;(%ur, Y (r,0) € Q.
For the boundary data we have:
u*(0) =ui(f)e, +uy(feg, VO€(—mm).

In polar coordinates we get the following equations for the stream function v and the vorticity w:

1 1
87"7“"/) + _8T1/1 + _2899"/) = —Ww,

7i 7‘1 " v (T,@) €0, (9)
Oprw + —O0pw + —2699w = U O0pw + —‘)agw,

r r r



and

w, = 0¥
" r = V(r,0)eQ, (10)
up = — Twa
together with the boundary conditions:
ur(1,0) = ui(0), lim, 00 ur(r,0) = 0,
( ) - ( Voe(—mm). (11)
ug(1,0) = wuy(6), lim, o ug(r,8) = 0,

For the exact solution (u,,p,) given by () we have in polar coordinates for the corresponding stream-
function-vorticity pair (1, w,), for all 4 € R:

r,0) = —uln(r),
w,u (Tv 9) = 0 )
In order to prove Theorem 2] we construct, as explained above, a solution which is a perturbation of the
explicit solutions (u,,p,). We therefore set ¢ = ¢, + v and w = w, + w. Substituting this Ansatz into
@), (@), we obtain the following equivalent system for the unknowns (v, w):

1
arr'}/ + %&’Y + _28007 = ~w,
7"1 P 5 v (r,0) € Q, (12)
Oprw + %&w + —289910 - %8911) = ﬂarw - ﬂagw ,
r r r r
with the boundary conditions:
69’7(15 9) = ’U:(G) )
ory(1,0) = —v;(0), Ve (—mm), (13)
lim, o0 ([7(r,0)| +10p7(r,0)]) = 0,

for certain (v} (0),v;(0)) to be defined later on, satisfying:

/ vy do=0, (14)
OB

and which are small in a sense to be made precise.
Following the method developed in [14], we solve (1), ([I3), for data (v}, vj), by interpreting the
radial coordinate r as a time and by expanding in a Fourier series:

v(r, 0) = Z%z(r)eme , w(r,0) = Z wy (r)em?

ne”Z nez
Notation. To unburden the notation we write for the Fourier series of v and w:
’3/ = (’771)71625 W= (wn)neZ; (15)

and analogously for all other functions.

From (I2), [I3) we obtain, for n € Z, the following system of ordinary differential equations:

1 n?
arr’)’n + _arr)/n - _Q'Yn = —Wp,
rl r 2 on (1,00), (16)
arrwn + _arwn - wwn = Fn P
r T
with the source term F;, given by:
7
F,=—- kwyg Opyy — Ly O, , 17
rk;n( wy, Opyy — Ly Orwi) (17)



and with the boundary conditions:

*

inyn (1) = v,
—0r (1) = U5,, VneZ\{0}. (18)
limy o0 (|9 (r)[ + [0rm(r)]) = 0,

Note that v 5 = 0 by assumption (4] and that the value of yo(1) is irrelevant, i.e., the stream function
is only unique up to an additive constant. As we show later in this section, the value vy o cannot be
chosen freely if one wants the solution vy to satisfy the boundary condition at infinity.

For convenience, we first solve ([l with boundary conditions:

'771(1) = IY;; ,
wp (1) = w;, VneZ\{0}, (19)
limy o0 (|70 (r)] + lwa(r))) = 0,

instead of ([I9)). Once the solution is constructed we then re-express the solution in terms of the original
boundary conditions.

Assuming that the functions F;, are continuous and decay sufficiently rapidly at infinity, there exits
exactly one solution to (6] satisfying (Id). Since the Green’s function of equations (I8 are r s r+/"I
and 7+ 7% respectively, where (,, = \/n? + iun, with Re(y/z) > 0 for z € C\ (—o0, 0], the solutions
are given by the following explicit expressions:

_ Tn *° swy, () r In| /Tgwn(s) s In|
W) = 7‘\"|+/T 2|n/ (s) ds + 1 2|n| (r) ds,

) = e [T e [ C) e

n 1
771 = FY’:; - / S’L;} (S) <_> ds )
1 || S

_ * $F,(s) (1)%
w, = w —|—/ - ds,
1 2¢n §

For n = 0, there still exist solutions to (I6) decaying at infinity, but these solutions exist only for exactly
one boundary condition. The reason is that for n = 0 the Green’s functions for the equations in (I6]) are
r+— 1 and r — Inr, which do not decay at infinity. The solutions decaying at infinity are:

001 oo
/—/ two(t)dtds,
r SJs
001 o0
7/ —/ t Fo(t)dtds.
r SJs

We recall that the value of yo(1) is irrelevant. The value of wo(1) fixes the value of 9,79(1) = —v; , as a
function of . Once the solution is constructed, we will show that @ — p— 9,70(1) =: p* can be inverted,
which then shows the existence of a solution for an open set of boundary conditions.

forn e Z\ {0}. (20)

with:

for n € Z\ {0}. (21)

Yo(r)
(22)

wo(r)

3 Functional framework and main result

We now introduce the function spaces which we use to solve the system ([I8)—(22). We use the notation
introduced in ([IH):



Definition 6 Given k > 0, a > 0 and m € N, such that m < k, we set:

B, = {¢* € CE such that sup, ¢z (1 + |n|)*|pf| < oo},
BY = {¢* € By such that o} =0} ,
and
Bar = {#€(C([1,00);C))%, such that sup,cz sup,cp ooyr®(1+[n])*|on(r)] < oo},

m
ua,ka

{p € (Cm([l,oo);(C))Z, such that ((%gon)nez € Batip—t1, for all0 <1 <m} .

These function spaces are reminiscent of weighted Sobolev spaces, and permit to obtain sharp estimates
on the decay of solutions to 20)—(22). The spaces with one lower index (mainly BY) are used for the
boundary data, whereas the spaces with two lower indices (mainly ¢}, ) will be used for solving (20)(22).

The spaces introduced in Definition [0] satisfy the following straightforward properties. Given a > 0,
k> 0, and m € N, such that m < k, we have:

1. The spaces By, Ba,x, Uy',, are Banach spaces when equipped with their respective norms:

[ 5 Bgll = sup(l+ [n|)*fwn|, &3 Baxll =sup sup r*(1+ |n|)*en(r)],
neN neZre(l,oo)

m
15 Uall = > 1Brn)nez 5 Bacrtoill-
1=0

2. Given a > o and k > £’ we have the embedding By, C By . together with the bound:
163 Bar |l < (@5 Baysll V@ € Bays - (23)
3. The space BY is a closed subspace of By, and thus also a Banach space.

We now formulate the problem of finding a solution to (I8)—(22]) in such a way that we can apply the
inverse map theorem on our function spaces:

Lemma 7 Given p > ficrit, let o > 0 be sufficiently small and k > 0. Then, the map S,: Bajoa,. X

Bl x BYyy = U2,y X UL o . yo, which associates to the triple (4%, 0*) the pair (3,%) by virtue of
equations (20), (22), together with (I4), (Z1)), is linear and continuous.

The notion of a small enough will be made precise in the last section.
Lemma 8 Let o > 0 and k > 0. Then, the map NL: (U§1K+4 X UO%JFZ,HQ)Q — Bat2a,k+1, defined by

NL[(Aar Wa), (Fp,dp)] = (TH L > (kwi(r) 9P (r) — 1y (r) 3er(7’>)> ;
neZ

r
k+l=n
1s bilinear and continuous.
The proofs of these lemmas are postponed to Section Bl We also introduce the trace operator I';:

Ly U2, xU? - BY _, xBY

a1,k a2,K2 K1—1"

(Y, w) = (((nyn(1))nez, (0,0 = 1)0r1n(1))nez) ,

where d,, ,,, is the Kronecker symbol. This map is linear and continuous for arbitrary (o, ;) € (0, 00)?
(i=1,2).

)



To compute solutions to ([I8)-[22), we introduce a map ®,, which allows to solve the differential
equations and constrain the trace on r =1 in one step. Namely, given g > ficrit,  sufficiently small and
Kk > 0, we set:

P, (ua%,nJrél x Uz 42 mt2) X (Bg+4 X ng) — (U2 e X u; a+2, t2) X (Bg+3 X Bg+3)

< &= (5,0) ) <S#(N,c(:a,:e),:e*):a> (24)
) ;

~ A

By definition, if ( = (%,w), 2" = (%, ®w*)) is a solution to ®,(Z,2*) = (0, (0}, 05)), then (¥,) satisfies
([I6)-([IR). This motivates the following notion of k—solutions:

Definition 9 Given an exponent k > 0, an angular velocity p > perit, and a boundary condition v* :=

(A* s

o7, 05) € BY, g x BY, 5, we call r-solution for the boundary condition v* and the asymptotic angular
Velomty p a pair & = (3,W), such that, for sufficiently small o > 0 and some &* = (5*,0*) € B, 4 x B,

° Gu a+4,k xua+25+2a
o o, (z,2%) = (0,v").
The remaining sections are devoted to the proof of the following result:

Theorem 10 Given k > 0 and po > fierie there exists €4, > 0 and an open interval I, o > po such
that, given v* € B(BO+3 X B s €xpo) and p* € Iy, there exists (1> pierie and a k-solution (¥,0) for
the boundary condition v* and the asymptotic angular velocity p, satisfying the condition p—0,7(1) =

As mentioned above, the notion of « small enough will be made precise in the last section. Before
entering into the details of the proof of Theorem [I0] we explain why it implies Theorem

Proof of Theorem[2. Let pg > pierit and k& > 1. Applying Theorem [[0 yields a ball of initial conditions
with positive radius €, ,, > 0 and an open neighborhood I ,,, of po.

For u* € C*°(0B), we define :
1 2m

2

= uj(s)ds,

and the sequences ¢* and v* by ug = vg = 0 and:
* 1 °r * —inf * 1 o —inf
Uy = — ur(f)e de, vy = — ug(0)e de, VneZ\{0}.

"2

The regularity of u* yields that (4*,9*) € B, 3 X BY, 5 and

We now assume that:
H(A* A*) BO+3 X BnJrBH < €k SO ) :U’* € Lﬁ,uo ) (25)

which makes the meaning of u* sufficiently close to ppeg in the statement of Theorem Pl precise.

Consequently, the assumptions of Theorem [I0l are satisfied, which yields that there exists p > perit
and a k—solution (¥, @) for the boundary data (u 0*) satisfying u — 0,v0(1) = p*. Let

=Y wa(r)e™, A 0) = ()™, V(r0)eQ
nez ne”Z

Because k > 1, classical results from the theory of Fourier series yield that:

e wc C?(R%\ B) and v € C*(R? \ B) so that v = V+y € C3(R?\ B),



e v-Vuw € C(R?\ B) with:

v Vu(r,0) =Y l; > Qwi(r) 0p(r) = kyw(r) rwn(r)) | €™, Y (r,0) € Q.

nez k+l=n

Let
Aw — g ep-Vw—v-Vw=:peC(l,00);C([—mn])).

Because (%, w) satisfies ([I0]), all the Fourier coefficients of ¢ vanish identically on [1,00). Hence, (y,w)
is a solution of

A7 = —w, . 2\ 5
Awfﬁe(wa = v-Vuw i R7\ B (26)
r
Straightforward manipulations of the Fourier series of v yield that:
P U
v < el ) cq. (27)

Since u* has zero flux, i.e., since v} has zero average, we have that v(1,0) = v} (6)e, + v} (0)eg, for all
0 € (—m,m), where:

vr(0) = iny(1)e™ =Y une™ = ur(0),

neZ ne
vp(1,0) = — Z Oryn (1)e™ = uj () — dpyo(1) — p* .
nez

Therefore, if we set ¢ := 1, + v, w := w, u:= V1) = u, + v, then the pair (¢, w) is a solution to

Aﬂ) = —Ww, . 2\
{Aw ~ uevw, in R\ B, (28)

and the following boundary conditions are satisfied (recall that u — 9,70(1) = p* by construction of ¥):
u=u"

, ondB, lim |u(r,0)] =0.
T—00

The inequality (Z7) implies that the boundary condition at infinity is satisfied in the following more
precise sense:

tim |[r (u(r.0) = 222) s 2%((=m,m))| = Tim ro(r. 0); L((=m,m)]| = 0.

r—00

To complete the proof, we need to show how to obtain the Navier Stokes equations @ from the
relations between u, ¢ and w, together with [28)). First, multiplying @8] by ¢ € C°(R?\ B) yields:

7/ Vw:Vgpz/ [u-Vuw]e.
R2\ B R2\B

We have the basic identities:
w=Vxu, u-Vw=Vx[u-Vu], (29)

from which we obtain, after integration by parts, that for any given p € C°(R? \ B):
- Vu: VV+p = / [u-Vu] - Vtep. (30)
R2\B RA\B

This identity yields the pressure p via De Rham’s theory, modulo the difficulty, that not all the divergence-
free velocity-fields w € C°(R? \ B) of compact support can be written in the form V<t with ¢ €



C>(R? \ B). More precisely, if a smooth velocity-field v satisfies V x v = 0 in R? \ B, then v is the
gradient of a function up to a contribution of the form Cx*/|x|?. We now show that this contribution
vanishes in our case.

Let ®y € C*°(R) be such that supp(®() CC (1,2) and ®¢(0) = 0, ®¢(2) = 1, and let wo = V. In
polar coordinates we have wq(r,0) = —®((r)eg, for all (r,0) € Q. Given a divergence-free w € C°(R?\B)
we define w and ¢ by:

w=w — My,wg with [/ we(r, 0) dr] =: My, o(r,0) = / wy(s,0)ds — My Po(r) .
1 0
By definition of My,, we have that ¢ € C>°(R? \ B) and V¢ = W, so that (@) implies:
—/ Vu: Vw = [u-Vu] - w.
R2\B R2\B
Replacing W by its definition yields that, for any divergence-free w € C2°(R? \ B), we have:

—/ Vu: Vw = [u-Vu] - w—M,, ([u-Vu] - wo + Vu: Vwy) .
R\ B R2\B R2\B
Let Iy be the last integral in the previous equality. We then have:
Ip = lim ([u-Vu]-wo+ Vu: Vwy) .
N—o0 JB(R2,N)\B
Integrating by parts, we obtain, for all N > 1:

/ ([u-Vu] - wo + Vu: Vwg) = / ([®ou- Vu] - nt+&(d,u-n") do
B(R2,N)\B OB(R2,N)

—/ (Pou- Vw + Vw - V)

B(R2,N)

= / (®o [(u-Vu) - nt — Oqw| +@49,u-nt) do,
8B(R2,N)

where, in order to get the last identity, we have again used that u- Vw = Aw, in R?\ B. Since u decays
like 1/r, Vu decays like 1/r%, and Vw like 1/r3. This yields that Iy = 0 in the limit N — oco. Finally,
we have:

—/ Vu: Vw = [u-Vu] - w,
R2\B R2\B

for any divergence-free vector-field w € C°(R?\ B), and De Rham'’s theory (see [2I, Remark 1.5]) implies
the existence of a pressure p such that (I]) is satisfied. =

4 Proof of Theorem

In this section k > 0 and g > pierie are fixed. First, we set p— = (po + perit) /2 and py = (2u0+ prerit) /2
so that I := [u_, py] satisfies

po € [p—; pit] C (ferit, 00) -

a::%min (% [\/1+|M_|2+1r/2—2,1> : (31)

We emphasize that, because g > ficrit, we have a € (0,1/4]. Let:

P, (ua2¢,l<a+4 X u§+2,n+2) X (Bg+4 X ng) — (ua%,nJrél X ua2¢+2,l<a+2) X (Bg+3 X Bg+3)

< &= (5,0) ) <5#(N,c(:e,:a),:a*) x) (32)
H A

We also set:

& = ()



We will show in the next section that for p € I the map ®, is well defined. We split the proof of
Theorem [0 into two steps. First, we show that we can construct a x—solution for any sufficiently small

boundary condition (4*,9*) € Bl 3 x BY, 4 and an interval of asymptotic angular velocities . In a
second step, we analyze the dependence of this solution as a function of pu.

We have the following abstract result:

Proposition 11 Let I be a compact interval and X, Y two Banach spaces. Assume that ®: pc I — @,
satisfies:

o &cCO(I;CN(X;Y)),
o & (x) =0 forall pel,
e D®,(0) is one-to-one and onto, and has a continuous inverse for all p € I.

Then, there exist positive constants n, and n,, such that ®,, is a C*-diffeomorphism from Bx(0,n,) onto
@, (Bx(0,7,)) D By (0,1,). Furthermore, the family of inverse maps ®': e I — (®,)"" satisfies

“le C(I; ct (BY (07 ny); Bx (Oa 7796))) :

Proof. The proof is standard, but for the sake of completeness we recall the main ingredients. Given
the hypothesis of Proposition [[Il the map ®,, satisfies the assumptions of the inverse function theorem
for arbitrary p € I, so that there exits 1,, > 0 and n,, > 0 such that ®, is a C'-diffeomorphism
from Bx(0,7s,,) onto @, (Bx(0,7mz,)) O By(0,7,,). Since ® is continuous, it is clear that these
constants can be chosen independently of pu, locally in p. By a compactness argument, we can therefore
find constants 1, > 0 and 1, > 0 such that ®,: Bx(0,1,) — @, (Bx(0,1,)) D By(0,n,) is a C*
diffeomorphism for arbitrary u € I. We now show that ®=! € C(I x By(0,7,)). The proof that
o~ € C(I;C*(By (0,m,); Bx(0,n5))) is then obtained by differentiating (with respect to x) the identity
@' o ®,(x) =z which holds true on Bx (0,7s).

Given (u, i) € I? and (y, ) € [By (0,m,)]?, we denote:

z=0,y), T=2.'(7).
By construction we have:
y—9=2u(z) - 2pu(2),
= D®,(0)[z — z] + ®,,(7) — Pu(E) + o(|lz — )
®,(0)[x — 2] + o(|p — al) + o[z — 2; X1[) .

Consequently, reducing the size of n, and 7, if necessary, we get that:
o — &3 X < 20[DS(O0)] ™ Lo(Y3 X)| lly — 5 Y| + ol — )]

where L.(Y; X) denotes the set of continuous linear map Y — X. This completes the proof. m

We now show that we can apply Proposition [[1] to the map ® as defined in ([B32) To this end, we
remark that ®,, depends on g only through p+— Sy, and that for all u € I the differential D®,(0) is:

D(I)#(O)[jvj*] = (Flsﬂ(oai*)af'ﬁ)v V(j,:&*) (ui k+4 u a+2, n+2) (624-4 X Bg+2)'

Let T.(2*) := I''S,(0,2*). Since ® is a combination of linear and bilinear maps, it suffices to apply
Lemmal Jand the followmg lemma in order to check that the assumptions of Proposition [[] are satisfied:

Lemma 12 Let a be given by [BI)), then the restriction of the map S: p+— S, to I :== [u_, py] satisfies:

i) S € O(I; Le(Br2ara X (B g X Blig) 5 U jia X US 15 4012)),

it) T, is a one to one and onto map BY, x BY o — BY, 3 x BY 5 with continuous inverse.

11



We postpone the proof of this technical lemma to the next section. We now apply Proposition [I1] to
®, but restrict the image to the component . This yields the following result:

Theorem 13 There exists a map V: uw— ¥, satisfying

v e C(I;Cl (BB‘;MxBO_ (ann) 5 u02¢7f€+4 X u02¢+2,n+2)) s

Kk+3

such that, for all v* € Bgo v po, (0,ex) and p € I, ¥, (v*) is a k—solution for the boundary condition

3
v* with respect to the asymptotic angular velocity p.

In a final step we show how to prescribe the zero mode of the solution ¥, (v*) by using the dependence
of the solution on p. Let n = (uo— ferit)/4, and consider a boundary condition

v* c BB%+SX52+S(O’EK) .

Let (7,/;#, wy) = U, (v*), for all p € I. Using that ¥,(0) = 0, and restricting the size of ¢, if necessary,
we can assume that R
00 < s Uo il <y Vel

Consequently, the map p +— 1 — 9r1,,0(0), which is continuous from I to R, because p — ¥, (0,v*) is
continuous, satisfies:

poe — Opthy_0(1) < i + 1 < o, P = Oy, 0(0) > iy —n > po -

Hence the image of this map contains an open interval I, ,,, containing po. This completes the proof of
Theorem [0

5 Proof of main lemmas

This section contains the proof of the technical lemmas which have been used without proof in the
previous sections. First we prove Lemma[8 which is standard. We then give proofs of Lemmas [ and
which are more delicate.

Proof of Lemma[8. Let F' = NL((3%, @), (3°,4")), for (', 0") € U?

o4 XU§+2,H+2, i ={a,b}. First,
we note that for kK > 0 and n € N, the following series converge:

1 1

é (LA 1)1+ [ — )t k% (L4 R 3 (1 4 |n — k[)=+

(33)

Consequently, we have for all (n, k,1) € Z3:

1 ||(wa)n€Z ) Ba+2 n+2|| ||(a7“’yb)n€Z ) Boz-l—l n+3||
lws (r)d,~° < n ’ ’ = 7 ’ ;
|lwf (r)0r ()] < 3+2a (1 + [1])<+1(1 + |n — 1])~+3

and

1 08)nez : Borall | @rh)ncz : Baraeia
kv (r)Opw? < et S0 P ’ ;
kv (r)Orwy, . (r)] < r3+2a (1 + |k[)"+3(1 + |n — Kk[)s+!

and therefore the series defining F,, is converging. We now bound the series ([B3]). By symmetry, it is
sufficient to consider only the first series and n > 0. We split the sum into two parts:

[n/2]
1
g

w2 = 2 AT

1 K+3 1 1 K+3
<Cn o — D PuEETT—— <Cn PR 9
- <1+|n|> 23(14r|l|)'“rl - <1+|n|>

lEZ

12



and

= 1
Shy= >
n/2 r+1 _ ]|\&+3
2 T )
1 Kk+1 1 1 Kk+1
<Cyxy|—— — <O | —— .
- <1+|n|) lezz(lﬂll)””_ <1+|n|)

This shows that F' € Batoa,x+1. B

5.1 Proof of Lemma [7]

From now on, we assume x > 0. We recall that:
1
Cn = [n2—|—i,un}2 , VYneZ.

In what follows, we use without mention the following properties of (,:

Kﬂhﬂ@+(%f>i,vnez\mh

and
) AN
&n i=Re(C) = _2 (1+(%)) 1 ;’ VneZ\ {0}, (34)
i) = 25[(1+(2)) -]

We note that &, is an increasing function of |n| so that its minimal value (over n € Z \ {0}) is reached
for n = £1 and is equal to:

Pu :%[(lﬁLuQ);JrlF.

Let

1
=g min(p, —2,1).

For pt > picrit we have p,, > 2, so that ¢, > 0. We choose o € (0, ;) from now on. This is the smallness
condition that is mentioned in Lemma [7l

With the above conventions, we first analyze the equations which determine w:

Proposition 14 Given Fe Bao+a,s and 0* € Bg+2, the equations:

wte) = e [ () e [T () @)

wo(r):—/:oé/:otFo(t)dtds, (36)

o0 Cn,
F,
mn:,w:;_/ S n(s) l dS,
1 2Cn S

define C? functions. Moreover, we have 0 € U2+27,€+2, and there exists a constant C, , < 00, depending
only on o and p, such that

with:

[ (wn)nez ; ua2¢+2,l<a+2|| < Cap [”(Fn)nGZ i Bayoast2ll + [[(wn)nez Bg+2”] . (37)

13



Proof. We only prove ([B7); existence and continuity follow in a straightforward way. We first
treat the case n # 0 and then the case n = 0. Throughout the proof, we use the shorthand My for

H(Fn)nez ; B4+2oz,r-eH-
Case n # 0. We split the expression defining w,, according to (35):
mn n n
wa(r) = —= + 17 (r) + 15 (7).

By definition of the norm on the space Byy2q,,, we have:

Mp

T Vs>1.
Lt pestize 0=

[Fn(s)| <

Using that &, > p, > a+2, and that ¢|n| < |(,| < C(1++/|p])|n] and |n| <&, < (1++/|p])|n| for large

values of |n|, we get that: -
T SF, e
[y
102G r

«c__Mr 1 / " e —(4420) g
= (L4 )Gl & Sy

11 (r)| =

Mp (14 ré—(2042)

<c, , 38
Gy e o

for all » > 1. Here we used that, by our smallness condition on «, we have &, — (2a+2) > —1. We also
have:

% (r)| =

< Mp e, / §l—En—(20+4) 4

1+ n])*|Cnl v
Mp 1
< Cap (14 |n|)r+2 r2a+2” (39)
for all » > 1. Using these bounds for » = 1, we obtain:
Mp
wy| < Jwk oy ——————— . 4
|w | — |wn| +C sH (1 + |n|>,€+2 ( 0)

Plugging (38), B9) and [@0) into [B5) and recalling that &, > « + 2 yields:

Mp + [|o*; Bl ol 1

Vr>1.
)z ez TS

|wn (r)] < Co,p

Differentiating (B3] with respect to r, we obtain:

Opwy, (1) = —fgﬁ + %I{’(r) — %Igo(r), Vr>1.
To summarize, when we differentiate w,, with respect to r, the decay in r increases by one power, and the
decay in n decreases by one power. This observation allows us to bound 0,w,, in the indicated function
spaces. Finally, since the expression defining @ define a solution of (I6]), we plug the bounds on w,, and
Orwy, into this equation and get a bound for d,,wy(r). We obtain that there exists a constant Cy ,,
depending only on « and p, such that

2 M ~k . 1RO
r2|Orrwn (1) 7| Opwn (1)] + wn(r)] < Ca F o Bl ol 1

, Vr>1.
(1+ |n|)2 (1+|n|) = T+ )2 rai2 >

14



We emphasize here that the constant Cy ,, depends on a and p. Nevertheless, it is clear from the com-
putations above that, when « is fixed and p varies in a a compact interval I C R, this constant remains
uniformly bounded.

Case n = 0. Proceeding as in the case n # 0, we get the bound:
<1 1 Mg

Similarly, one shows

M < 1 M
F/ a Vr>1,

|8T’U_)0(T)| S T W—Q(lds S Cam,

and we again conclude, by recalling the differential equation satisfied by wq (see (@) for n = 0), that:

Mp + [|[0*; B,
r2+a ’

7210, wo (1) 4+ 7|0rwo (r)| + |wo ()] < Cq Vr>1.

This completes the proof. m

We next consider the equation satisfied by 4:

Proposition 15 Given (]3 € Boyo,kt2 and y* € Bg+4, the equations:
T % s (s) fryInl /T $hn(s) 7s\Inl
n(r) = /2% — - ds — - ds, 41
n(r) rinl /T 2|n| (s) s 1 2|n] (T) y (41)
o0 1 (o]
Yo(r) :/ ;/ t ¢o(t) dtds, (42)

e o] ” 1 \n|
771 = ’Y;: + / Sgb (S) - dSa
1 2|n| 8

define C? functions. Moreover, 7 € U27N+4 and there exists a constant C, < 0o, depending only on «,
such that

with

H('Vn)nEZ ; uo2¢,t€+4|| < Ca [H((bn)nez 5 Ba+2,r€+2H + H('Y;)nEZ ; B»Oc+4H] . (43)

The proof is identical to the proof of Proposition [[4] and is left to the reader. Lemma [ is a straight-
forward consequence of Proposition [[5] and Proposition [I41

5.2 Proof of Lemma [I2] first item

Let I = [u—,p4] C (fterit, 00) and « be given by @I). In particular, we have o < min{e,,p € I}
so that, applying the results of the preceding section, it follows that S, Bayoa,x X (BYiy X BYyy) —
UG ig X U, o o is a well-defined continuous linear map, for all values of p € I. We now show
that the map S: p — S, is also continuous. This amounts to show that, for arbitrary po € I and
p € I, there exists a constant C,, which converges to zero as p converges to uo, such that, for arbitrary
(F,") € Buyaan X (BYyy x BYo):

IS0 (F.27) = Su(EL2%) 3 Uz eis X U wall S Cull (Fy37) 5 Baaaws ¥ (Blia X BLo)l-

Given p € I, we let (3[u], w[u]) := S.(F,&*). Since 4[u] is obtained from w[u] via an equation which
does not depend on u, we can apply directly Proposition [4] yielding that, for arbitrary (u, i) € I*:

191) = A1A] s Us epall < Calldlp] — DAL 5 UZ o ol

Hence, it suffices to prove that @w[u] is continuous with respect to pu, in order to obtain the continuity of

S.
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To show the continuity of @w[u], we first remark that wp[u] does not depend p, so that we only detail
the case n # 0. Let n # 0, we split wy,[u] into three terms:

walp)(r) = Wi pl(r) + 17 [ul(r) + I 1] (r)

where:
Will) = Zi ) = [ 5 (5) e rmbae = [ () e
We recall that
0rwalilr) =~y - S ) + W ), (a4)
Orralp) = Fur) - 0ol L) ). (45)

Note also that ¢, [u] = (n?+ ipun)'/? is a continuous function of y uniformly in n. Indeed, since the square
root is analytic in a neighborhood of 1, we have for sufficiently large n (uniformly in p € I):

o) 02)
n n

We also have the bound |(,[u]| < ¢|n|, with ¢ independent of p € I. Introducing these bounds into ([@4l)-
(@) shows that the continuity of w[u] follows from the continuity of (Wp[u], I1 [u], Iso[1]) in Bayo.ero-
For consistency, the three sequences, which are only defined for n # 0, are completed by 0 for n = 0.

To begin with, we consider the continuity of p — I3[u]. Let (i, /i) € I2, and assume that |(,[p] —
Calf]] < /2, uniformly in n. We have:

I'p] — I a) = Ji(r) + Jo(r),

|Cnlp] — Culit]] = || <Clp—pl.

where:

hmzwmwwgﬂwﬁwha%m%v

Jo(r) = /1T 5212‘:[(;]) [1 B (;)Cn[u]Cn[ﬂ]] (;)Cn[ﬂ} ds.

We have, uniformly in n:

Cn [/1] —Cn [,u] all =
_zmrﬁgdmm—MM—dm

‘1 B (;)Cn[ﬂ]—%[ﬁ]

< e[Galp] = Galm n(r)r W=l = o(1) In(r)r®/2.

We introduce these uniform bounds in J; and J> and redo the computations in the proof of Proposition

[Tl (see (B8))). We get:

1 Bataal| (1) In(r)
(1 + [n|rt2) p2t30/2

1 Bayzall o(1)

(Lt o2y ez MRS

|N(r)] <

where the term o(1) denotes a constant converging to 0 when g — i — 0, uniformly in n. Finally, we
have that, for all n € Z\ {0}:

" I F;B ol o1
170 - 270 < {EEeezel S0 (a6

16



We now prove the continuity of p — I [u]. For any (u, ) € I and n # 0, we perform a similar
splitting:
15 () = 15 () = Ja(r) + Ja(r)

where:

AW>AWSEAQ[@m1@mq(zyﬂ”@,

Cnl] $

o (r) /TOO 521;:[(;]) [1 (g)(n[u]—Cn[ﬂ]] (g)(n[ﬂ] ds.

As in the preceding bound we have, uniformly in n:

Calfi] = Gal] 7|
_zﬁr—kdmmmmwm

() <o (2) ()

where we have used that |(,[u] — (u[f]| < «/2. We can therefore redo the computations in the proof of
Proposition [I4] (see (B9)). This yields, for all n € Z\ {0}:

||F, B4+2a,nH o(1)
(Tral+2) 725

[ (r) + [Ja(r)] <

As in the preceding estimate we conclude that:
oo 1] = Lol Ba_+2.m+2] = o)1 F5 Baszayell -

Finally, we prove the continuity of y — W[u):

W) - Wit = [Pl e (o )|

7Gn (K] 7rGn [n-] 7Gn (1] —=Cnlp-] B 7Gn [A]—Cnlp-]

a7 I I
T o] \ pe ] pnli—calnd )|

— r2+2a 7’2+O‘ ro

IN

Wn[p] — Wn[f]
7Gn (K]

)

1 1
7én (] =Cnlp-] B 7én [A]=Cnlp-]

where we have used that Re((,[u]) > Re(Cn[p—]) > 2+ 2. At this point we note that the bound which
we obtained above for I in r =1 yields:

_ e o(1) 5
[, [11] — wn[1]] = WHF,BMM,HH .

As p— (,[p] is continuous in p (uniformly in n) and satisfies Re((, [1]) > Re(Cnfp—]), for all p € I, we

also have: . . .
ﬁ(ﬂﬂ%%m]_MMFMMJ;L(wa:d”’

where o(1) is uniform in n. By combination, this yields, for all n € Z \ {0}:

o(1)

T+ ]+

W lu)(r) = WA ()] < (155 Baszaill + 1% B |

This completes the proof of the first item in Lemma
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5.3 Proof of Lemma [12], second item

In this paragraph, we prove that the map 77 is one-to-one and onto with a continuous inverse. Given
= (5%, w*) € Bl 4 x BY 5, we set (§,@) = S,(0,2%). A straightforward computation shows:

wy, Yn < swy(s) (rynl " swn(s) /syl
= _ —_— — _ >
wa(r) = 2 () = 5 +/T ] (S) dst | = (T) ds, Vr>1,

where:

00 [n|
1
Y = Tp — / swn(s) (1 ds.
1 2In] \s

Therefore, we have, for all n € Z \ {0}:

’Yn(l) = ’Y:; )

together with:

00 n| .

1
Irym(1 **TWZJr/ Swyp (s <—> ds = —|n|yf — ———2— |
W ! 1 ) s & 2—|n|—¢n

so that (0,05) = T1(2*) satisfies:

° v;f,o = ”5,0 =0,

*

e vy, =iny,, and vy . = =07 (1) = ||y, + L, for alln € Z \ {0}.

2—In[=¢

This shows that the map 77 is one-to-one and onto. Indeed, the inverse map is given by:

T [0, 95)] = (3,0,

where:

nlv!
° 7, = 7’1", and w), = (2 — |n| — ¢,) (Uéyn—%) for alln € Z \ {0}.

It is therefore clear that 7,7 " € L£.(BY, 5 x BY 5 5 B, x BY,,). This completes the proof.
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