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On the existence of solutions to the planar exterior Navier Stokes system
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Introduction

In this paper we consider the incompressible Navier Stokes equations in an exterior domain:

∆u -∇p = u • ∇u , div u = 0 , in R 2 \ B , (1) 
with B a smooth bounded domain, with non-zero Dirichlet boundary conditions on ∂B, and zero boundary conditions at infinity:

u | ∂B = u * , lim |x|→∞ u(x) = 0 . (2) 
Of particular interest is the case of boundary data u * with zero flux: ∂B u * • n dσ = 0 .

(3) * Work supported in part by the Swiss National Science Foundation.
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We note that, since the size of B is arbitrary, we have set without restriction of generality all the physical constants in (1) equal to one.

The above system is a special case of the exterior Navier Stokes problem:

-(u • ∇) u -λ∂ 1 u + ∆u -∇p = 0 , ∇ • u = 0 , in R n \ B , (4) 
with n = 2 or 3, with B a smooth bounded domain in R n , with boundary conditions [START_REF] Babenko | On stationary solution of the problem of flow past a body in a viscous incompressible fluid[END_REF], and with λ ∈ {0, 1} distinguishing between the case of a flow "around" B (λ = 0) and a flow "past" B (λ = 1), respectively. The system (1)-( 3) corresponds to n = 2 and λ = 0. The case λ = 0 is in many respects more complicated than the case λ = 1, and, whereas the picture is rather complete for n = 3, the case n = 2, λ = 0, presents particular difficulties. The difficulty with the classical method for solving the Navier Stokes equations consists in the fact that the linearization around u = 0 is given by the Stokes system, which, for n = 2, does not admit a solution satisfying [START_REF] Babenko | On stationary solution of the problem of flow past a body in a viscous incompressible fluid[END_REF], unless the domain B and the boundary data u * satisfy certain symmetry conditions. This fact is known as the Stokes paradox. For completeness we note that if one relaxes the no flux condition (3), there exists a two parameter family of solutions to (1)-( 3), the so called Hamel solutions, see [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF]. These examples emphasize that the decay of solutions can be arbitrary slow and that uniqueness might be lost for some boundary data. However, these solutions have flux larger than one, and are far from the regime which we will consider here.

In what follows we construct a new class of solutions to (1)-(3), by linearizing not around u = 0, but around u = µx ⊥ / |x| 2 , with |µ| > √ 48. This improves the decay of the solutions to the vorticity equation, yielding vorticities decaying at infinity generically faster than |x| -2 , instead of like |x| -1 as would be the case for the Stokes equation, thus avoiding the Stokes paradox when reconstructing u via the Bio-Savart law.

To put our problem into a wider context, we briefly recall the concept of weak solutions for (4), [START_REF] Babenko | On stationary solution of the problem of flow past a body in a viscous incompressible fluid[END_REF] (also known as generalized solutions or D-solutions), and the method of J. Leray [START_REF] Leray | Etude de diverses équations intégrales non linéaires et de quelques problèmes de l'hydrodynamique[END_REF] for proving the existence of such weak solutions. Definition 1 Given u * ∈ H 1/2 (∂B) satisfying (3), a function u which satisfies the following conditions is called a weak solution to (4), (2):

1. u ∈ D 1,2 (R n \B), where D 1,2 (R n \B) is the subset of L 1 loc (R 2 \B) containing functions with gradient in L 2 (R n \ B), 2. u is divergence-free and u = u * on ∂B, 3. for all divergence-free vector fields w ∈ C ∞ c (R n \ B), there holds:

R n \B ∇u : ∇w + R n \B ((u • ∇) u + λ∂ 1 u) • w = 0 .
The method of J. Leray to prove the existence of solutions according to this definition, and a posteriori to (4), [START_REF] Babenko | On stationary solution of the problem of flow past a body in a viscous incompressible fluid[END_REF], in the sense of distributions, consists in the following steps:

• First, one introduces a sequence of approximate problems by restricting (4) to bounded subsets Ω ⊂ R n containing B, with zero Dirichlet boundary conditions on ∂Ω \ ∂B.

• Second, one proves the existence of (weak) solutions to all these approximate problems.

• Third, one shows that for any sequence of bounded subsets exhausting R n \ B, there exists a subsequence, such that the corresponding approximate solutions converge to a weak solution of (4),

• Finally, given a weak solution u, a pressure p an be constructed via De Rham's theory, such that the equations (4) are satisfied in D ′ (R n \ B).

See also [START_REF] Hillairet | Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné. partie ii[END_REF][START_REF] Hillairet | Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné[END_REF][START_REF] Serre | Chute libre d'un solide dans un fluide visqueux incompressible[END_REF][START_REF] Weinberger | Variational properties of steady fall in Stokes flow[END_REF][START_REF] Weinberger | On the steady fall of a body in a Navier-Stokes fluid[END_REF], where this method has been adapted to a similar system with more general boundary conditions. Note that if B has a smooth boundary, the ellipticity of the Stokes operator (see [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF]Section IX.1]) and the smoothness of u * imply that weak solutions are smooth. Therefore, for smooth data, the only possible shortcoming of weak solutions is that they may not satisfy the boundary condition at infinity in a point-wise sense. Much work has been devoted to clarify the situation in various cases (see [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF] for more details):

For n = 3, the condition u ∈ D 1,2 (R 3 \ B) implies that weak solutions tend to zero at infinity. The exact decay can be obtained by various methods yielding the following results:

• for λ = 1, there exists a solution that decays like the fundamental solution of the Oseen equation (the linear system obtained from (4) by deleting the nonlinear convective terms) [START_REF] Babenko | On stationary solution of the problem of flow past a body in a viscous incompressible fluid[END_REF][START_REF] Farwig | The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces[END_REF][START_REF] Finn | Estimates at infinity for stationary solutions of the Navier-Stokes equations[END_REF]. This result can be obtain by a detailed analysis of the Oseen equation with a source term in the usual Sobolev spaces [START_REF] Babenko | On stationary solution of the problem of flow past a body in a viscous incompressible fluid[END_REF][START_REF] Finn | Estimates at infinity for stationary solutions of the Navier-Stokes equations[END_REF], and also in weighted Sobolev spaces [START_REF] Farwig | The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces[END_REF].

• for λ = 0 and sufficiently small boundary data, there exists a unique weak solution, and this solution decays like a Landau solution [START_REF] Korolev | On the large-distance asymptotics of steady state solutions of the Navier-Stokes equations in 3D exterior domains[END_REF], a special solution of the nonlinear system which decays like 1/|x|. This result can been obtained by constructing first a strong solution to (2), ( 4), which is asymptotic to the Landau solution, by perturbative techniques. Using the known decay of this particular solution as an input [7, Section IX.9], one then proves a weak-strong uniqueness result for small data.

For n = 2, the situation is more delicate since the condition u ∈ D 1,2 (R 2 \ B) does not guarantee that the boundary condition at infinity is satisfied:

• For λ = 1, the relevant linear system is again the Oseen equation, but the results concerning the decay are limited to small data, since, as for the case n = 3, λ = 0, perturbative techniques are used to prove the existence of a strong solution decaying at infinity like the fundamental solution of the Oseen equation. This solution is then again used as an input to a weak strong uniqueness argument in order to show the decay of weak solutions. These results can be found in [START_REF] Galdi | Existence and uniqueness at low Reynolds number of stationary plane flow of a viscous fluid in exterior domains[END_REF].

• The case λ = 0 remains largely open. As we already pointed out, the problem is that the solution to the Stokes equation with boundary data u * = 0 diverges at infinity, unless one makes additional assumptions on the domain B and the data u * . Partial results for the Navier Stokes system with symmetric data can be found in [START_REF] Galdi | Stationary Navier-Stokes problem in a two-dimensional exterior domain[END_REF][START_REF] Russo | On the asymptotic behavior of d-solutions of the plane steady-state navier-stokes equations[END_REF][START_REF] Russo | On the existence of d-solutions of the steady-state navier-stokes equations in plane exterior domains[END_REF][START_REF] Pileckas | On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier-Stokes problem[END_REF] .

From now on we limit the discussion to the case where B is a disk of radius one. We choose x = (x, y) Cartesian coordinates with the origin at the center of B, (r, θ) ∈ Ω := (0, ∞) × (-π, π) the associated polar coordinates, and (e r , e θ ) the corresponding local orthonormal basis. For the function u we have in polar coordinates:

u(r, θ) = u r (r, θ)e r + u θ (r, θ)e θ , ∀ (r, θ) ∈ Ω . (5) 
The following theorem is our main result:

Theorem 2 Let µ 0 > µ crit ≡ √ 48 and u * ∈ C ∞ (∂B) satisfying ( 
3) be sufficiently close to u * µ0 :=µ 0 e θ . Then, the equations (1), (2), with boundary condition u * , have at least one solution

(u, p) ∈ C ∞ (R 2 \ B) 2 × C ∞ (R 2 \ B).
Moreover, there exist µ close to µ 0 such that:

lim r→∞ r u(r, θ) - µe θ r ; L ∞ (-π, π) = 0 . ( 6 
)
Remark 3 If the pair (u(x, y), v(x, y)) is a solution for the boundary condition (u * (x, y), v * (x, y)), then the pair (u(x, -y), -v(x, -y)) is a solution for the boundary condition (u * (x, -y), -v * (x, -y)). Thus, our result extends to µ 0 < -µ crit .

Remark 4 If u(r, θ) is a solution for the boundary condition u * on the complement of the unit disk, then for all λ > 0, λu(λr, θ) is a solution for the boundary condition λu * on the complement of the disk of radius λ -1 .

Remark 5

The restriction to the case where B is a disk is for the sake of simplicity only. This permits to rewrite the system in polar coordinates, yielding explicit expressions for the solutions. We expect that with more work the results can be generalized to arbitrary smooth B.

To prove Theorem 2 we proceed as follows: We fix µ > µ crit and consider the pair (u µ , p µ ):

u µ (r, θ) = µe θ r , p µ (r, θ) = - 1 2 µ 2 r 2 , ∀ (r, θ) ∈ Ω , (7) 
which is an exact solution to (1), [START_REF] Babenko | On stationary solution of the problem of flow past a body in a viscous incompressible fluid[END_REF]. Next we set, (u, p) = (u µ + v, p = p µ + q) and prove, that for all sufficiently small boundary conditions v * satisfying

∂B v * • n dσ = 0 , (8) 
there existence of a solution

(v, q) ∈ C ∞ (R 2 \ B) 2 × C ∞ (R 2 \ B) such that v| ∂B = v * + µ * ,
for some µ * > µ crit depending on µ and v * . In a final step, we show that this function can be inverted, giving µ as a function of µ * and v * , thus yielding Theorem 2.

The feasibility of our approach relies on the fact that the system obtained by linearizing (1), (2) around the explicit solution (u µ , p µ ) can be analyzed explicitly. As mentioned above, when compared with the case µ = 0, i.e., the Stokes equation, the vorticity decays for µ > µ crit faster than 1/r 2 , instead of like 1/r, such that u can be shown to decay faster than 1/r at infinity, making the nonlinearity subcritical. Introducing suitable function spaces, we are then able to solve the full non-linear system by a classical fixed-point argument.

Dynamical system formulation

Let (u, p) ∈ C ∞ (R 2 \ B) be a solution to (1), (2), satisfying [START_REF] Farwig | The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces[END_REF]. We first make the construction of the stream-function ψ associated with u precise. Since u ∈ C ∞ (R 2 \ B), we have in particular that u * ∈ C ∞ (∂B). Let u int ∈ C ∞ (B) satisfy u int = u * on ∂B. Such a function exists since u * satisfies (3). For instance, u int can be the solution to the Stokes equations on B, with boundary condition u * on ∂B. Then, setting:

ū(x, y) = u in R 2 \ B , u int in B ,
we obtain a continuous divergence-free vector-field on the whole of R 2 . Furthermore, this function is smooth on both sides of ∂B so that there exists

ψ ∈ C 1 (R 2 ) ∩ C ∞ (B) ∩ C ∞ (R 2 \ B) satisfying u = ∇ ⊥ ψ.
Instead of (1), (2), we consider now the equation for the stream function ψ and the vorticity ω = ∇×u,

∆ψ = -ω ∆ω = u • ∇ω in R 2 \ B .
For the function u we have in polar coordinates [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF], and the vorticity becomes:

ω = 1 r ∂ r (ru θ ) - 1 r ∂ θ u r , ∀ (r, θ) ∈ Ω .
For the boundary data we have:

u * (θ) = u * r (θ)e r + u * θ (θ)e θ , ∀ θ ∈ (-π, π) .
In polar coordinates we get the following equations for the stream function ψ and the vorticity ω:

     ∂ rr ψ + 1 r ∂ r ψ + 1 r 2 ∂ θθ ψ = -ω , ∂ rr ω + 1 r ∂ r ω + 1 r 2 ∂ θθ ω = u r ∂ r ω + u θ r ∂ θ ω , ∀ (r, θ) ∈ Ω , (9) 
and

   u r = ∂ θ ψ r , u θ = -∂ r ψ , ∀ (r, θ) ∈ Ω , (10) 
together with the boundary conditions:

u r (1, θ) = u * r (θ) , lim r→∞ u r (r, θ) = 0 , u θ (1, θ) = u * θ (θ) , lim r→∞ u θ (r, θ) = 0 , ∀ θ ∈ (-π, π) . (11) 
For the exact solution (u µ , p µ ) given by [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF] we have in polar coordinates for the corresponding streamfunction-vorticity pair (ψ µ , ω µ ), for all µ ∈ R:

ψ µ (r, θ) = -µ ln(r) , ω µ (r, θ) = 0 , ∀ (r, θ) ∈ Ω .
In order to prove Theorem 2 we construct, as explained above, a solution which is a perturbation of the explicit solutions (u µ , p µ ). We therefore set ψ = ψ µ + γ and ω = ω µ + w. Substituting this Ansatz into ( 9), [START_REF] Haldi | Leading order down-stream asymptotics of non-symmetric stationary Navier-Stokes flows in two dimensions[END_REF], we obtain the following equivalent system for the unknowns (γ, w):

     ∂ rr γ + 1 r ∂ r γ + 1 r 2 ∂ θθ γ = -w , ∂ rr w + 1 r ∂ r w + 1 r 2 ∂ θθ w - µ r 2 ∂ θ w = ∂ θ γ r ∂ r w - ∂ r γ r ∂ θ w , ∀ (r, θ) ∈ Ω , (12) 
with the boundary conditions:

     ∂ θ γ(1, θ) = v * r (θ) , ∂ r γ(1, θ) = -v * θ (θ) , lim r→∞ (|γ(r, θ)| + |∂ r γ(r, θ)|) = 0 , ∀ θ ∈ (-π, π) , (13) 
for certain (v * r (θ), v * θ (θ)) to be defined later on, satisfying:

∂B v * r dσ = 0 , (14) 
and which are small in a sense to be made precise.

Following the method developed in [START_REF] Hillairet | Existence of stationary solutions of the Navier-Stokes equations in two dimensions in the presence of a wall[END_REF], we solve ( 12), [START_REF] Hillairet | Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné[END_REF], for data (v * r , v * θ ), by interpreting the radial coordinate r as a time and by expanding in a Fourier series:

γ(r, θ) = n∈Z γ n (r)e inθ , w(r, θ) = n∈Z w n (r)e inθ .
Notation. To unburden the notation we write for the Fourier series of γ and w:

γ = (γ n ) n∈Z , ŵ = (w n ) n∈Z , (15) 
and analogously for all other functions.

From ( 12), ( 13) we obtain, for n ∈ Z, the following system of ordinary differential equations:

     ∂ rr γ n + 1 r ∂ r γ n - n 2 r 2 γ n = -w n , ∂ rr w n + 1 r ∂ r w n - iµn + n 2 r 2 w n = F n , on (1, ∞) , (16) 
with the source term F n given by:

F n = - i r k+l=n (k w k ∂ r γ l -l γ l ∂ r w k ) , (17) 
and with the boundary conditions:

     inγ n (1) = v * r,n , -∂ r γ n (1) = v * θ,n , lim r→∞ (|γ n (r)| + |∂ r γ n (r)|) = 0 , ∀ n ∈ Z \ {0} . (18) 
Note that v * r,0 = 0 by assumption [START_REF] Hillairet | Existence of stationary solutions of the Navier-Stokes equations in two dimensions in the presence of a wall[END_REF] and that the value of γ 0 (1) is irrelevant, i.e., the stream function is only unique up to an additive constant. As we show later in this section, the value v * θ,0 cannot be chosen freely if one wants the solution γ 0 to satisfy the boundary condition at infinity.

For convenience, we first solve [START_REF] Leray | Etude de diverses équations intégrales non linéaires et de quelques problèmes de l'hydrodynamique[END_REF] with boundary conditions:

     γ n (1) = γ * n , w n (1) = ω * n , lim r→∞ (|γ n (r)| + |w n (r)|) = 0 , ∀ n ∈ Z \ {0} , (19) 
instead of [START_REF] Russo | On the existence of d-solutions of the steady-state navier-stokes equations in plane exterior domains[END_REF]. Once the solution is constructed we then re-express the solution in terms of the original boundary conditions. Assuming that the functions F n are continuous and decay sufficiently rapidly at infinity, there exits exactly one solution to ( 16) satisfying [START_REF] Russo | On the existence of d-solutions of the steady-state navier-stokes equations in plane exterior domains[END_REF]. Since the Green's function of equations ( 16) are r → r ±|n| and r → r ±ζn , respectively, where

ζ n = n 2 + iµn, with Re( √ z) > 0 for z ∈ C \ (-∞, 0]
, the solutions are given by the following explicit expressions:

           γ n (r) = γ n r |n| + ∞ r sw n (s) 2|n| r s |n| ds + r 1 sw n (s) 2|n| s r |n| ds , w n (r) = w n r ζn - ∞ r sF n (s) 2ζ n r s ζn ds - r 1 sF n (s) 2ζ n s r ζn ds , for n ∈ Z \ {0} . (20) 
with:

           γ n = γ * n - ∞ 1 sw n (s) 2|n| 1 s |n| ds , w n = w * n + ∞ 1 sF n (s) 2ζ n 1 s ζn ds , for n ∈ Z \ {0} . (21) 
For n = 0, there still exist solutions to [START_REF] Leray | Etude de diverses équations intégrales non linéaires et de quelques problèmes de l'hydrodynamique[END_REF] decaying at infinity, but these solutions exist only for exactly one boundary condition. The reason is that for n = 0 the Green's functions for the equations in ( 16) are r → 1 and r → ln r, which do not decay at infinity. The solutions decaying at infinity are:

         γ 0 (r) = ∞ r 1 s ∞ s t w 0 (t) dt ds , w 0 (r) = - ∞ r 1 s ∞ s t F 0 (t) dt ds . ( 22 
)
We recall that the value of γ 0 (1) is irrelevant. The value of w 0 (1) fixes the value of ∂ r γ 0 (1) = -v * θ,0 as a function of µ. Once the solution is constructed, we will show that µ → µ -∂ r γ 0 (1) =: µ * can be inverted, which then shows the existence of a solution for an open set of boundary conditions.

Functional framework and main result

We now introduce the function spaces which we use to solve the system (18)- [START_REF] Van Dyke | An album of fluid motion[END_REF]. We use the notation introduced in (15): Definition 6 Given κ > 0, α > 0 and m ∈ N, such that m < κ, we set:

B κ := { φ * ∈ C Z such that sup n∈Z (1 + |n|) κ |ϕ * n | < ∞} , B 0 κ := { φ * ∈ B κ such that ϕ * 0 = 0} , and 
B α,κ := { φ ∈ (C([1, ∞); C)) Z , such that sup n∈Z sup r∈[1,∞) r α (1 + |n|) κ |ϕ n (r)| < ∞} , U m α,κ := { φ ∈ (C m ([1, ∞); C)) Z , such that (∂ l r ϕ n ) n∈Z ∈ B α+l,κ-l , for all 0 ≤ l ≤ m} .
These function spaces are reminiscent of weighted Sobolev spaces, and permit to obtain sharp estimates on the decay of solutions to (20)- [START_REF] Van Dyke | An album of fluid motion[END_REF]. The spaces with one lower index (mainly B 0 κ ) are used for the boundary data, whereas the spaces with two lower indices (mainly U m α,κ ) will be used for solving (20)-( 22). The spaces introduced in Definition 6 satisfy the following straightforward properties. Given α > 0, κ > 0, and m ∈ N, such that m < κ, we have:

1. The spaces B κ , B α,κ , U m α,κ are Banach spaces when equipped with their respective norms:

ŵ ; B κ = sup n∈N (1 + |n|) κ |w n |, φ ; B α,κ = sup n∈Z sup r∈[1,∞) r α (1 + |n|) κ |ϕ n (r)| , φ ; U m α,κ = m l=0 (∂ l r ϕ n ) n∈Z ; B α+l,κ-l .
2. Given α ≥ α ′ and κ ≥ κ ′ we have the embedding B α,κ ⊂ B α ′ ,κ ′ together with the bound:

φ ; B α ′ ,κ ′ ≤ φ ; B α,κ , ∀ φ ∈ B α,κ . (23) 
3. The space B 0 κ is a closed subspace of B κ , and thus also a Banach space.

We now formulate the problem of finding a solution to ( 18)- [START_REF] Van Dyke | An album of fluid motion[END_REF] in such a way that we can apply the inverse map theorem on our function spaces: Lemma 7 Given µ > µ crit , let α > 0 be sufficiently small and κ > 0. Then, the map S µ :

B 4+2α,κ × B 0 κ+4 × B 0 κ+2 → U 2 α,κ+4 × U 2 α+2,κ+2
, which associates to the triple ( F, γ * , ŵ * ) the pair (γ, ŵ) by virtue of equations ( 20), [START_REF] Van Dyke | An album of fluid motion[END_REF], together with [START_REF] Russo | On the existence of d-solutions of the steady-state navier-stokes equations in plane exterior domains[END_REF], [START_REF] Temam | Navier-Stokes Equations[END_REF], is linear and continuous.

The notion of α small enough will be made precise in the last section.

Lemma 8 Let α > 0 and κ > 0. Then, the map N L :

U 2 α,κ+4 × U 2 α+2,κ+2 2 → B 4+2α,κ+1 , defined by N L[(γ a , ŵa ), (γ b , ŵb )] = r → - i r k+l=n k w a k (r) ∂ r γ b l (r) -l γ a l (r) ∂ r w b k (r) n∈Z ,
is bilinear and continuous.

The proofs of these lemmas are postponed to Section 5. We also introduce the trace operator Γ 1 :

Γ 1 : U 2 α1,κ1 × U 2 α2,κ2 → B 0 κ1-1 × B 0 κ1-1 , (γ, ŵ) -→ ((inγ n (1)) n∈Z , ((δ n,0 -1)∂ r γ n (1)) n∈Z ) ,
where δ n,m is the Kronecker symbol. This map is linear and continuous for arbitrary (α i , κ i ) ∈ (0, ∞) 2 , (i = 1, 2).

To compute solutions to ( 18)-( 22), we introduce a map Φ µ , which allows to solve the differential equations and constrain the trace on r = 1 in one step. Namely, given µ > µ crit , α sufficiently small and κ > 0, we set:

Φ µ : (U 2 α,κ+4 × U 2 α+2,κ+2 ) × (B 0 κ+4 × B 0 κ+2 ) -→ (U 2 α,κ+4 × U 2 α+2,κ+2 ) × (B 0 κ+3 × B 0 κ+3 ) x = (γ, ŵ) x * = (γ * , ŵ * ) -→ S µ (N L(x, x), x * ) - x Γ 1 [S µ (N L(x, x), x * )] (24) 
By definition, if (x = (γ, ŵ), x * = (γ * , ŵ * )) is a solution to Φ µ (x, x * ) = (0, (v * r , v * θ )), then (γ, ŵ) satisfies ( 16)- [START_REF] Russo | On the asymptotic behavior of d-solutions of the plane steady-state navier-stokes equations[END_REF]. This motivates the following notion of κ-solutions: Definition 9 Given an exponent κ > 0, an angular velocity µ > µ crit , and a boundary condition

v * := (v * r , v * θ ) ∈ B 0 κ+3 × B 0 κ+3
, we call κ-solution for the boundary condition v * and the asymptotic angular velocity µ a pair x = (γ, ŵ), such that, for sufficiently small α > 0 and some x * = (γ * , ŵ * ) ∈ B 0 κ+4 ×B 0 κ+2 :

• x ∈ U 2 α+4,κ × U 2 α+2,κ+2 , • Φ µ (x, x * ) = (0, v * ).
The remaining sections are devoted to the proof of the following result:

Theorem 10 Given κ > 0 and µ 0 > µ crit there exists ε κ,µ0 > 0 and an open interval

I κ,µ0 ∋ µ 0 such that, given v * ∈ B(B 0 κ+3 × B 0 κ+3 ; ε κ,µ0
) and µ * ∈ I κ,µ0 , there exists µ > µ crit and a κ-solution (γ, ŵ) for the boundary condition v * and the asymptotic angular velocity µ, satisfying the condition µ-∂ r γ 0 (1) = µ * .

As mentioned above, the notion of α small enough will be made precise in the last section. Before entering into the details of the proof of Theorem 10, we explain why it implies Theorem 2.

Proof of Theorem 2. Let µ 0 > µ crit and κ > 1. Applying Theorem 10 yields a ball of initial conditions with positive radius ε κ,µ0 > 0 and an open neighborhood I κ,µ0 of µ 0 .

For u * ∈ C ∞ (∂B), we define :

µ * = 1 2π 2π 0 u * θ (s) ds ,
and the sequences û * and v * by u 0 = v 0 = 0 and:

u * n = 1 2π 2π 0 u * r (θ)e -inθ dθ , v * n = 1 2π 2π 0 u θ (θ)e -inθ dθ , ∀ n ∈ Z \ {0} .
The regularity of u * yields that (û * , v * ) ∈ B 0 κ+3 × B 0 κ+3 and

u * r (θ) = n∈Z u * n e inθ , u * θ (θ) = µ * + n∈Z v * n e inθ .
We now assume that:

(û * , v * ) ; B 0 κ+3 × B 0 κ+3 < ε κ,µ0 , µ * ∈ I κ,µ0 , (25) 
which makes the meaning of u * sufficiently close to µ 0 e θ in the statement of Theorem 2 precise.

Consequently, the assumptions of Theorem 10 are satisfied, which yields that there exists µ > µ crit and a κ-solution (γ, ŵ) for the boundary data (û

* , v * ) satisfying µ -∂ r γ 0 (1) = µ * . Let w(r, θ) = n∈Z w n (r)e inθ , γ(r, θ) = n∈Z γ n (r)e inθ , ∀ (r, θ) ∈ Ω .
Because κ > 1, classical results from the theory of Fourier series yield that:

• w ∈ C 2 (R 2 \ B) and γ ∈ C 4 (R 2 \ B) so that v = ∇ ⊥ γ ∈ C 3 (R 2 \ B), • v • ∇w ∈ C 1 (R 2 \ B) with: v • ∇w(r, θ) = n∈Z - i r k+l=n (l w l (r) ∂ r γ k (r) -k γ k (r) ∂ r w l (r)) e inθ , ∀ (r, θ) ∈ Ω . Let ∆w - µ r e θ • ∇w -v • ∇w = : ϕ ∈ C([1, ∞); C([-π, π])) .
Because (γ, ŵ) satisfies ( 16), all the Fourier coefficients of ϕ vanish identically on [1, ∞). Hence, (γ, w)

is a solution of ∆γ = -w , ∆w - µ r e θ • ∇w = v • ∇w , in R 2 \ B . ( 26 
)
Straightforward manipulations of the Fourier series of γ yield that:

|v(r, θ)| ≤ γ ; U 2 α,κ+4 r α+1 , ∀ (r, θ) ∈ Ω . ( 27 
)
Since u * has zero flux, i.e., since v * r has zero average, we have that v(1, θ) = v * r (θ)e r + v * θ (θ)e θ , for all θ ∈ (-π, π), where:

v * r (θ) = n∈Z inγ n (1)e inθ = n∈Z u * n e inθ = u * r (θ) , v * θ (1, θ) = - n∈Z ∂ r γ n (1)e inθ = u * θ (θ) -∂ r γ 0 (1) -µ * .
Therefore, if we set

ψ := ψ µ + γ, ω := w, u := ∇ ⊥ ψ = u µ + v, then the pair (ψ, ω) is a solution to ∆ψ = -ω , ∆ω = u • ∇ω , in R 2 \ B , (28) 
and the following boundary conditions are satisfied (recall that µ -∂ r γ 0 (1) = µ * by construction of γ):

u = u * , on ∂B , lim r→∞ |u(r, θ)| = 0 .
The inequality (27) implies that the boundary condition at infinity is satisfied in the following more precise sense:

lim r→∞ r u(r, θ) - µe θ r ; L ∞ ((-π, π)) = lim r→∞ r v(r, θ); L ∞ ((-π, π)) = 0 .
To complete the proof, we need to show how to obtain the Navier Stokes equations (1) from the relations between u, ψ and ω, together with (28). First, multiplying (28

) by ϕ ∈ C ∞ c (R 2 \ B) yields: - R 2 \B ∇w : ∇ϕ = R 2 \B [u • ∇w] ϕ .
We have the basic identities:

w = ∇ × u , u • ∇w = ∇ × [u • ∇u] , (29) 
from which we obtain, after integration by parts, that for any given

ϕ ∈ C ∞ c (R 2 \ B): - R 2 \B ∇u : ∇∇ ⊥ ϕ = R 2 \B [u • ∇u] • ∇ ⊥ ϕ . ( 30 
)
This identity yields the pressure p via De Rham's theory, modulo the difficulty, that not all the divergencefree velocity-fields w ∈ C ∞ c (R 2 \ B) of compact support can be written in the form

∇ ⊥ ϕ with ϕ ∈ C ∞ c (R 2 \ B).
More precisely, if a smooth velocity-field v satisfies ∇ × v = 0 in R 2 \ B, then v is the gradient of a function up to a contribution of the form Cx ⊥ /|x| 2 . We now show that this contribution vanishes in our case.

Let Φ 0 ∈ C ∞ (R) be such that supp(Φ ′ 0 ) ⊂⊂ (1, 2) and Φ 0 (0) = 0, Φ 0 (2) = 1, and let w 0 = ∇ ⊥ Φ 0 . In polar coordinates we have w 0 (r, θ) = -Φ ′ 0 (r)e θ , for all (r, θ) ∈ Ω. Given a divergence-free w ∈ C ∞ c (R 2 \B) we define w and ϕ by:

w = w -M w w 0 with ∞ 1 w θ (r, 0) dr = : M w , ϕ(r, θ) = r 0 w θ (s, θ) ds -M w Φ 0 (r) .
By definition of M w , we have that ϕ ∈ C ∞ c (R 2 \ B) and ∇ ⊥ ϕ = w, so that (30) implies:

-

R 2 \B ∇u : ∇ w = R 2 \B [u • ∇u] • w .
Replacing w by its definition yields that, for any divergence-free w ∈ C ∞ c (R 2 \ B), we have:

-

R 2 \B ∇u : ∇w = R 2 \B [u • ∇u] • w-M w R 2 \B ([u • ∇u] • w 0 + ∇u : ∇w 0 ) .
Let I 0 be the last integral in the previous equality. We then have:

I 0 = lim N →∞ B(R 2 ,N )\B ([u • ∇u] • w 0 + ∇u : ∇w 0 ) .
Integrating by parts, we obtain, for all N > 1:

B(R 2 ,N )\B ([u • ∇u] • w 0 + ∇u : ∇w 0 ) = ∂B(R 2 ,N ) [Φ 0 u • ∇u] • n ⊥ +Φ ′ 0 ∂ r u • n ⊥ dσ - B(R 2 ,N ) (Φ 0 u • ∇ω + ∇ω • ∇Φ 0 ) = ∂B(R 2 ,N ) Φ 0 (u • ∇u) • n ⊥ -∂ n ω +Φ ′ 0 ∂ r u • n ⊥ dσ ,
where, in order to get the last identity, we have again used that u • ∇ω = ∆ω, in R 2 \ B. Since u decays like 1/r, ∇u decays like 1/r 2 , and ∇ω like 1/r 3 . This yields that I 0 = 0 in the limit N → ∞. Finally, we have: -

R 2 \B ∇u : ∇w = R 2 \B [u • ∇u] • w ,
for any divergence-free vector-field w ∈ C ∞ c (R 2 \B), and De Rham's theory (see [START_REF] Temam | Navier-Stokes Equations[END_REF]Remark 1.5]) implies the existence of a pressure p such that (1) is satisfied.

Proof of Theorem 10

In this section κ > 0 and µ 0 > µ crit are fixed. First, we set µ -= (µ 0 + µ crit ) /2 and µ + = (2µ 0 + µ crit )/2 so that

I := [µ -, µ + ] satisfies µ 0 ∈ [µ -, µ + ] ⊂ (µ crit , ∞) .
We also set:

α := 1 4 min 1 √ 2 1 + |µ -| 2 + 1 1/2 -2, 1 . (31) 
We emphasize that, because µ 0 > µ crit , we have α ∈ (0, 1/4]. Let:

Φ µ : (U 2 α,κ+4 × U 2 α+2,κ+2 ) × (B 0 κ+4 × B 0 κ+2 ) -→ (U 2 α,κ+4 × U 2 α+2,κ+2 ) × (B 0 κ+3 × B 0 κ+3 ) x = (γ, ŵ) x * = (γ * , ŵ * ) -→ S µ (N L(x, x), x * ) - x Γ 1 [S µ (N L(x, x), x * )] (32) 
We will show in the next section that for µ ∈ I the map Φ µ is well defined. We split the proof of Theorem 10 into two steps. First, we show that we can construct a κ-solution for any sufficiently small boundary condition (û * , v * ) ∈ B 0 κ+3 × B 0 κ+3 and an interval of asymptotic angular velocities µ. In a second step, we analyze the dependence of this solution as a function of µ.

We have the following abstract result: Proposition 11 Let I be a compact interval and X, Y two Banach spaces. Assume that Φ : µ ∈ I → Φ µ satisfies:

• Φ ∈ C(I; C 1 (X; Y )),
• Φ µ (x) = 0 for all µ ∈ I,

• DΦ µ (0) is one-to-one and onto, and has a continuous inverse for all µ ∈ I.

Then, there exist positive constants η x and η y , such that

Φ µ is a C 1 -diffeomorphism from B X (0, η x ) onto Φ µ (B X (0, η x )) ⊃ B Y (0, η y ). Furthermore, the family of inverse maps Φ -1 : µ ∈ I → (Φ µ ) -1 satisfies Φ -1 ∈ C(I; C 1 (B Y (0, η y ); B X (0, η x ))) .
Proof. The proof is standard, but for the sake of completeness we recall the main ingredients. Given the hypothesis of Proposition 11, the map Φ µ satisfies the assumptions of the inverse function theorem for arbitrary µ ∈ I, so that there exits η x,µ > 0 and η y,µ > 0 such that Φ µ is a C 1 -diffeomorphism from B X (0, η x,µ ) onto Φ µ (B X (0, η x,µ )) ⊃ B Y (0, η µ,y ). Since Φ is continuous, it is clear that these constants can be chosen independently of µ, locally in µ. By a compactness argument, we can therefore find constants η x > 0 and η y > 0 such that Φ µ :

B X (0, η x ) → Φ µ (B X (0, η x )) ⊃ B Y (0, η y ) is a C 1 diffeomorphism for arbitrary µ ∈ I. We now show that Φ -1 ∈ C(I × B Y (0, η y )). The proof that Φ -1 ∈ C(I; C 1 (B Y (0, η y ); B X (0, η x ))) is then obtained by differentiating (with respect to x) the identity Φ -1 µ • Φ µ (x) =
x which holds true on B X (0, η x ). Given (µ, μ) ∈ I 2 and (y, ỹ) ∈ [B Y (0, η y )] 2 , we denote:

x = Φ -1 µ (y) , x = Φ -1 μ (ỹ)
.

By construction we have:

y -ỹ = Φ µ (x) -Φ μ(x), = DΦ µ (0)[x -x] + Φ µ (x) -Φ μ(x) + o(|x -x|) = DΦ µ (0)[x -x] + o(|µ -μ|) + o( x -x; X ) .
Consequently, reducing the size of η x and η y if necessary, we get that:

x -x ; X ≤ 2 [DΦ µ (0)] -1 ; L c (Y ; X) [ y -ỹ; Y + o(|µ -μ|)] ,
where L c (Y ; X) denotes the set of continuous linear map Y → X. This completes the proof.

We now show that we can apply Proposition 11 to the map Φ as defined in (32) To this end, we remark that Φ µ depends on µ only through µ → S µ , and that for all µ ∈ I the differential DΦ µ (0) is:

DΦ µ (0)[x, x * ] = (Γ 1 S µ (0, x * ), -x) , ∀ (x, x * ) ∈ (U 2 α,κ+4 × U 2 α+2,κ+2 ) × (B 0 κ+4 × B 0 κ+2 ) .
Let T µ (x * ) := Γ 1 S µ (0, x * ). Since Φ is a combination of linear and bilinear maps, it suffices to apply Lemma 8 and the following lemma in order to check that the assumptions of Proposition 11 are satisfied:

Lemma 12 Let α be given by (31), then the restriction of the map S : µ → S µ to I := [µ -, µ + ] satisfies:

i) S ∈ C(I; L c (B κ,2α+4 × (B 0 κ+4 × B 0 κ+2 ) ; U 2 α,κ+4 × U 2 α+2,κ+2 )),
ii) T µ is a one to one and onto map B 0 κ+4 × B 0 κ+2 → B 0 κ+3 × B 0 κ+3 with continuous inverse.

We postpone the proof of this technical lemma to the next section. We now apply Proposition 11 to Φ, but restrict the image to the component x. This yields the following result:

Theorem 13 There exists a map Ψ : µ → Ψ µ satisfying

Ψ ∈ C(I; C 1 (B B 0 κ+3 ×B 0 κ+3 (0, ε κ ) ; U 2 α,κ+4 × U 2 α+2,κ+2 )) , such that, for all v * ∈ B B 0 κ+3 ×B 0 κ+3 (0, ε κ ) and µ ∈ I, Ψ µ (v *
) is a κ-solution for the boundary condition v * with respect to the asymptotic angular velocity µ.

In a final step we show how to prescribe the zero mode of the solution Ψ µ (v * ) by using the dependence of the solution on µ. Let η = (µ 0µ crit )/4, and consider a boundary condition

v * ∈ B B 0 κ+3 ×B 0 κ+3 (0, ε κ ) .
Let ( ψµ , ŵµ ) := Ψ µ (v * ), for all µ ∈ I. Using that Ψ µ (0) = 0, and restricting the size of ε κ if necessary, we can assume that

|∂ r ψ µ,0 (1)| ≤ ψµ ; U 2 α,κ ≤ η , ∀ µ ∈ I .
Consequently, the map µ → µ -∂ r ψ µ,0 (0), which is continuous from

I to R, because µ → Ψ µ (0, v * ) is continuous, satisfies: µ --∂ r ψ µ-,0 (1) ≤ µ -+ η < µ 0 , µ + -∂ r ψ µ+,0 (0) ≥ µ + -η > µ 0 .
Hence the image of this map contains an open interval I κ,µ0 containing µ 0 . This completes the proof of Theorem 10.

Proof of main lemmas

This section contains the proof of the technical lemmas which have been used without proof in the previous sections. First we prove Lemma 8, which is standard. We then give proofs of Lemmas 7 and 12 which are more delicate.

Proof of Lemma 8. Let F = N L((γ a , ŵa ), (γ b , ŵb )), for (γ i , ŵi ) ∈ U 2 α,κ+4 × U 2 α+2,κ+2 , i = {a, b}. First, we note that for κ > 0 and n ∈ N, the following series converge:

l∈Z 1 (1 + |l|) κ+1 (1 + |n -l|) κ+3 , k∈Z 1 (1 + |k|) κ+3 (1 + |n -k|) κ+1 . (33) 
Consequently, we have for all (n, k, l) ∈ Z 3 :

|lw a l (r)∂ r γ b n-l (r)| ≤ 1 r 3+2α (w a n ) n∈Z ; B α+2,κ+2 (∂ r γ b n ) n∈Z ; B α+1,κ+3 (1 + |l|) κ+1 (1 + |n -l|) κ+3
, and

|kγ a k (r)∂ r w b n-k (r)| ≤ 1 r 3+2α (γ a n ) n∈Z ; B α,κ+4 (∂ r w b n ) n∈Z ; B α+3,κ+1 (1 + |k|) κ+3 (1 + |n -k|) κ+1
, and therefore the series defining F n is converging. We now bound the series (33). By symmetry, it is sufficient to consider only the first series and n ≥ 0. We split the sum into two parts:

S - n/2 = [n/2] l=-∞ 1 (1 + |l|) κ+1 (1 + |n -l|) κ+3 ≤ C κ 1 1 + |n| κ+3 l∈Z 1 (1 + |l|) κ+1 ≤ C κ 1 1 + |n| κ+3 , and 
S + n/2 = ∞ [n/2]+1 1 (1 + |l|) κ+1 (1 + |n -l|) κ+3 ≤ C κ 1 1 + |n| κ+1 l∈Z 1 (1 + |l|) κ+3 ≤ C κ 1 1 + |n| κ+1 .
This shows that F ∈ B 4+2α,κ+1 .

Proof of Lemma 7

From now on, we assume κ > 0. We recall that:

ζ n := n 2 + iµn 1 2 , ∀ n ∈ Z .
In what follows, we use without mention the following properties of ζ n :

|ζ n | = |n| 1 + µ n 2 1 4 , ∀ n ∈ Z \ {0} , and 
ξ n := Re(ζ n ) = |n| √ 2 1 + µ n 2 1 2 + 1 1 2 
,

Im(ζ n ) = n √ 2 1 + µ n 2 1 2 -1 1 2 , ∀ n ∈ Z \ {0} . (34) 
We note that ξ n is an increasing function of |n| so that its minimal value (over n ∈ Z \ {0}) is reached for n = ±1 and is equal to:

ρ µ := 1 √ 2 1 + µ 2 1 2 + 1 1 2 .
Let α µ := 1 2 min(ρ µ -2, 1) .

For µ > µ crit we have ρ µ > 2, so that α µ > 0. We choose α ∈ (0, α µ ) from now on. This is the smallness condition that is mentioned in Lemma 7.

With the above conventions, we first analyze the equations which determine ŵ:

Proposition 14 Given F ∈ B 2α+4,κ and ŵ * ∈ B 0 κ+2 , the equations:

w n (r) = w n r ζn + ∞ r sF n (s) 2ζ n r s ζn ds + r 1 sF n (s) 2ζ n s r ζn ds , (35) 
w 0 (r) = - ∞ r 1 s ∞ s t F 0 (t) dt ds , (36) 
with:

w n = w * n - ∞ 1 sF n (s) 2ζ n 1 s ζn ds ,
define C 2 functions. Moreover, we have ŵ ∈ U 2 α+2,κ+2 , and there exists a constant C α,µ < ∞, depending only on α and µ, such that

(w n ) n∈Z ; U 2 α+2,κ+2 ≤ C α,µ (F n ) n∈Z ; B 4+2α,κ+2 + (w * n ) n∈Z ; B 0 κ+2 . (37) 
Proof. We only prove (37); existence and continuity follow in a straightforward way. We first treat the case n = 0 and then the case n = 0. Throughout the proof, we use the shorthand M F for (F n ) n∈Z ; B 4+2α,κ .

Case n = 0. We split the expression defining w n according to (35):

w n (r) = w n r ζn + I n 1 (r) + I n ∞ (r) .
By definition of the norm on the space B 4+2α,κ , we have: 

|F n (s)| ≤ M F (1 + |n|) κ s 4+2α , ∀ s ≥ 1 . Using that ξ n ≥ ρ µ > α + 2,
|I n 1 (r)| = r 1 sF n (s) 2ζ n s r ζn ds ≤ M F (1 + |n|) κ |ζ n | 1 r ξn r 1 s 1+ξn-(4+2α) ds ≤ C α,µ M F (1 + |n|) κ+2 1 + r ξn-(2α+2) r ξn , (38) 
for all r ≥ 1. Here we used that, by our smallness condition on α, we have ξ n -(2α + 2) > -1. We also have:

|I n ∞ (r)| = ∞ r sF n (s) 2ζ n r s ζn ds ≤ M F (1 + |n|) κ |ζ n | r ξn ∞ r s 1-ξn-(2α+4) ds ≤ C α,µ M F (1 + |n|) κ+2 1 r 2α+2 , (39) 
for all r ≥ 1. Using these bounds for r = 1, we obtain:

|w n | ≤ |w * n | + C α,µ M F (1 + |n|) κ+2 . (40) 
Plugging (38), (39) and (40) into (35) and recalling that ξ n > α + 2 yields:

|w n (r)| ≤ C α,µ M F + ŵ * ; B 0 κ+2 (1 + |n|) κ+2 1 r α+2 , ∀ r ≥ 1 .
Differentiating (35) with respect to r, we obtain:

∂ r w n (r) = - ζ n w n r ζn+1 + ζ n r I n 1 (r) - ζ n r I n ∞ (r) , ∀ r ≥ 1 .
To summarize, when we differentiate w n with respect to r, the decay in r increases by one power, and the decay in n decreases by one power. This observation allows us to bound ∂ r w n in the indicated function spaces. Finally, since the expression defining ŵ define a solution of ( 16), we plug the bounds on w n and ∂ r w n into this equation and get a bound for ∂ rr w n (r). We obtain that there exists a constant C α,µ , depending only on α and µ, such that

r 2 |∂ rr w n (r)| (1 + |n|) 2 + r|∂ r w n (r)| (1 + |n|) + |w n (r)| ≤ C α,µ M F + ŵ * ; B 0 κ+2 (1 + |n|) κ+2 1 r α+2 , ∀ r ≥ 1 .
We emphasize here that the constant C α,µ depends on α and µ. Nevertheless, it is clear from the computations above that, when α is fixed and µ varies in a a compact interval I ⊂ R, this constant remains uniformly bounded.

Case n = 0. Proceeding as in the case n = 0, we get the bound:

|w 0 (r)| ≤ M F ∞ r 1 s ∞ s 1 t 4+2α dt ds ≤ C α M F r 2+α , ∀ r ≥ 1 .
Similarly, one shows

|∂ r w 0 (r)| ≤ M F r ∞ r 1 s 4+2α ds ≤ C α M F r 3+α , ∀ r ≥ 1 ,
and we again conclude, by recalling the differential equation satisfied by w 0 (see [START_REF] Leray | Etude de diverses équations intégrales non linéaires et de quelques problèmes de l'hydrodynamique[END_REF] for n = 0), that:

r 2 |∂ rr w 0 (r)| + r|∂ r w 0 (r)| + |w 0 (r)| ≤ C α M F + ŵ * ; B 0 κ+2 r 2+α , ∀ r ≥ 1 .
This completes the proof.

We next consider the equation satisfied by γ:

Proposition 15 Given φ ∈ B α+2,κ+2 and γ * ∈ B 0 κ+4 , the equations:

γ n (r) = γ n r |n| - ∞ r sφ n (s) 2|n| r s |n| ds - r 1 sφ n (s) 2|n| s r |n| ds , (41) 
γ 0 (r) = ∞ r 1 s ∞ s t φ 0 (t) dt ds , (42) 
with

γ n = γ * n + ∞ 1 sφ n (s) 2|n| 1 s |n| ds ,
define C 2 functions. Moreover, γ ∈ U 2 α,κ+4 and there exists a constant C α < ∞, depending only on α, such that

(γ n ) n∈Z ; U 2 α,κ+4 ≤ C α (φ n ) n∈Z ; B α+2,κ+2 + (γ * n ) n∈Z ; B 0 κ+4 . ( 43 
)
The proof is identical to the proof of Proposition 14 and is left to the reader. Lemma 7 is a straightforward consequence of Proposition 15 and Proposition 14.

Proof of Lemma 12, first item

Let I = [µ -, µ + ] ⊂ (µ crit , ∞) and α be given by (31). In particular, we have α < min{α µ , µ ∈ I} so that, applying the results of the preceding section, it follows that S µ :

B 4+2α,κ × (B 0 κ+4 × B 0 κ+2 ) -→ U 2 α,κ+4 × U 2 α+2 
,κ+2 is a well-defined continuous linear map, for all values of µ ∈ I. We now show that the map S : µ → S µ is also continuous. This amounts to show that, for arbitrary µ 0 ∈ I and µ ∈ I, there exists a constant C µ which converges to zero as µ converges to µ 0 , such that, for arbitrary

( F, x * ) ∈ B 4+2α,κ × (B 0 κ+4 × B 0 κ+2 ): S µ0 ( F, x * ) -S µ ( F, x * ) ; U 2 α,κ+4 × U 2 α+2,κ+2 ≤ C µ ( F, x * ) ; B 4+2α,κ × (B 0 κ+4 × B 0 κ+2 ) . Given µ ∈ I, we let (γ[µ], ŵ[µ]) := S µ ( F, x * ). Since γ[µ] is obtained from ŵ[µ]
via an equation which does not depend on µ, we can apply directly Proposition 14, yielding that, for arbitrary (µ, μ) ∈ I 2 :

γ[µ] -γ[μ] ; U 2 α,κ+4 ≤ C α ŵ[µ] -ŵ[μ] ; U 2 α+2,κ+2 . 
Hence, it suffices to prove that ŵ[µ] is continuous with respect to µ, in order to obtain the continuity of S.

To show the continuity of ŵ[µ], we first remark that w 0 [µ] does not depend µ, so that we only detail the case n = 0. Let n = 0, we split w n [µ] into three terms:

w n [µ](r) = W n b [µ](r) + I n 1 [µ](r) + I n ∞ [µ](r) ,
where:

W n b [µ](r) = wn [µ] r ζn[µ] , I n 1 [µ](r) = r 1 sF n (s) 2ζ n [µ] s r ζn[µ] ds , I n ∞ [µ](r) = ∞ r sF n (s) 2ζ n [µ] r s ζn[µ]
ds .

We recall that

∂ r w n [µ](r) = - ζ n [µ] r W n b [µ](r) - ζ n [µ] r I n 1 [µ](r) + ζ n [µ] r I n ∞ [µ](r) , (44) 
∂ rr w n [µ](r) = F n (r) - ∂ r w n [µ](r) r + (n 2 + iµn) r 2 w n [µ](r) . (45) 
Note also that ζ n [µ] = (n 2 + iµn) 1/2 is a continuous function of µ uniformly in n. Indeed, since the square root is analytic in a neighborhood of 1, we have for sufficiently large n (uniformly in µ ∈ I):

|ζ n [µ] -ζ n [μ]| = |n| 1 + iµ n 1 2 -1 + iμ n 1 2
≤ C|µ -μ| .

We also have the bound |ζ n [µ]| ≤ c|n|, with c independent of µ ∈ I. Introducing these bounds into (44)-(45) shows that the continuity of ŵ[µ] follows from the continuity of ( Ŵb

[µ], Î1 [µ], Î∞ [µ]) in B α+2,κ+2 .
For consistency, the three sequences, which are only defined for n = 0, are completed by 0 for n = 0.

To begin with, we consider the continuity of µ → Î1 [µ]. Let (µ, μ) ∈ I 2 , and assume that

|ζ n [µ] - ζ n [μ]| < α/2,
uniformly in n. We have:

I n 1 [µ] -I n 1 [μ] = J 1 (r) + J 2 (r) ,
where:

J 1 (r) = r 1 sF n (s) 2ζ n [µ] ζ n [μ] -ζ n [µ] ζ n [μ] s r ζn[µ] ds , J 2 (r) = r 1 sF n (s) 2ζ n [μ] 1 - s r ζn[µ]-ζn[μ] s r ζn[μ]
ds .

We have, uniformly in n:

ζ n [μ] -ζ n [µ] ζ n [μ] ≤ c|ζ n [µ] -ζ n [μ]| = o(1) , 1 - s r ζn[µ]-ζn[μ] ≤ c |ζ n [µ] -ζ n [μ]| ln(r)r |ζn[µ]-ζn[μ]| = o(1) ln(r)r α/2 .
We introduce these uniform bounds in J 1 and J 2 and redo the computations in the proof of Proposition 14 (see (38)). We get: where the term o(1) denotes a constant converging to 0 when µμ → 0, uniformly in n . Finally, we have that, for all n ∈ Z \ {0}:

|I n 1 [µ] -I n 1 [μ]| ≤ F ; B 4+2α (1 + |n| κ+2 ) o(1) r 2+α , (46) 
We now prove the continuity of µ → Î∞ [µ]. For any (µ, μ) ∈ I and n = 0, we perform a similar splitting:

I n ∞ [µ] -I n ∞ [μ] = J 1 (r) + J 2 (r) , where: ds .

J 1 (r) = ∞ r sF n (s) 2ζ n [µ] ζ n [μ] -ζ n [µ] ζ n [μ]
As in the preceding bound we have, uniformly in n: This completes the proof of the first item in Lemma 12.

ζ n [μ] -ζ n [µ] ζ n [μ] ≤ c|ζ n [µ] -ζ n [μ]| = o(1) , 1 

Proof of Lemma 12, second item

In this paragraph, we prove that the map T 1 is one-to-one and onto with a continuous inverse. Given x * = (γ * , ŵ * ) ∈ B 0 κ+4 × B 0 κ+2 , we set (γ, ŵ) = S µ (0, x * ). A straightforward computation shows: This shows that the map T 1 is one-to-one and onto. Indeed, the inverse map is given by:

T -1 1 [v ′ r , v′ θ )] = (γ ′ , ŵ′ ) ,
where: ). This completes the proof.

• γ ′ 0 = w ′ 0 = 0, • γ ′ n = v ′

|J 1 (( 1 +( 1 +

 111 r)| ≤ F ; B 4+2α |n| κ+2 ) o(1) r 2+2α , |J 2 (r)| ≤ F ; B 4+2α |n| κ+2 ) o(1) ln(r) r 2+3α/2 ,

2 ,( 1 +2+α 1 r α 1 rr α 1 r

 2111 where we have used that |ζ n [µ]ζ n [μ]| ≤ α/2. We can therefore redo the computations in the proof of Proposition 14 (see (39)). This yields, for all n ∈ Z \ {0}:|J 1 (r)| + |J 2 (r)| ≤ F ; B 4+2α,κ |n| κ+2 ) o(1) r 2+α .As in the preceding estimate we conclude that:Î∞ [µ] -Î∞ [μ]; B α-+2,κ+2 = o(1) F ; B 4+2α,κ .Finally, we prove the continuity of µ → Ŵb [µ]:|W n b [µ](r) -W n b [μ](r)| = wn [µ]wn [μ] r ζn[µ] + wn [μ] r ζn[µ-] 1 r ζn[µ]-ζn[µ-] -1 r ζn[μ]-ζn[µ-] , ≤ wn [µ]wn [μ] r ζn[µ] + wn [μ] r ζn[µ-] 1 r ζn[µ]-ζn[µ-] -1 r ζn[μ]-ζn[µ-] , ≤ | wn [µ]wn [μ]| r 2+2α + | wn [μ]| r ζn[µ]-ζn[µ-] -1 r ζn[μ]-ζn[µ-],where we have used that Re(ζ n [µ]) ≥ Re(ζ n [µ -]) > 2 + 2α.At this point we note that the bound which we obtained above for I n ∞ in r = 1 yields:| wn [µ]wn [μ]| = o(1) (1 + |n|) κ+2 F ; B 4+2α,κ . As µ → ζ n [µ] is continuous in µ (uniformly in n) and satisfies Re(ζ n [µ]) ≥ Re(ζ n [µ -]), for all µ ∈ I, we also have:1 ζn[µ]-ζn[µ-] -1 r ζn[μ]-ζn[µ-] ; L ∞ (1, ∞) = o(1) ,where o(1) is uniform in n. By combination, this yields, for all n ∈ Z \ {0}: |W n b [µ](r) -W n b [μ](r)| ≤ o(1) (1 + |n| κ+2 )r 2+α F ; B 4+2α,κ + ŵ * ; B 0 κ+2 .

2 -

 2 have, for all n ∈ Z \ {0}:γ n (1) = γ *n , together with:∂ r γ n (1) = -|n|γ * n + |n|ζ n , so that (v * r , v * θ ) = T 1 (x * ) satisfies: • v * r,0 = v * θ,0 = 0, • v * r,n = inγ * n , and v * θ,n = -∂ r γ n (1) = |n|γ * n + w * n 2 -|n|ζ n, for all n ∈ Z \ {0}.

1 ∈

 1 w ′ n = (2 -|n|ζ n ) v ′ θ,n -|n|v ′ r,n in for all n ∈ Z \ {0}. It is therefore clear that T -1 L c (B 0 κ+3 × B 0 κ+3 ; B 0 κ+4 × B 0 κ+2

  and that c|n| ≤ |ζ n | ≤ C(1 + |µ|)|n| and |n| ≤ ξ n ≤ (1 + |µ|)|n| for large values of |n|, we get that: