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Abstract

We consider the stationary incompressible Navier Stokes equation in the exterior of a disk B ⊂ R
2

with non-zero Dirichlet boundary conditions on the disk and zero boundary conditions at infinity.

We prove the existence of solutions for an open set of boundary conditions without symmetry.
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1 Introduction

In this paper we consider the incompressible Navier Stokes equations in an exterior domain:

{
∆u−∇p = u · ∇u ,

divu = 0 ,
in R

2 \B , (1)

with B a smooth bounded domain, with non-zero Dirichlet boundary conditions on ∂B, and zero boundary
conditions at infinity:

u|∂B
= u∗ , lim

|x|→∞
u(x) = 0 . (2)

Of particular interest is the case of boundary data u∗ with zero flux:

∫

∂B

u∗ · n dσ = 0 . (3)

∗Work supported in part by the Swiss National Science Foundation.
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We note that, since the size of B is arbitrary, we have set without restriction of generality all the physical
constants in (1) equal to one.

The above system is a special case of the exterior Navier Stokes problem:

{
− (u · ∇)u− λ∂1u+∆u−∇p = 0 ,

∇ · u = 0 ,
in R

n \B , (4)

with n = 2 or 3, with B a smooth bounded domain in Rn, with boundary conditions (2), and with
λ ∈ {0, 1} distinguishing between the case of a flow “around” B (λ = 0) and a flow “past” B (λ = 1),
respectively. The system (1)-(3) corresponds to n = 2 and λ = 0. The case λ = 0 is in many respects
more complicated than the case λ = 1, and, whereas the picture is rather complete for n = 3, the case
n = 2, λ = 0, presents particular difficulties. The difficulty with the classical method for solving the
Navier Stokes equations consists in the fact that the linearization around u = 0 is given by the Stokes
system, which, for n = 2, does not admit a solution satisfying (2), unless the domain B and the boundary
data u∗ satisfy certain symmetry conditions. This fact is known as the Stokes paradox. For completeness
we note that if one relaxes the no flux condition (3), there exists a two parameter family of solutions to
(1)-(3), the so called Hamel solutions, see [7]. These examples emphasize that the decay of solutions can
be arbitrary slow and that uniqueness might be lost for some boundary data. However, these solutions
have flux larger than one, and are far from the regime which we will consider here.

In what follows we construct a new class of solutions to (1)-(3), by linearizing not around u = 0, but

around u = µx⊥/ |x|2, with |µ| >
√
48. This improves the decay of the solutions to the vorticity equation,

yielding vorticities decaying at infinity generically faster than |x|−2
, instead of like |x|−1

as would be the
case for the Stokes equation, thus avoiding the Stokes paradox when reconstructing u via the Bio-Savart
law.

To put our problem into a wider context, we briefly recall the concept of weak solutions for (4), (2)
(also known as generalized solutions or D–solutions), and the method of J. Leray [16] for proving the
existence of such weak solutions.

Definition 1 Given u∗ ∈ H1/2(∂B) satisfying (3), a function u which satisfies the following conditions
is called a weak solution to (4), (2):

1. u ∈ D1,2(Rn\B), where D1,2(Rn\B) is the subset of L1
loc(R

2\B) containing functions with gradient
in L2(Rn \B),

2. u is divergence-free and u = u∗ on ∂B,

3. for all divergence-free vector fields w ∈ C∞
c (Rn \B), there holds:

∫

Rn\B

∇u : ∇w +

∫

Rn\B

((u · ∇)u+ λ∂1u) ·w = 0 .

The method of J. Leray to prove the existence of solutions according to this definition, and a posteriori
to (4), (2), in the sense of distributions, consists in the following steps:

• First, one introduces a sequence of approximate problems by restricting (4) to bounded subsets
Ω ⊂ Rn containing B, with zero Dirichlet boundary conditions on ∂Ω \ ∂B.

• Second, one proves the existence of (weak) solutions to all these approximate problems.

• Third, one shows that for any sequence of bounded subsets exhausting Rn \ B, there exists a
subsequence, such that the corresponding approximate solutions converge to a weak solution of (4),
(2).

• Finally, given a weak solution u, a pressure p an be constructed via De Rham’s theory, such that
the equations (4) are satisfied in D′(Rn \B).
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See also [12, 13, 20, 23, 24], where this method has been adapted to a similar system with more general
boundary conditions. Note that if B has a smooth boundary, the ellipticity of the Stokes operator (see
[5, Section IX.1]) and the smoothness of u∗ imply that weak solutions are smooth. Therefore, for smooth
data, the only possible shortcoming of weak solutions is that they may not satisfy the boundary condition
at infinity in a point-wise sense. Much work has been devoted to clarify the situation in various cases
(see [7] for more details):

For n = 3, the condition u ∈ D1,2(R3 \ B) implies that weak solutions tend to zero at infinity. The
exact decay can be obtained by various methods yielding the following results:

• for λ = 1, there exists a solution that decays like the fundamental solution of the Oseen equation
(the linear system obtained from (4) by deleting the nonlinear convective terms) [2, 3, 4]. This
result can be obtain by a detailed analysis of the Oseen equation with a source term in the usual
Sobolev spaces [2, 4], and also in weighted Sobolev spaces [3].

• for λ = 0 and sufficiently small boundary data, there exists a unique weak solution, and this
solution decays like a Landau solution [15], a special solution of the nonlinear system which decays
like 1/|x|. This result can been obtained by constructing first a strong solution to (2), (4), which
is asymptotic to the Landau solution, by perturbative techniques. Using the known decay of this
particular solution as an input [7, Section IX.9], one then proves a weak-strong uniqueness result
for small data.

For n = 2, the situation is more delicate since the condition u ∈ D1,2(R2 \B) does not guarantee that
the boundary condition at infinity is satisfied:

• For λ = 1, the relevant linear system is again the Oseen equation, but the results concerning the
decay are limited to small data, since, as for the case n = 3, λ = 0, perturbative techniques are
used to prove the existence of a strong solution decaying at infinity like the fundamental solution
of the Oseen equation. This solution is then again used as an input to a weak strong uniqueness
argument in order to show the decay of weak solutions. These results can be found in [6].

• The case λ = 0 remains largely open. As we already pointed out, the problem is that the solution
to the Stokes equation with boundary data u∗ 6= 0 diverges at infinity, unless one makes additional
assumptions on the domain B and the data u∗. Partial results for the Navier Stokes system with
symmetric data can be found in [8, 18, 19, 17] .

From now on we limit the discussion to the case where B is a disk of radius one. We choose x = (x, y)
Cartesian coordinates with the origin at the center of B, (r, θ) ∈ Ω := (0,∞) × (−π, π) the associated
polar coordinates, and (er, eθ) the corresponding local orthonormal basis. For the function u we have in
polar coordinates:

u(r, θ) = ur(r, θ)er + uθ(r, θ)eθ, ∀ (r, θ) ∈ Ω . (5)

The following theorem is our main result:

Theorem 2 Let µ0 > µcrit ≡
√
48 and u∗ ∈ C∞(∂B) satisfying (3) be sufficiently close to u∗

µ0
:=µ0eθ.

Then, the equations (1), (2), with boundary condition u∗, have at least one solution (u, p) ∈ C∞(R2 \
B)2 × C∞(R2 \B). Moreover, there exist µ close to µ0 such that:

lim
r→∞

r
∥∥∥u(r, θ)− µeθ

r
;L∞(−π, π)

∥∥∥ = 0 . (6)

Remark 3 If the pair (u(x, y), v(x, y)) is a solution for the boundary condition (u∗(x, y), v∗(x, y)), then
the pair (u(x,−y),−v(x,−y)) is a solution for the boundary condition (u∗(x,−y),−v∗(x,−y)). Thus,
our result extends to µ0 < −µcrit.

Remark 4 If u(r, θ) is a solution for the boundary condition u∗on the complement of the unit disk, then
for all λ > 0, λu(λr, θ) is a solution for the boundary condition λu∗ on the complement of the disk of
radius λ−1.
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Remark 5 The restriction to the case where B is a disk is for the sake of simplicity only. This permits
to rewrite the system in polar coordinates, yielding explicit expressions for the solutions. We expect that
with more work the results can be generalized to arbitrary smooth B.

To prove Theorem 2 we proceed as follows: We fix µ > µcrit and consider the pair (uµ, pµ):

uµ(r, θ) =
µeθ
r

, pµ(r, θ) = −1

2

µ2

r2
, ∀ (r, θ) ∈ Ω , (7)

which is an exact solution to (1), (2). Next we set, (u, p) = (uµ + v, p = pµ+ q) and prove, that for all
sufficiently small boundary conditions v∗ satisfying

∫

∂B

v∗ · n dσ = 0 , (8)

there existence of a solution (v, q) ∈ C∞(R2 \ B)2 × C∞(R2 \ B) such that v|∂B = v∗ + µ∗, for some
µ∗ > µcrit depending on µ and v∗. In a final step, we show that this function can be inverted, giving µ
as a function of µ∗ and v∗, thus yielding Theorem 2.

The feasibility of our approach relies on the fact that the system obtained by linearizing (1), (2) around
the explicit solution (uµ, pµ) can be analyzed explicitly. As mentioned above, when compared with the
case µ = 0, i.e., the Stokes equation, the vorticity decays for µ > µcrit faster than 1/r2, instead of like
1/r, such that u can be shown to decay faster than 1/r at infinity, making the nonlinearity subcritical.
Introducing suitable function spaces, we are then able to solve the full non-linear system by a classical
fixed-point argument.

2 Dynamical system formulation

Let (u, p) ∈ C∞(R2 \ B) be a solution to (1), (2), satisfying (3). We first make the construction of
the stream-function ψ associated with u precise. Since u ∈ C∞(R2 \ B), we have in particular that
u∗ ∈ C∞(∂B). Let uint ∈ C∞(B) satisfy uint = u∗ on ∂B. Such a function exists since u∗ satisfies (3).
For instance, uint can be the solution to the Stokes equations on B, with boundary condition u∗ on ∂B.
Then, setting:

ū(x, y) =

{
u in R2 \B ,
uint in B ,

we obtain a continuous divergence-free vector-field on the whole of R2. Furthermore, this function is
smooth on both sides of ∂B so that there exists ψ ∈ C1(R2)∩C∞(B)∩C∞(R2 \B) satisfying u = ∇⊥ψ.

Instead of (1), (2), we consider now the equation for the stream function ψ and the vorticity ω = ∇×u,

{
∆ψ = −ω
∆ω = u · ∇ω in R

2 \B .

For the function u we have in polar coordinates (5), and the vorticity becomes:

ω =
1

r
∂r(ruθ)−

1

r
∂θur, ∀ (r, θ) ∈ Ω .

For the boundary data we have:

u∗(θ) = u∗r(θ)er + u∗θ(θ)eθ , ∀ θ ∈ (−π, π) .

In polar coordinates we get the following equations for the stream function ψ and the vorticity ω:





∂rrψ +
1

r
∂rψ +

1

r2
∂θθψ = −ω ,

∂rrω +
1

r
∂rω +

1

r2
∂θθω = ur∂rω +

uθ
r
∂θω ,

∀ (r, θ) ∈ Ω , (9)
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and 



ur =
∂θψ

r
,

uθ = −∂rψ ,
∀ (r, θ) ∈ Ω , (10)

together with the boundary conditions:
{

ur(1, θ) = u∗r(θ) , limr→∞ ur(r, θ) = 0 ,

uθ(1, θ) = u∗θ(θ) , limr→∞ uθ(r, θ) = 0 ,
∀ θ ∈ (−π, π) . (11)

For the exact solution (uµ, pµ) given by (7) we have in polar coordinates for the corresponding stream-
function-vorticity pair (ψµ, ωµ), for all µ ∈ R:

{
ψµ(r, θ) = −µ ln(r) ,
ωµ(r, θ) = 0 ,

∀ (r, θ) ∈ Ω .

In order to prove Theorem 2 we construct, as explained above, a solution which is a perturbation of the
explicit solutions (uµ, pµ). We therefore set ψ = ψµ + γ and ω = ωµ + w. Substituting this Ansatz into
(9), (10), we obtain the following equivalent system for the unknowns (γ, w):





∂rrγ + 1
r∂rγ +

1

r2
∂θθγ = −w ,

∂rrw + 1
r∂rw +

1

r2
∂θθw − µ

r2
∂θw =

∂θγ

r
∂rw − ∂rγ

r
∂θw ,

∀ (r, θ) ∈ Ω , (12)

with the boundary conditions:





∂θγ(1, θ) = v∗r (θ) ,

∂rγ(1, θ) = −v∗θ(θ) ,
limr→∞ (|γ(r, θ)|+ |∂rγ(r, θ)|) = 0 ,

∀ θ ∈ (−π, π) , (13)

for certain (v∗r (θ), v
∗
θ (θ)) to be defined later on, satisfying:

∫

∂B

v∗r dσ = 0 , (14)

and which are small in a sense to be made precise.
Following the method developed in [14], we solve (12), (13), for data (v∗r , v

∗
θ ), by interpreting the

radial coordinate r as a time and by expanding in a Fourier series:

γ(r, θ) =
∑

n∈Z

γn(r)e
inθ , w(r, θ) =

∑

n∈Z

wn(r)e
inθ .

Notation. To unburden the notation we write for the Fourier series of γ and w:

γ̂ = (γn)n∈Z , ŵ = (wn)n∈Z , (15)

and analogously for all other functions.

From (12), (13) we obtain, for n ∈ Z, the following system of ordinary differential equations:






∂rrγn +
1

r
∂rγn − n2

r2
γn = −wn ,

∂rrwn +
1

r
∂rwn − iµn+ n2

r2
wn = Fn ,

on (1,∞) , (16)

with the source term Fn given by:

Fn = − i

r

∑

k+l=n

(k wk ∂rγl − l γl ∂rwk) , (17)
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and with the boundary conditions:





inγn(1) = v∗r,n ,

−∂rγn(1) = v∗θ,n ,

limr→∞ (|γn(r)| + |∂rγn(r)|) = 0 ,

∀n ∈ Z \ {0} . (18)

Note that v∗r,0 = 0 by assumption (14) and that the value of γ0(1) is irrelevant, i.e., the stream function
is only unique up to an additive constant. As we show later in this section, the value v∗θ,0 cannot be
chosen freely if one wants the solution γ0 to satisfy the boundary condition at infinity.

For convenience, we first solve (16) with boundary conditions:





γn(1) = γ∗n ,

wn(1) = ω∗
n ,

limr→∞ (|γn(r)| + |wn(r)|) = 0 ,

∀n ∈ Z \ {0} , (19)

instead of (19). Once the solution is constructed we then re-express the solution in terms of the original
boundary conditions.

Assuming that the functions Fn are continuous and decay sufficiently rapidly at infinity, there exits
exactly one solution to (16) satisfying (19). Since the Green’s function of equations (16) are r 7→ r±|n|

and r 7→ r±ζn , respectively, where ζn =
√
n2 + iµn, with Re(√z) > 0 for z ∈ C \ (−∞, 0], the solutions

are given by the following explicit expressions:






γn(r) =
γn
r|n|

+

∫ ∞

r

swn(s)

2|n|
(r
s

)|n|
ds+

∫ r

1

swn(s)

2|n|
(s
r

)|n|
ds ,

wn(r) =
wn

rζn
−
∫ ∞

r

sFn(s)

2ζn

(r
s

)ζn
ds−

∫ r

1

sFn(s)

2ζn

(s
r

)ζn
ds ,

for n ∈ Z \ {0} . (20)

with: 



γn = γ∗n −
∫ ∞

1

swn(s)

2|n|

(
1

s

)|n|

ds ,

wn = w∗
n +

∫ ∞

1

sFn(s)

2ζn

(
1

s

)ζn

ds ,

for n ∈ Z \ {0} . (21)

For n = 0, there still exist solutions to (16) decaying at infinity, but these solutions exist only for exactly
one boundary condition. The reason is that for n = 0 the Green’s functions for the equations in (16) are
r 7→ 1 and r 7→ ln r, which do not decay at infinity. The solutions decaying at infinity are:






γ0(r) =

∫ ∞

r

1

s

∫ ∞

s

t w0(t) dt ds ,

w0(r) = −
∫ ∞

r

1

s

∫ ∞

s

t F0(t) dt ds .

(22)

We recall that the value of γ0(1) is irrelevant. The value of w0(1) fixes the value of ∂rγ0(1) = −v∗θ,0 as a
function of µ. Once the solution is constructed, we will show that µ 7→ µ−∂rγ0(1) =: µ∗ can be inverted,
which then shows the existence of a solution for an open set of boundary conditions.

3 Functional framework and main result

We now introduce the function spaces which we use to solve the system (18)–(22). We use the notation
introduced in (15):
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Definition 6 Given κ > 0, α > 0 and m ∈ N, such that m < κ, we set:

Bκ := {ϕ̂∗ ∈ CZ such that supn∈Z(1 + |n|)κ|ϕ∗
n| <∞} ,

B0
κ := {ϕ̂∗ ∈ Bκ such that ϕ∗

0 = 0} ,

and

Bα,κ := {ϕ̂ ∈ (C([1,∞);C))Z, such that supn∈Z supr∈[1,∞)r
α(1 + |n|)κ|ϕn(r)| <∞} ,

Um
α,κ := {ϕ̂ ∈ (Cm([1,∞);C))Z, such that (∂lrϕn)n∈Z ∈ Bα+l,κ−l, for all 0 ≤ l ≤ m} .

These function spaces are reminiscent of weighted Sobolev spaces, and permit to obtain sharp estimates
on the decay of solutions to (20)–(22). The spaces with one lower index (mainly B0

κ) are used for the
boundary data, whereas the spaces with two lower indices (mainly Um

α,κ) will be used for solving (20)–(22).

The spaces introduced in Definition 6 satisfy the following straightforward properties. Given α > 0,
κ > 0, and m ∈ N, such that m < κ, we have:

1. The spaces Bκ, Bα,κ, Um
α,κ are Banach spaces when equipped with their respective norms:

‖ŵ ; Bκ‖ = sup
n∈N

(1 + |n|)κ|wn|, ‖ϕ̂ ; Bα,κ‖ = sup
n∈Z

sup
r∈[1,∞)

rα(1 + |n|)κ|ϕn(r)| ,

‖ϕ̂ ; Um
α,κ‖ =

m∑

l=0

‖(∂lrϕn)n∈Z ; Bα+l,κ−l‖ .

2. Given α ≥ α′ and κ ≥ κ′ we have the embedding Bα,κ ⊂ Bα′,κ′ together with the bound:

‖ϕ̂ ;Bα′,κ′‖ ≤ ‖ϕ̂ ;Bα,κ‖ , ∀ ϕ̂ ∈ Bα,κ . (23)

3. The space B0
κ is a closed subspace of Bκ, and thus also a Banach space.

We now formulate the problem of finding a solution to (18)–(22) in such a way that we can apply the
inverse map theorem on our function spaces:

Lemma 7 Given µ > µcrit, let α > 0 be sufficiently small and κ > 0. Then, the map Sµ : B4+2α,κ ×
B0
κ+4 × B0

κ+2 → U2
α,κ+4 × U2

α+2,κ+2, which associates to the triple (F̂, γ̂∗, ŵ∗) the pair (γ̂, ŵ) by virtue of
equations (20), (22), together with (19), (21), is linear and continuous.

The notion of α small enough will be made precise in the last section.

Lemma 8 Let α > 0 and κ > 0. Then, the map NL :
(
U2
α,κ+4 × U2

α+2,κ+2

)2 → B4+2α,κ+1, defined by

NL[(γ̂a, ŵa), (γ̂b, ŵb)] =

(
r 7→ − i

r

∑

k+l=n

(
k wa

k(r) ∂rγ
b
l (r)− l γal (r) ∂rw

b
k(r)

)
)

n∈Z

,

is bilinear and continuous.

The proofs of these lemmas are postponed to Section 5. We also introduce the trace operator Γ1:

Γ1 : U2
α1,κ1

× U2
α2,κ2

→ B0
κ1−1 × B0

κ1−1 ,
(γ̂, ŵ) 7−→ ((inγn(1))n∈Z, ((δn,0 − 1)∂rγn(1))n∈Z) ,

where δn,m is the Kronecker symbol. This map is linear and continuous for arbitrary (αi, κi) ∈ (0,∞)2,
(i = 1, 2).
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To compute solutions to (18)–(22), we introduce a map Φµ, which allows to solve the differential
equations and constrain the trace on r = 1 in one step. Namely, given µ > µcrit, α sufficiently small and
κ > 0, we set:

Φµ : (U2
α,κ+4 × U2

α+2,κ+2)× (B0
κ+4 × B0

κ+2) −→ (U2
α,κ+4 × U2

α+2,κ+2)× (B0
κ+3 × B0

κ+3)

(
x̂ = (γ̂, ŵ)

x̂∗ = (γ̂∗, ŵ∗)

)
7−→

(
Sµ(NL(x̂, x̂), x̂∗)− x̂

Γ1[Sµ(NL(x̂, x̂), x̂∗)]

)
(24)

By definition, if (x̂ = (γ̂, ŵ), x̂∗ = (γ̂∗, ŵ∗)) is a solution to Φµ(x̂, x̂
∗) = (0, (v̂∗r , v̂

∗
θ)), then (γ̂, ŵ) satisfies

(16)-(18). This motivates the following notion of κ–solutions:

Definition 9 Given an exponent κ > 0, an angular velocity µ > µcrit, and a boundary condition v̂∗ :=
(v̂∗r , v̂

∗
θ ) ∈ B0

κ+3 × B0
κ+3, we call κ–solution for the boundary condition v̂∗ and the asymptotic angular

velocity µ a pair x̂ = (γ̂, ŵ), such that, for sufficiently small α > 0 and some x̂∗ = (γ̂∗, ŵ∗) ∈ B0
κ+4×B0

κ+2:

• x̂ ∈ U2
α+4,κ × U2

α+2,κ+2,

• Φµ(x̂, x̂
∗) = (0, v̂∗).

The remaining sections are devoted to the proof of the following result:

Theorem 10 Given κ > 0 and µ0 > µcrit there exists εκ,µ0
> 0 and an open interval Iκ,µ0

∋ µ0 such
that, given v̂∗ ∈ B(B0

κ+3×B0
κ+3 ; εκ,µ0

) and µ∗ ∈ Iκ,µ0
, there exists µ > µcrit and a κ–solution (γ̂, ŵ) for

the boundary condition v̂∗ and the asymptotic angular velocity µ, satisfying the condition µ−∂rγ0(1) = µ∗.

As mentioned above, the notion of α small enough will be made precise in the last section. Before
entering into the details of the proof of Theorem 10, we explain why it implies Theorem 2.

Proof of Theorem 2. Let µ0 > µcrit and κ > 1. Applying Theorem 10 yields a ball of initial conditions
with positive radius εκ,µ0

> 0 and an open neighborhood Iκ,µ0
of µ0.

For u∗ ∈ C∞(∂B), we define :

µ∗ =
1

2π

∫ 2π

0

u∗θ(s) ds ,

and the sequences û∗ and v̂∗ by u0 = v0 = 0 and:

u∗n =
1

2π

∫ 2π

0

u∗r(θ)e
−inθ dθ , v∗n =

1

2π

∫ 2π

0

uθ(θ)e
−inθ dθ , ∀n ∈ Z \ {0} .

The regularity of u∗ yields that (û∗, v̂∗) ∈ B0
κ+3 × B0

κ+3 and

u∗r(θ) =
∑

n∈Z

u∗ne
inθ , u∗θ(θ) = µ∗ +

∑

n∈Z

v∗ne
inθ .

We now assume that:
‖(û∗, v̂∗) ; B0

κ+3 × B0
κ+3‖ < εκ,µ0

, µ∗ ∈ Iκ,µ0
, (25)

which makes the meaning of u∗ sufficiently close to µ0eθ in the statement of Theorem 2 precise.

Consequently, the assumptions of Theorem 10 are satisfied, which yields that there exists µ > µcrit

and a κ–solution (γ̂, ŵ) for the boundary data (û∗, v̂∗) satisfying µ− ∂rγ0(1) = µ∗. Let

w(r, θ) =
∑

n∈Z

wn(r)e
inθ , γ(r, θ) =

∑

n∈Z

γn(r)e
inθ , ∀ (r, θ) ∈ Ω .

Because κ > 1, classical results from the theory of Fourier series yield that:

• w ∈ C2(R2 \B) and γ ∈ C4(R2 \B) so that v = ∇⊥γ ∈ C3(R2 \B),
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• v · ∇w ∈ C1(R2 \B) with:

v · ∇w(r, θ) =
∑

n∈Z

[
− i

r

∑

k+l=n

(l wl(r) ∂rγk(r) − k γk(r) ∂rwl(r))

]
einθ , ∀ (r, θ) ∈ Ω .

Let
∆w − µ

r
eθ · ∇w − v · ∇w =: ϕ ∈ C([1,∞);C([−π, π])) .

Because (γ̂, ŵ) satisfies (16), all the Fourier coefficients of ϕ vanish identically on [1,∞). Hence, (γ, w)
is a solution of {

∆γ = −w ,
∆w − µ

r
eθ · ∇w = v · ∇w , in R

2 \B . (26)

Straightforward manipulations of the Fourier series of γ yield that:

|v(r, θ)| ≤ ‖γ ; U2
α,κ+4‖

rα+1
, ∀ (r, θ) ∈ Ω . (27)

Since u∗ has zero flux, i.e., since v∗r has zero average, we have that v(1, θ) = v∗r (θ)er + v∗θ (θ)eθ, for all
θ ∈ (−π, π), where:

v∗r (θ) =
∑

n∈Z

inγn(1)e
inθ =

∑

n∈Z

u∗ne
inθ = u∗r(θ) ,

v∗θ (1, θ) = −
∑

n∈Z

∂rγn(1)e
inθ = u∗θ(θ) − ∂rγ0(1)− µ∗ .

Therefore, if we set ψ := ψµ + γ, ω := w, u := ∇⊥ψ = uµ + v, then the pair (ψ, ω) is a solution to

{
∆ψ = −ω ,
∆ω = u · ∇ω , in R

2 \B , (28)

and the following boundary conditions are satisfied (recall that µ− ∂rγ0(1) = µ∗ by construction of γ̂):

u = u∗ , on ∂B , lim
r→∞

|u(r, θ)| = 0 .

The inequality (27) implies that the boundary condition at infinity is satisfied in the following more
precise sense:

lim
r→∞

∥∥∥r
(
u(r, θ)− µeθ

r

)
;L∞((−π, π))

∥∥∥ = lim
r→∞

r‖v(r, θ);L∞((−π, π))‖ = 0 .

To complete the proof, we need to show how to obtain the Navier Stokes equations (1) from the
relations between u, ψ and ω, together with (28). First, multiplying (28) by ϕ ∈ C∞

c (R2 \B) yields:

−
∫

R2\B

∇w : ∇ϕ =

∫

R2\B

[u · ∇w]ϕ .

We have the basic identities:

w = ∇× u , u · ∇w = ∇× [u · ∇u] , (29)

from which we obtain, after integration by parts, that for any given ϕ ∈ C∞
c (R2 \B):

−
∫

R2\B

∇u : ∇∇⊥ϕ =

∫

R2\B

[u · ∇u] · ∇⊥ϕ . (30)

This identity yields the pressure p via De Rham’s theory, modulo the difficulty, that not all the divergence-
free velocity-fields w ∈ C∞

c (R2 \ B) of compact support can be written in the form ∇⊥ϕ with ϕ ∈

9



C∞
c (R2 \ B). More precisely, if a smooth velocity-field v satisfies ∇ × v = 0 in R

2 \ B, then v is the
gradient of a function up to a contribution of the form Cx⊥/|x|2. We now show that this contribution
vanishes in our case.

Let Φ0 ∈ C∞(R) be such that supp(Φ′
0) ⊂⊂ (1, 2) and Φ0(0) = 0, Φ0(2) = 1, and let w0 = ∇⊥Φ0. In

polar coordinates we havew0(r, θ) = −Φ′
0(r)eθ , for all (r, θ) ∈ Ω. Given a divergence-freew ∈ C∞

c (R2\B)
we define w̃ and ϕ by:

w̃ = w −Mww0 with

[∫ ∞

1

wθ(r, 0) dr

]
=: Mw, ϕ(r, θ) =

∫ r

0

wθ(s, θ) ds−MwΦ0(r) .

By definition of Mw, we have that ϕ ∈ C∞
c (R2 \B) and ∇⊥ϕ = w̃, so that (30) implies:

−
∫

R2\B

∇u : ∇w̃ =

∫

R2\B

[u · ∇u] · w̃ .

Replacing w̃ by its definition yields that, for any divergence-free w ∈ C∞
c (R2 \B), we have:

−
∫

R2\B

∇u : ∇w =

∫

R2\B

[u · ∇u] ·w−Mw

∫

R2\B

([u · ∇u] ·w0 +∇u : ∇w0) .

Let I0 be the last integral in the previous equality. We then have:

I0 = lim
N→∞

∫

B(R2,N)\B

([u · ∇u] ·w0 +∇u : ∇w0) .

Integrating by parts, we obtain, for all N > 1:
∫

B(R2,N)\B

([u · ∇u] ·w0 +∇u : ∇w0) =

∫

∂B(R2,N)

(
[Φ0u · ∇u] · n⊥+Φ′

0∂ru · n⊥
)
dσ

−
∫

B(R2,N)

(Φ0u · ∇ω +∇ω · ∇Φ0)

=

∫

∂B(R2,N)

(
Φ0

[
(u · ∇u) · n⊥ − ∂nω

]
+Φ′

0∂ru · n⊥
)
dσ ,

where, in order to get the last identity, we have again used that u · ∇ω = ∆ω, in R2 \B. Since u decays
like 1/r, ∇u decays like 1/r2, and ∇ω like 1/r3. This yields that I0 = 0 in the limit N → ∞. Finally,
we have:

−
∫

R2\B

∇u : ∇w =

∫

R2\B

[u · ∇u] ·w ,

for any divergence-free vector-fieldw ∈ C∞
c (R2\B), and De Rham’s theory (see [21, Remark 1.5]) implies

the existence of a pressure p such that (1) is satisfied.

4 Proof of Theorem 10

In this section κ > 0 and µ0 > µcrit are fixed. First, we set µ− = (µ0 + µcrit) /2 and µ+ = (2µ0+ µcrit)/2
so that I := [µ−, µ+] satisfies

µ0 ∈ [µ−, µ+] ⊂ (µcrit,∞) .

We also set:

α :=
1

4
min

(
1√
2

[√
1 + |µ−|2 + 1

]1/2
− 2, 1

)
. (31)

We emphasize that, because µ0 > µcrit, we have α ∈ (0, 1/4]. Let:

Φµ : (U2
α,κ+4 × U2

α+2,κ+2)× (B0
κ+4 × B0

κ+2) −→ (U2
α,κ+4 × U2

α+2,κ+2)× (B0
κ+3 × B0

κ+3)

(
x̂ = (γ̂, ŵ)

x̂∗ = (γ̂∗, ŵ∗)

)
7−→

(
Sµ(NL(x̂, x̂), x̂∗)− x̂

Γ1[Sµ(NL(x̂, x̂), x̂∗)]

)
(32)
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We will show in the next section that for µ ∈ I the map Φµ is well defined. We split the proof of
Theorem 10 into two steps. First, we show that we can construct a κ–solution for any sufficiently small
boundary condition (û∗, v̂∗) ∈ B0

κ+3 × B0
κ+3 and an interval of asymptotic angular velocities µ. In a

second step, we analyze the dependence of this solution as a function of µ.

We have the following abstract result:

Proposition 11 Let I be a compact interval and X, Y two Banach spaces. Assume that Φ: µ ∈ I 7→ Φµ

satisfies:

• Φ ∈ C(I;C1(X ;Y )),

• Φµ(x) = 0 for all µ ∈ I,

• DΦµ(0) is one-to-one and onto, and has a continuous inverse for all µ ∈ I.

Then, there exist positive constants ηx and ηy, such that Φµ is a C1-diffeomorphism from BX(0, ηx) onto

Φµ (BX(0, ηx)) ⊃ BY (0, ηy). Furthermore, the family of inverse maps Φ−1 : µ ∈ I 7→ (Φµ)
−1

satisfies

Φ−1 ∈ C(I;C1(BY (0, ηy);BX(0, ηx))) .

Proof. The proof is standard, but for the sake of completeness we recall the main ingredients. Given
the hypothesis of Proposition 11, the map Φµ satisfies the assumptions of the inverse function theorem
for arbitrary µ ∈ I, so that there exits ηx,µ > 0 and ηy,µ > 0 such that Φµ is a C1-diffeomorphism
from BX(0, ηx,µ) onto Φµ (BX(0, ηx,µ)) ⊃ BY (0, ηµ,y). Since Φ is continuous, it is clear that these
constants can be chosen independently of µ, locally in µ. By a compactness argument, we can therefore
find constants ηx > 0 and ηy > 0 such that Φµ : BX(0, ηx) → Φµ (BX(0, ηx)) ⊃ BY (0, ηy) is a C1

diffeomorphism for arbitrary µ ∈ I. We now show that Φ−1 ∈ C(I × BY (0, ηy)). The proof that
Φ−1 ∈ C(I;C1(BY (0, ηy);BX(0, ηx))) is then obtained by differentiating (with respect to x) the identity
Φ−1

µ ◦ Φµ(x) = x which holds true on BX(0, ηx).
Given (µ, µ̃) ∈ I2 and (y, ỹ) ∈ [BY (0, ηy)]

2, we denote:

x = Φ−1
µ (y) , x̃ = Φ−1

µ̃ (ỹ) .

By construction we have:

y − ỹ = Φµ(x) − Φµ̃(x̃),

= DΦµ(0)[x− x̃] + Φµ(x̃)− Φµ̃(x̃) + o(|x − x̃|)
= DΦµ(0)[x− x̃] + o(|µ− µ̃|) + o(‖x− x̃;X‖) .

Consequently, reducing the size of ηx and ηy if necessary, we get that:

‖x− x̃ ; X‖ ≤ 2‖[DΦµ(0)]
−1;Lc(Y ;X)‖ [‖y − ỹ;Y ‖+ o(|µ − µ̃|)] ,

where Lc(Y ;X) denotes the set of continuous linear map Y → X. This completes the proof.

We now show that we can apply Proposition 11 to the map Φ as defined in (32) To this end, we
remark that Φµ depends on µ only through µ 7→ Sµ, and that for all µ ∈ I the differential DΦµ(0) is:

DΦµ(0)[x̂, x̂
∗] = (Γ1Sµ(0, x̂

∗),−x̂) , ∀ (x̂, x̂∗) ∈ (U2
α,κ+4 × U2

α+2,κ+2)× (B0
κ+4 × B0

κ+2) .

Let Tµ(x̂∗) := Γ1Sµ(0, x̂
∗). Since Φ is a combination of linear and bilinear maps, it suffices to apply

Lemma 8 and the following lemma in order to check that the assumptions of Proposition 11 are satisfied:

Lemma 12 Let α be given by (31), then the restriction of the map S : µ 7→ Sµ to I := [µ−, µ+] satisfies:

i) S ∈ C(I;Lc(Bκ,2α+4 × (B0
κ+4 × B0

κ+2) ; U2
α,κ+4 × U2

α+2,κ+2)),

ii) Tµ is a one to one and onto map B0
κ+4 × B0

κ+2 → B0
κ+3 × B0

κ+3 with continuous inverse.
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We postpone the proof of this technical lemma to the next section. We now apply Proposition 11 to
Φ, but restrict the image to the component x̂. This yields the following result:

Theorem 13 There exists a map Ψ: µ 7→ Ψµ satisfying

Ψ ∈ C(I;C1(BB0
κ+3

×B0
κ+3

(0, εκ) ; U2
α,κ+4 × U2

α+2,κ+2)) ,

such that, for all v∗ ∈ BB0
κ+3

×B0
κ+3

(0, εκ) and µ ∈ I, Ψµ(v
∗) is a κ–solution for the boundary condition

v∗ with respect to the asymptotic angular velocity µ.

In a final step we show how to prescribe the zero mode of the solution Ψµ(v
∗) by using the dependence

of the solution on µ. Let η = (µ0− µcrit)/4, and consider a boundary condition

v∗ ∈ BB0
κ+3

×B0
κ+3

(0, εκ) .

Let (ψ̂µ, ŵµ) := Ψµ(v
∗), for all µ ∈ I. Using that Ψµ(0) = 0, and restricting the size of εκ if necessary,

we can assume that
|∂rψµ,0(1)| ≤ ‖ψ̂µ ; U2

α,κ‖ ≤ η , ∀µ ∈ I .

Consequently, the map µ 7→ µ − ∂rψµ,0(0), which is continuous from I to R, because µ 7→ Ψµ(0,v
∗) is

continuous, satisfies:

µ− − ∂rψµ−,0(1) ≤ µ− + η < µ0 , µ+ − ∂rψµ+,0(0) ≥ µ+ − η > µ0 .

Hence the image of this map contains an open interval Iκ,µ0
containing µ0. This completes the proof of

Theorem 10.

5 Proof of main lemmas

This section contains the proof of the technical lemmas which have been used without proof in the
previous sections. First we prove Lemma 8, which is standard. We then give proofs of Lemmas 7 and 12
which are more delicate.

Proof of Lemma 8. Let F̂ = NL((γ̂a, ŵa), (γ̂b, ŵb)), for (γ̂i, ŵi) ∈ U2
α,κ+4×U2

α+2,κ+2, i = {a, b}. First,
we note that for κ > 0 and n ∈ N, the following series converge:

∑

l∈Z

1

(1 + |l|)κ+1(1 + |n− l|)κ+3
,

∑

k∈Z

1

(1 + |k|)κ+3(1 + |n− k|)κ+1
. (33)

Consequently, we have for all (n, k, l) ∈ Z3:

|lwa
l (r)∂rγ

b
n−l(r)| ≤

1

r3+2α

‖(wa
n)n∈Z ; Bα+2,κ+2‖ ‖(∂rγbn)n∈Z ; Bα+1,κ+3‖

(1 + |l|)κ+1(1 + |n− l|)κ+3
,

and

|kγak(r)∂rwb
n−k(r)| ≤

1

r3+2α

‖(γan)n∈Z ; Bα,κ+4‖ ‖(∂rwb
n)n∈Z ; Bα+3,κ+1‖

(1 + |k|)κ+3(1 + |n− k|)κ+1
,

and therefore the series defining Fn is converging. We now bound the series (33). By symmetry, it is
sufficient to consider only the first series and n ≥ 0. We split the sum into two parts:

S−
n/2 =

[n/2]∑

l=−∞

1

(1 + |l|)κ+1(1 + |n− l|)κ+3

≤ Cκ

(
1

1 + |n|

)κ+3∑

l∈Z

1

(1 + |l|)κ+1
≤ Cκ

(
1

1 + |n|

)κ+3

,
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and

S+
n/2 =

∞∑

[n/2]+1

1

(1 + |l|)κ+1(1 + |n− l|)κ+3

≤ Cκ

(
1

1 + |n|

)κ+1∑

l∈Z

1

(1 + |l|)κ+3
≤ Cκ

(
1

1 + |n|

)κ+1

.

This shows that F̂ ∈ B4+2α,κ+1.

5.1 Proof of Lemma 7

From now on, we assume κ > 0. We recall that:

ζn :=
[
n2 + iµn

] 1
2 , ∀n ∈ Z .

In what follows, we use without mention the following properties of ζn:

|ζn| = |n|
(
1 +

(µ
n

)2) 1
4

, ∀n ∈ Z \ {0} ,

and

ξn := Re(ζn) =
|n|√
2

[(
1 +

(µ
n

)2) 1
2

+ 1

] 1
2

,

Im(ζn) =
n√
2

[(
1 +

(µ
n

)2) 1
2

− 1

] 1
2

,

∀n ∈ Z \ {0} . (34)

We note that ξn is an increasing function of |n| so that its minimal value (over n ∈ Z \ {0}) is reached
for n = ±1 and is equal to:

ρµ :=
1√
2

[(
1 + µ2

) 1
2 + 1

] 1
2

.

Let

αµ :=
1

2
min(ρµ − 2, 1) .

For µ > µcrit we have ρµ > 2, so that αµ > 0. We choose α ∈ (0, αµ) from now on. This is the smallness
condition that is mentioned in Lemma 7.

With the above conventions, we first analyze the equations which determine ŵ:

Proposition 14 Given F̂ ∈ B2α+4,κ and ŵ∗ ∈ B0
κ+2, the equations:

wn(r) =
wn

rζn
+

∫ ∞

r

sFn(s)

2ζn

(r
s

)ζn
ds+

∫ r

1

sFn(s)

2ζn

(s
r

)ζn
ds , (35)

w0(r) = −
∫ ∞

r

1

s

∫ ∞

s

t F0(t) dt ds , (36)

with:

wn = w∗
n −

∫ ∞

1

sFn(s)

2ζn

(
1

s

)ζn

ds ,

define C2 functions. Moreover, we have ŵ ∈ U2
α+2,κ+2, and there exists a constant Cα,µ <∞, depending

only on α and µ, such that

‖(wn)n∈Z ; U2
α+2,κ+2‖ ≤ Cα,µ

[
‖(Fn)n∈Z ; B4+2α,κ+2‖+ ‖(w∗

n)n∈Z ; B0
κ+2‖

]
. (37)

13



Proof. We only prove (37); existence and continuity follow in a straightforward way. We first
treat the case n 6= 0 and then the case n = 0. Throughout the proof, we use the shorthand MF for
‖(Fn)n∈Z ; B4+2α,κ‖.

Case n 6= 0. We split the expression defining wn according to (35):

wn(r) =
wn

rζn
+ In1 (r) + In∞(r) .

By definition of the norm on the space B4+2α,κ, we have:

|Fn(s)| ≤
MF

(1 + |n|)κ s4+2α
, ∀ s ≥ 1 .

Using that ξn ≥ ρµ > α+2, and that c|n| ≤ |ζn| ≤ C(1+
√
|µ|)|n| and |n| ≤ ξn ≤ (1 +

√
|µ|)|n| for large

values of |n|, we get that:

|In1 (r)| =
∣∣∣∣
∫ r

1

sFn(s)

2ζn

(s
r

)ζn
ds

∣∣∣∣

≤ MF

(1 + |n|)κ|ζn|
1

rξn

∫ r

1

s1+ξn−(4+2α) ds

≤ Cα,µ
MF

(1 + |n|)κ+2

(
1 + rξn−(2α+2)

)

rξn
, (38)

for all r ≥ 1. Here we used that, by our smallness condition on α, we have ξn − (2α+ 2) > −1. We also
have:

|In∞(r)| =
∣∣∣∣
∫ ∞

r

sFn(s)

2ζn

(r
s

)ζn
ds

∣∣∣∣

≤ MF

(1 + |n|)κ|ζn|
rξn

∫ ∞

r

s1−ξn−(2α+4) ds

≤ Cα,µ
MF

(1 + |n|)κ+2

1

r2α+2
, (39)

for all r ≥ 1. Using these bounds for r = 1, we obtain:

|wn| ≤ |w∗
n|+ Cα,µ

MF

(1 + |n|)κ+2
. (40)

Plugging (38), (39) and (40) into (35) and recalling that ξn > α+ 2 yields:

|wn(r)| ≤ Cα,µ
MF + ‖ŵ∗ ; B0

κ+2‖
(1 + |n|)κ+2

1

rα+2
, ∀ r ≥ 1 .

Differentiating (35) with respect to r, we obtain:

∂rwn(r) = − ζnwn

rζn+1
+
ζn
r
In1 (r) −

ζn
r
In∞(r) , ∀ r ≥ 1 .

To summarize, when we differentiate wn with respect to r, the decay in r increases by one power, and the
decay in n decreases by one power. This observation allows us to bound ∂rwn in the indicated function
spaces. Finally, since the expression defining ŵ define a solution of (16), we plug the bounds on wn and
∂rwn into this equation and get a bound for ∂rrwn(r). We obtain that there exists a constant Cα,µ,
depending only on α and µ, such that

r2|∂rrwn(r)|
(1 + |n|)2 +

r|∂rwn(r)|
(1 + |n|) + |wn(r)| ≤ Cα,µ

MF + ‖ŵ∗ ; B0
κ+2‖

(1 + |n|)κ+2

1

rα+2
, ∀ r ≥ 1 .
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We emphasize here that the constant Cα,µ depends on α and µ. Nevertheless, it is clear from the com-
putations above that, when α is fixed and µ varies in a a compact interval I ⊂ R, this constant remains
uniformly bounded.

Case n = 0. Proceeding as in the case n 6= 0, we get the bound:

|w0(r)| ≤MF

∫ ∞

r

1

s

∫ ∞

s

1

t4+2α
dt ds ≤ Cα

MF

r2+α
, ∀ r ≥ 1 .

Similarly, one shows

|∂rw0(r)| ≤
MF

r

∫ ∞

r

1

s4+2α
ds ≤ Cα

MF

r3+α
, ∀ r ≥ 1 ,

and we again conclude, by recalling the differential equation satisfied by w0 (see (16) for n = 0), that:

r2|∂rrw0(r)| + r|∂rw0(r)|+ |w0(r)| ≤ Cα
MF + ‖ŵ∗ ; B0

κ+2‖
r2+α

, ∀ r ≥ 1 .

This completes the proof.

We next consider the equation satisfied by γ̂:

Proposition 15 Given φ̂ ∈ Bα+2,κ+2 and γ̂∗ ∈ B0
κ+4, the equations:

γn(r) =
γn
r|n|

−
∫ ∞

r

sφn(s)

2|n|
(r
s

)|n|
ds−

∫ r

1

sφn(s)

2|n|
(s
r

)|n|
ds , (41)

γ0(r) =

∫ ∞

r

1

s

∫ ∞

s

t φ0(t) dt ds , (42)

with

γn = γ∗n +

∫ ∞

1

sφn(s)

2|n|

(
1

s

)|n|

ds ,

define C2 functions. Moreover, γ̂ ∈ U2
α,κ+4 and there exists a constant Cα < ∞, depending only on α,

such that
‖(γn)n∈Z ; U2

α,κ+4‖ ≤ Cα

[
‖(φn)n∈Z ; Bα+2,κ+2‖+ ‖(γ∗n)n∈Z ; B0

κ+4‖
]
. (43)

The proof is identical to the proof of Proposition 14 and is left to the reader. Lemma 7 is a straight-
forward consequence of Proposition 15 and Proposition 14.

5.2 Proof of Lemma 12, first item

Let I = [µ−, µ+] ⊂ (µcrit,∞) and α be given by (31). In particular, we have α < min{αµ, µ ∈ I}
so that, applying the results of the preceding section, it follows that Sµ : B4+2α,κ × (B0

κ+4 × B0
κ+2) −→

U2
α,κ+4 × U2

α+2,κ+2 is a well-defined continuous linear map, for all values of µ ∈ I. We now show
that the map S : µ 7→ Sµ is also continuous. This amounts to show that, for arbitrary µ0 ∈ I and
µ ∈ I, there exists a constant Cµ which converges to zero as µ converges to µ0, such that, for arbitrary

(F̂, x̂∗) ∈ B4+2α,κ × (B0
κ+4 × B0

κ+2):

‖Sµ0
(F̂, x̂∗)− Sµ(F̂, x̂

∗) ; U2
α,κ+4 × U2

α+2,κ+2‖ ≤ Cµ‖(F̂, x̂∗) ; B4+2α,κ × (B0
κ+4 × B0

κ+2)‖ .

Given µ ∈ I, we let (γ̂[µ], ŵ[µ]) := Sµ(F̂, x̂
∗). Since γ̂[µ] is obtained from ŵ[µ] via an equation which

does not depend on µ, we can apply directly Proposition 14, yielding that, for arbitrary (µ, µ̃) ∈ I2:

‖γ̂[µ]− γ̂[µ̃] ; U2
α,κ+4‖ ≤ Cα‖ŵ[µ]− ŵ[µ̃] ; U2

α+2,κ+2‖ .

Hence, it suffices to prove that ŵ[µ] is continuous with respect to µ, in order to obtain the continuity of
S.
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To show the continuity of ŵ[µ], we first remark that w0[µ] does not depend µ, so that we only detail
the case n 6= 0. Let n 6= 0, we split wn[µ] into three terms:

wn[µ](r) =Wn
b [µ](r) + In1 [µ](r) + In∞[µ](r) ,

where:

Wn
b [µ](r) =

w̄n[µ]

rζn[µ]
, In1 [µ](r) =

∫ r

1

sFn(s)

2ζn[µ]

(s
r

)ζn[µ]
ds , In∞[µ](r) =

∫ ∞

r

sFn(s)

2ζn[µ]

(r
s

)ζn[µ]
ds .

We recall that

∂rwn[µ](r) = −ζn[µ]
r

Wn
b [µ](r) −

ζn[µ]

r
In1 [µ](r) +

ζn[µ]

r
In∞[µ](r) , (44)

∂rrwn[µ](r) = Fn(r) −
∂rwn[µ](r)

r
+

(n2 + iµn)

r2
wn[µ](r) . (45)

Note also that ζn[µ] = (n2+ iµn)1/2 is a continuous function of µ uniformly in n. Indeed, since the square
root is analytic in a neighborhood of 1, we have for sufficiently large n (uniformly in µ ∈ I):

|ζn[µ]− ζn[µ̃]| = |n|
∣∣∣∣∣

(
1 +

iµ

n

) 1
2

−
(
1 +

iµ̃

n

) 1
2

∣∣∣∣∣ ≤ C|µ− µ̃| .

We also have the bound |ζn[µ]| ≤ c|n|, with c independent of µ ∈ I. Introducing these bounds into (44)-
(45) shows that the continuity of ŵ[µ] follows from the continuity of (Ŵb[µ], Î1[µ], Î∞[µ]) in Bα+2,κ+2.
For consistency, the three sequences, which are only defined for n 6= 0, are completed by 0 for n = 0.

To begin with, we consider the continuity of µ 7→ Î1[µ]. Let (µ, µ̃) ∈ I2, and assume that |ζn[µ] −
ζn[µ̃]| < α/2, uniformly in n. We have:

In1 [µ]− In1 [µ̃] = J1(r) + J2(r) ,

where:

J1(r) =

∫ r

1

sFn(s)

2ζn[µ]

[
ζn[µ̃]− ζn[µ]

ζn[µ̃]

] (s
r

)ζn[µ]
ds ,

J2(r) =

∫ r

1

sFn(s)

2ζn[µ̃]

[
1−

(s
r

)ζn[µ]−ζn[µ̃]
](s

r

)ζn[µ̃]
ds .

We have, uniformly in n:
∣∣∣∣
ζn[µ̃]− ζn[µ]

ζn[µ̃]

∣∣∣∣ ≤ c|ζn[µ]− ζn[µ̃]| = o(1) ,

∣∣∣∣1−
(s
r

)ζn[µ]−ζn[µ̃]
∣∣∣∣ ≤ c |ζn[µ]− ζn[µ̃]| ln(r)r|ζn[µ]−ζn[µ̃]| = o(1) ln(r)rα/2 .

We introduce these uniform bounds in J1 and J2 and redo the computations in the proof of Proposition
14 (see (38)). We get:

|J1(r)| ≤
‖F̂ ;B4+2α‖
(1 + |n|κ+2)

o(1)

r2+2α
, |J2(r)| ≤

‖F̂ ;B4+2α‖
(1 + |n|κ+2)

o(1) ln(r)

r2+3α/2
,

where the term o(1) denotes a constant converging to 0 when µ − µ̃ → 0, uniformly in n . Finally, we
have that, for all n ∈ Z \ {0}:

|In1 [µ]− In1 [µ̃]| ≤
‖F̂ ;B4+2α‖
(1 + |n|κ+2)

o(1)

r2+α
, (46)
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We now prove the continuity of µ 7→ Î∞[µ]. For any (µ, µ̃) ∈ I and n 6= 0, we perform a similar
splitting:

In∞[µ]− In∞[µ̃] = J1(r) + J2(r) ,

where:

J1(r) =

∫ ∞

r

sFn(s)

2ζn[µ]

[
ζn[µ̃]− ζn[µ]

ζn[µ̃]

](r
s

)ζn[µ]
ds ,

J2(r) =

∫ ∞

r

sFn(s)

2ζn[µ̃]

[
1−

(r
s

)ζn[µ]−ζn[µ̃]
](r

s

)ζn[µ̃]
ds .

As in the preceding bound we have, uniformly in n:

∣∣∣∣
ζn[µ̃]− ζn[µ]

ζn[µ̃]

∣∣∣∣ ≤ c|ζn[µ]− ζn[µ̃]| = o(1) ,

∣∣∣∣1−
(s
r

)ζn[µ]−ζn[µ̃]
∣∣∣∣ ≤ o(1) ln

(s
r

)(s
r

)α/2
,

where we have used that |ζn[µ] − ζn[µ̃]| ≤ α/2. We can therefore redo the computations in the proof of
Proposition 14 (see (39)). This yields, for all n ∈ Z \ {0}:

|J1(r)| + |J2(r)| ≤
‖F̂ ;B4+2α,κ‖
(1 + |n|κ+2)

o(1)

r2+α
.

As in the preceding estimate we conclude that:

‖Î∞[µ]− Î∞[µ̃];Bα−+2,κ+2‖ = o(1)‖F̂ ;B4+2α,κ‖ .

Finally, we prove the continuity of µ 7→ Ŵb[µ]:

|Wn
b [µ](r) −Wn

b [µ̃](r)| =

∣∣∣∣
w̄n[µ]− w̄n[µ̃]

rζn[µ]
+

w̄n[µ̃]

rζn[µ−]

(
1

rζn[µ]−ζn[µ−]
− 1

rζn[µ̃]−ζn[µ−]

)∣∣∣∣ ,

≤
∣∣∣∣
w̄n[µ]− w̄n[µ̃]

rζn[µ]

∣∣∣∣+
∣∣∣∣
w̄n[µ̃]

rζn[µ−]

(
1

rζn[µ]−ζn[µ−]
− 1

rζn[µ̃]−ζn[µ−]

)∣∣∣∣ ,

≤ |w̄n[µ]− w̄n[µ̃]|
r2+2α

+
|w̄n[µ̃]|
r2+α

1

rα

∣∣∣∣
(

1

rζn[µ]−ζn[µ−]
− 1

rζn[µ̃]−ζn[µ−]

)∣∣∣∣ ,

where we have used that Re(ζn[µ]) ≥ Re(ζn[µ−]) > 2 + 2α. At this point we note that the bound which
we obtained above for In∞ in r = 1 yields:

|w̄n[µ]− w̄n[µ̃]| =
o(1)

(1 + |n|)κ+2
‖F̂ ;B4+2α,κ‖ .

As µ 7→ ζn[µ] is continuous in µ (uniformly in n) and satisfies Re(ζn[µ]) ≥ Re(ζn[µ−]), for all µ ∈ I, we
also have: ∥∥∥∥

1

rα

(
1

rζn[µ]−ζn[µ−]
− 1

rζn[µ̃]−ζn[µ−]

)
; L∞(1,∞)

∥∥∥∥ = o(1) ,

where o(1) is uniform in n. By combination, this yields, for all n ∈ Z \ {0}:

|Wn
b [µ](r) −Wn

b [µ̃](r)| ≤
o(1)

(1 + |n|κ+2)r2+α

[
‖F̂ ;B4+2α,κ‖+ ‖ŵ∗;B0

κ+2‖
]
.

This completes the proof of the first item in Lemma 12.
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5.3 Proof of Lemma 12, second item

In this paragraph, we prove that the map T1 is one-to-one and onto with a continuous inverse. Given
x̂∗ = (γ̂∗, ŵ∗) ∈ B0

κ+4 × B0
κ+2, we set (γ̂, ŵ) = Sµ(0, x̂

∗). A straightforward computation shows:

wn(r) =
w∗

n

rζn
γn(r) =

γ̄n
r|n|

+

∫ ∞

r

swn(s)

2|n|
(r
s

)|n|
ds+

∫ r

1

swn(s)

2|n|
(s
r

)|n|
ds , ∀ r ≥ 1 ,

where:

γ̄n = γ∗n −
∫ ∞

1

swn(s)

2|n|

(
1

s

)|n|

ds .

Therefore, we have, for all n ∈ Z \ {0}:
γn(1) = γ∗n ,

together with:

∂rγn(1) = −|n|γ∗n +

∫ ∞

1

swn(s)

(
1

s

)|n|

ds = −|n|γ∗n − w∗
n

2− |n| − ζn
,

so that (v̂∗r , v̂
∗
θ) = T1(x̂∗) satisfies:

• v∗r,0 = v∗θ,0 = 0,

• v∗r,n = inγ∗n, and v
∗
θ,n = −∂rγn(1) = |n|γ∗n +

w∗
n

2− |n| − ζn
, for all n ∈ Z \ {0}.

This shows that the map T1 is one-to-one and onto. Indeed, the inverse map is given by:

T −1
1 [v̂′r, v̂

′
θ)] = (γ̂′, ŵ′) ,

where:

• γ′0 = w′
0 = 0,

• γ′n =
v′r,n
in

, and w′
n = (2− |n| − ζn)

(
v′θ,n − |n|v′r,n

in

)
for all n ∈ Z \ {0}.

It is therefore clear that T −1
1 ∈ Lc(B0

κ+3 × B0
κ+3 ; B0

κ+4 × B0
κ+2). This completes the proof.
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[15] A. Korolev and V. Šverák. On the large-distance asymptotics of steady state solutions of the Navier-
Stokes equations in 3D exterior domains. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(2):303–313,
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